.\" @(#)geodesic.3
.\"
.TH GEODESIC 3 "2018/09/15 Rel. 5.2.0"
.ad b
.hy 1
.SH NAME
.B geod_init
\- initialize an ellipsoid
.br
.B geod_direct geod_gendirect
\- the direct geodesic problem
.br
.B geod_inverse geod_geninverse
\- the inverse geodesic problem
.br
.B geod_lineinit geod_directline geod_gendirectline geod_inverseline
\- initialize a geodesic line
.br
.B geod_setdistance geod_gensetdistance
\- set distance to reference point
.br
.B geod_position geod_genposition
\- a position on a geodesic line
.br
.B geod_polygon_init
\- initialize a polygon
.br
.B geod_addpoint geod_addedge
\- add to a polygon
.br
.B geod_polygon_compute geod_polygon_testpoint geod_polygon_testedge
\- compute properties of polygon
.br
.B geod_polygon_clear
\- clear polygon
.br
.B geod_polygonarea
\- the area of a polygon
.br
.SH SYNOPSIS
.nf
#include <geodesic.h>
.br
and link against the \fBproj\fR library.
.SH DESCRIPTION
This library is a port of the geodesic routines in the C++ library,
GeographicLib, to C.  It solves the direct and inverse geodesic problems
on an ellipsoid of revolution.  In addition, the reduced length of a
geodesic and the area between a geodesic and the equator can be
computed.  The results are accurate to round off for |\fIf\fR| < 1/50,
where \fIf\fR is the flattening.  Note that the geodesic routines
measure angles (latitudes, longitudes, and azimuths) in degrees, unlike
the rest of the \fBproj\fR library, which uses radians.  The
documentation for this library is included in geodesic.h.  A formatted
version of the documentation is available at
https://geographiclib.sourceforge.io/1.49/C.  Detailed documentation of
the interface is given at
https://geographiclib.sourceforge.io/1.49/C/geodesic_8h.html.
.SH EXAMPLE
The following program reads in lines with the coordinates for two points
in decimal degrees (\fIlat1\fR, \fIlon1\fR, \fIlat2\fR, \fIlon2\fR) and
prints out \fIazi1\fR, \fIazi2\fR, \fIs12\fR for the geodesic line
between each pair of points on the WGS84 ellipsoid.  (N.B. \fIazi2\fR is
the forward azimuth at point 2.)
.nf
\f(CW

#include <stdio.h>
#include <geodesic.h>

int main() {
  double a = 6378137, f = 1/298.257223563; /* WGS84 */
  double lat1, lon1, azi1, lat2, lon2, azi2, s12;
  struct geod_geodesic g;

  geod_init(&g, a, f);
  while (scanf("%lf %lf %lf %lf",
               &lat1, &lon1, &lat2, &lon2) == 4) {
    geod_inverse(&g, lat1, lon1, lat2, lon2,
                 &s12, &azi1, &azi2);
    printf("%.8f %.8f %.3f\en", azi1, azi2, s12);
  }
  return 0;
} \fR
.br
.fi
.SH LIBRARY
libproj.a \- library of projections and support procedures
.SH SEE ALSO
Full online documentation for \fBgeodesic(3)\fR,
.br
https://geographiclib.sourceforge.io/1.49/C
.br
https://geographiclib.sourceforge.io/1.49/C/geodesic_8h.html
.PP
.B geod(1)
.PP
\fBGeographicLib\fR, https://geographiclib.sourceforge.io
.PP
The \fBGeodesicExact\fR class in GeographicLib solves the geodesic
problems in terms of elliptic integrals; the results are accurate for
arbitrary \fIf\fR.
.PP
C. F. F. Karney, \fIAlgorithms for Geodesics\fR,
.br
J. Geodesy \fB87\fR, 43-55 (2013);
.br
DOI: https://doi.org/10.1007/s00190-012-0578-z
.br
https://geographiclib.sourceforge.io/geod-addenda.html
.PP
\fIA geodesic bibliography\fR,
.br
https://geographiclib.sourceforge.io/geodesic-papers/biblio.html
.PP
The Wikipedia page, \fIGeodesics on an ellipsoid\fR,
.br
https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid
.SH BUGS
A list of known bugs can found at https://github.com/OSGeo/proj.4/issues
where new bug reports can be submitted too.
.SH HOME PAGE
https://proj4.org/