
Bridging MOOS Communities with pShare

Paul Newman, University of Oxford

April 18, 2013

....ten years on

1

Contents
1 Introduction 3

1.1 Why UDP ? . 3

2 Basic Operation 4
2.1 Different Ways Sharing . 4
2.2 Sharing via Multicast Channels 5

3 The form of command line configuration strings 5
3.1 Output . 5
3.2 Input . 6

4 Command line Configuration 6

5 Configuring pShare from a .moos file 8

6 Wildcard Sharing 9

7 Instigating Dynamic Shares On The Fly 11

2

1 Introduction
MOOS-V10 brings with it a new command line application which allows data
to be shared between MOOS communities. Recall that in MOOS parlance
a “community” is the set of programms talking to a particular instance of a
MOOSDB including the MOOSDB itself. In some ways pShare is just a modern,
better written version of pMOOSBridge in others it offers much greater flexibility
and functionality. Here is a quick summary of pShare functionality

• it offers UDP communication between communities

• it can share data over multicast channels

• it allows renaming of variables as they are shared

• it supports wildcard sharing - so you can specify a sinple regular expression
for which what should be shared

• it supports dynamic configuration (via MOOS) of sharing/forwarding/re-
naming

• it supports command line configuration and from a .moos file

• it can be completely configured from the command line

It is worth, straight off the bat, understanding how in usage terms pShare is
different from pMOOSBridge

• pShare unlike pMOOSBridge only supports UDP (or multicast which is a
kind of UDP)

• You need one instance of pShare per community (compare this to pMOOSBridge
where a single instance could be used to bridge any number of communi-
ties)

• Currently pShare only supports sharing of up to 64K messages

1.1 Why UDP ?
UDP is, of course, a lossy affair - there is no guarrantee that messages will
get through and indeed pShare is intended for use in just such situations. Use
pShare when you want, when possible, to get messages between communities
and yet you don’t mind dropping a few messages. Perhaps this applies when
you have a deployed robot out in the wilds and the wireless link simply doesn’t
suport tcp/ip as well as you might hope. 1

1If you do mind loosing things then you must use tcp/ip (standard MOOS) and if you have
a lossy connection you will spend years waiting for data.

3

pShare pShare

MOOSDBMOOSDB

Figure 1: A simple use of pShare: two communities are linked by two in-
stances of pShare - one in each community.

2 Basic Operation
Figure 1 shows a typical and simple use case of pShare. Here two communities
are linked by two instances of pShare. Each is connected to a MOOSDB and each
pShare is configured (by a means we will get to in a minute) to subscribe to
messages from the MOOSDB (issued by clients). These messages are forwarded
over a udp link to the other pShare instance which inserts them into it’s own
MOOSDB. The important point here is that if process “A” in community “P” has
message M shared via pShareP and pShareQ to process B in community Q
then when B receives M it will still have A as its source and P as its source
community. So to process B it looks like A is actutaly in its own community
(Q).

A more complicated (marginally) example is show in Figure 2 . Here the
left hand community is sharing as an output data to the top right and bottom
right communities but only receiving data from the bottom right.

2.1 Different Ways Sharing
Each instance of pShare can be configured such that it can

• forward a named message (like ’X’) to any number of specific udp ports
on any number of other machines

• can rename a message before forwarding

• receive and forward on to its own MOOSDB messages from any number of
other pShares

• forward messages on predefined or any number of multicast channels

• receive messages on any number of multicast channels

how to do this is best explained with some examples and that will happen in
Section 4. Before that it is worth explaining the merit of multicast channels.

4

pShare

pShare

MOOSDB

MOOSDB

pShare

MOOSDB

Figure 2: A simple use of pShare: three communities are linked by two in-
stances of pShare - one in each community but data sharing is not symmetric.

2.2 Sharing via Multicast Channels
Imagine you as an application developer knew that other communities (but you
do not know which ones a-priori) would be interested in a variable called X.
Now if you knew exactly who wanted it you could configure a standard UDP
shares to mutually agreed ports (presumably one port per community) on which
other pShares are listening. But you don’t. So what to do? Well you could use
pShare’s ability for packets to predefine multicast channels (these are really
simply multicast addresses behind the scenes) you can tell pShare to forward
MOOS messages out to a multicast_channel and later on any number of other
pShare instances can subscribe to this channel and receive them.

3 The form of command line configuration strings

3.1 Output
The ’-o’ switch allows you to configure which messages to forward (share), how
to rename them and where to send them. At its highest level the the ’-o’ switch
is followed by a comma separated list of

mappings “-o= mapping , mapping, mapping,...” and each mapping de-
scribes how one MOOS variable is routed to any number of destinations.
Each mapping contains mulitple...

5

 new_name: destination

var_name->route & route & route….

-o = mapping, mapping, mapping….

<host_address>:<port> multicast_channel

 destinationOR

OR

an output directive is….

a mapping is ….

a route is…..

a destination is…..

Figure 3: Specifying pShare forwarding behaviour from the command line. Ex-
amples are given in4.

routes and has the form of “var_name->route & route...” so a variable
name pointing to an ampersand-separated list of “routes”. Now, each
route describes a...

destination for a message and it has the format “new_name:destination_address:destination_port”
or “new_name:multicast_channel”. The new_name part can be om-
mited in which case the variable is not renamed. Figure 3 describes this
hiearchy pictorially and some concrete examples are given in Section 4.

3.2 Input
The -i switch is much simpler. It tells an instance of pShare how to listen
to for incoming traffic. The format is always -i=localhost:<port_num> or -
i=multicast_<N> where N is a number between 0 and 255. Multiple listens
can be specified in a comma separated list.

4 Command line Configuration
Imagine we have two communities A and B. Lets also assume that they reside
on different machines. Machine A has ip address 192.168.0.10 and machine B
has ip address 192.168.0.4.

description share X from A to B

terminal A command line -o=’X->192.168.0.4:10000’
terminal B command line -i=localhost:10000

6

description share X from A to B as Y

terminal A command line -o=’X->Y:192.168.0.4:10000’
terminal B command line -i=localhost:10000

description share X from A to B as X and Y

terminal A command line -o=’X->92.168.0.4:10000 & Y:192.168.0.4:10000’
terminal B command line -i=localhost:10000

description share X from A to B as X and Y via two different ports

terminal A command line -o=’X->92.168.0.4:10000 & Y:192.168.0.4:20000’
terminal B command line -i=localhost:10000,localhost:20000

description share X and Y to B

terminal A command line -o=’X->192.168.0.4:10000 , Y->192.168.0.4:10000’
terminal B command line -i=localhost:10000

description share X via multicast
terminal A command line -o=’X->multicast_7’
terminal B command line -i=multicast_7

description share X via multicast and rename
terminal A command line -o=’X->Y:multicast_7’
terminal B command line -i=multicast_7

description share X on several channels
terminal A command line -o=’X->Y:multicast_7 & Z:multicast_3’
terminal B command line -i=multicast_7

description share X via multicast and rename
terminal A command line -o=’X->Y:multicast_7’
terminal B command line -i=multicast_7,multicast_3

description share X as several new variables on the same multicast channel
terminal A command line -o=’X->Y:multicast_7 & Z:multicast_7’
terminal B command line -i=multicast_7

Tip: don’t forget to put single quotes around the routing directives to prevent
your shell from interpretting the ’>’ character.

7

5 Configuring pShare from a .moos file
We have seen some examples on how to configure pShare on the command
line (because that is insanely useful) but of course it can also be configured by
reading a configuration block in a .moos file just like any MOOSApp can. The
key parameter names are

Output which can have the same format as the -o flag on the command line
or a more verbose as illustrated below. There can be as many “Output”
directives in a configuration block as you need. The verbose form specifies
one share per invocation while the compact form specifies as many as you
wish. The verbose form of the Output directive is a tuple of token value
pairs where the tokens are

src_name the name of the varible ot be shared
dest_name the name it should have when it arrives at its destination -

this is optional, if it is not present then no renaming occurs
route a description of the route which could be for udp shares host-

name:port:udp or for multicast shares “multicast_X”. This is much
as it is for the command line configuration.

Input which can have the same dense format as the -i flag on the command
line as described above or a more verbose, intuitive form illustrated below.
In the long hand version you use a single token value pair with a token
name of “route” as described above. This specifies the fashion in which
this instance of pShare should listen - be that on mulitple ports for udp
traffic or on a multicast channel for multicast action.

Listing 1: Configuring pShare from a configuration block

ProcessConfig=pShare
{

//a verbose way o f shar ing X, c a l l i n g i t Y and sending
//on mulitcast_8
Output = src_name =X , dest_name=Z , route=multicast_8

//a verbose way o f shar ing Y c a l l i n g i t YY and sending
// i t to port 9832 on t h i s machine
Output = src_name =Y , dest_name = YY , route =192 .6 . 8 . 3 : 9832

//a verbose way o f shar ing T, sending i t without name change
// to port 9832 on a remote machine
Output = src_name =T , dest_name = TT , route =192 .3 . 4 . 5 : 9832

//a dense s p e c i f i c a t i o n which sends X to port 10000 v ia
//udp on a remote machine
//and Y to a d i f f e r e n t machine whi l e renaming i t to ’T ’
Output = X�>192.168.0.4 :10000

8

output = Y�>T : 1 9 2 . 1 6 8 . 0 . 5 : 1 0 0 0 0

// s p e c i f y in what p l a c e s we wish to l i s t e n to r e c e i v e
// the output o f other i n s t an c e s o f pShare

//we can do t h i s one at a time us ing the route d i r e c t i v e
Input = route=multicast_6

// or we can s p e c i f i y mu l t ip l e route s at once . Note that
//we have to use an & charac t e r to s epara t e d i f f e r e n t route s
// or i t l ooks l i k e a l i s t o f mal�formed token value pa i r s
Input =route=multicast_21&localhost :9833& multicast_3

//we can o f course a l s o use wi ldcards � t h i s i s where i t g e t s -
i n t e r e s t i n g

// l e t s share any v a r i a l b l e in community which i s 2 cha r c t e r s -
long and beg ins

//with X
Output = src_name = X ? , route = localhost : 9021

//we could be more s p e c i f i c and say we only want to share -
such va r i a b l e s from

//a named proce s s . So here we say only share two l e t t e r -
va r i a b l e s beg inning with Q

// form a proce s s c a l l e d procA
Output = src_name = Q ? : procA , route = localhost : 9021

}

6 Wildcard Sharing
It won’t have escaped your attention that MOOS-V10 offers support for wild-
carding -that is specifying a pattern which represents a whole set of named
variables.(So for example ‘*’ means all variables because the regular expressions
character ‘*’ matches all sets of characters). pShare can utilise this functional-
ity to make sharing many variables trivial. You can also specify to only share
variables from a specific process.

So lets start with a command line example. We can share all variables in a
community thus:

description share all variables onto channel 7
terminal A command line -o=’*->multicast_7’
terminal B command line -i=multicast_7

And we can be a little more precise and only forward variables which begin
with the letters “SP”

9

description share all variables onto channel 7 which begin with “SP”
terminal A command line -o=’SP*->multicast_7’
terminal B command line -i=multicast_7

or which begin with “K” end with “X” followed by any single character

description starting with X ending with a K plus 1 character
terminal A command line -o=’X*K?->multicast_7’
terminal B command line -i=multicast_7

We can also be explict about which processes we want to forward from. So
for example say we just wanted to forward messages from teh process called
“GPS”:

description share all variables from “GPS” onto channel 7
terminal A command line -o=’*:GPS->multicast_7’
terminal B command line -i=multicast_7

And of course the process name also supports wild cards so we we can do

description var ending in “time” from a proc starting “camera_”
terminal A command line -o=’*time:camera_*->multicast_7’
terminal B command line -i=multicast_7

A good question is what does it mean to rename a wildcard share ? Well
that simply serves as suffix to the shared variable name

description share all variables onto channel 7 with renaming
terminal A command line -o=’*->T:multicast_7’
terminal B command line -i=multicast_7

which means a variable “X” will be shared as “TX” - the parameter T is
acting as suffix. Similarly a variable called “donkey” would endup being shared
in this example as “Tdonkey”.

10

Finally of course wildcard shares can be specified in configuration files as
shown below.

Listing 2: Configuring pShare from a configuration block
ProcessConfig = pShare
{

//we can o f course a l s o use wi ldcards � t h i s i s where i t -
ge t s i n t e r e s t i n g

// l e t s share any v a r i a l b l e in community which i s 2 -
cha r c t e r s long and beg ins

//with X
Output = src_name = X ? , route = localhost : 9021

//we could be more s p e c i f i c and say we only want to share -
such v a r i a b l e s from

//a named proce s s . So here we say only share two l e t t e r -
va r i a b l e s beg inning with Q

// form a proce s s c a l l e d procA
Output = src_name = Q ? : procA , route = localhost : 9021

//we can be more gene ra l and send any va r i a b l e beg inning with -
W fomr a proce s s

//whos name ends in A to mu l t i ca s t channel 7
Output = src_name = W ⇤ :⇤ A , route = multicast_7

}

7 Instigating Dynamic Shares On The Fly
pShare can be told to start sharing data dynamically by any MOOS Process
simply by publishing a correctly formatted string. The format is simple - its
is pretty much the same as a line in a configuration file. You need to write a
string “cmd = <directive>” to the variable PSHARE_CMD where <directive>
is a output or input directive such as you would write in a configuration file.
Here are some examples:

• “cmd = Output , src_name = X?, route = localhost:9021”

• “ cmd = Output , src_name =T, dest_name = TT, route=192.3.4.5:9832”

The ability to dynamically instigate shares turns out to be very useful if you
don’t know what needs to be shared when pShare first starts and that only gets
figured out by other processes.

11

