
A MOOS-V10 Tutorial

Paul Newman, University of Oxford

April 2, 2013

....ten years on

1

Contents
1 What will I learn? 3

2 Getting Started - Acquiring and Building MOOS 3
2.1 Before you start you will need . 3
2.2 Downloading and Building . 3

2.2.1 A note for exisiting MOOS Users . 3
2.3 Header, Source and Library Structure . 4

2.3.1 Header structure . 5
2.4 Importing and Building Against MOOS-V10 . 5

2.4.1 How is MOOS found? . 6
2.4.2 Trouble Shooting . 6

3 Basic MOOS Concepts 7
3.1 The MOOSDB . 7
3.2 Data Types and CMOOSMsg . 7

3.2.1 How do I know what the payload of a CMOOSMsg is? 8
3.3 Comms Clients CMOOSCommClient and MOOS::AsyncCommClient 8

3.3.1 Sending Data with Notify . 8
3.3.2 Grabbing Mail with Fetch . 9
3.3.3 Configuring Notfications with SetOnMailCallBack 9
3.3.4 Configuring Connection Notification with SetOnConnectCallBack 9
3.3.5 Configuring Mail Delivery with Register . 9
3.3.6 Collecting Mail with Fetch . 9
3.3.7 Starting communications with Run . 9

3.4 Application Writing with CMOOSApp . 9

4 Programming with MOOS Clients 9
4.1 The Hello World example . 9
4.2 Installing a Mail callback . 10

4.2.1 What is bad about this design? . 12
4.3 Adding Threaded Message Channels . 12
4.4 Threading Model . 15
4.5 Wildcard Subscriptions . 15

5 Writing Applications with CMOOSApp 15

6 Configuring MOOSDB 16
6.1 Command Line Help . 16
6.2 Configuring Client Response Times . 17
6.3 Specifying When Clients are Assumed Dead . 17
6.4 Live Network Audit . 17

7 Further Examples 18
7.1 Sharing Video Rate Data . 18

8 Index of Example Codes 21

2

1 What will I learn?
This document is intended to help you get started in using the MOOS communications and application
building API. It will take you through, in simple steps, the process of downloading, building and de-
veloping with the MOOS library. This will allow you to easily generate programs which can share data
using the MOOS communication tools. These tools are all housed in a single, standalone, dependency-
free project called core-moos so really this is a tutorial about core MOOS competencies and core-moos
all in one

2 Getting Started - Acquiring and Building MOOS

2.1 Before you start you will need
• a working compiler like gcc or clang

• CMake installed

• git installed (well actually this is optional as you can download the source code as .zip file and
we won’t make much use of git in this tutorial)

2.2 Downloading and Building
We shall begin where we should and check out a version of MOOS-V10 from a git repos. We will
follow good practice and do an out of place build - the source code will go in “src” and we will build in
“build”. We will also, after fetching the source switch to the “devel” branch because here we are living
on the edge 1.

pmn@mac:~$ mkdir core -moos -v10
pmn@mac:~$ cd core -moos -v10
pmn@mac:~$ git clone https:// github.com/themoos/core -moos.git src
pmn@mac:~$ cd src
pmn@mac:~$ git checkout devel
pmn@mac:~$ cd ..
pmn@mac:~$ mkdir build
pmn@mac:~$ ccmake ../ src

At this point you should, after hitting ’c’ a couple of times be presented with a CMake screen that
looks like that shown in Figure 1 (note some of the entries are platform dependent so don’t worry if
what you see is not identical to this).

You are are now in a position to build the MOOS. So press ’c’ until ’g’ appears, then press ’g’ and
you are good to go. Then at the terminal prompt type ’make’ to build the project. Two directories
should have been created bin and lib. In lib you will see libMOOS.a and in bin you will find the newly
created MOOSDB. If you run up the MOOSDB (by typing ./MOOSDB you should see output similar to
that in Figure 2. You are now all set to begin developing with MOOS. Nice job.

2.2.1 A note for exisiting MOOS Users

Skip this section if you are new to MOOS. If you are already an old hand at MOOS and simply want to
link your existing code against MOOS V10 without needing to worry about the new header, rationalised
file structure introduced in MOOS V10 then you will need to turn on ENABLE_V10_COMPATIBILITY.

1if you want to know what branches are available type git branch

3

Figure 1: The default build screen for MOOS V10. Note that by default USE_ASYNC_COMMS is
off. If you want really fast communications you should enable this.

This switch adds an additional set of include path to those exported by the project, which have the
same structure as those present in previous (now legacy) versions of MOOS. If you “include” one of
these files they actually simply redirect to include header files residing in the new structure. But be
advised that this is not a happy long term policy - you should think, if possible, about updating your
code - but there is much to be said for not having to change your code simply to use V10. Hence the
introduction of this switch.

Tip: Turn on ENABLE_V10_COMPATIBILITY to make V10 appear to have the header structure of earlier
versions. This allows you to use V10 without needing to change any of your source code

Tip: you can use the V10 MOOSDB with old MOOS applications - you don’t have to recompile them.
V10 is backwards compatible.

2.3 Header, Source and Library Structure

Figure 2: running the MOOSDB

The classes that implement the communications and ap-
plication management (for example CMOOSApp) reside in a
single library called libMOOS. There are in fact four key
subdirectories in libMOOS. In figure ??you can see the ba-
sic structure of the code base.

App contains the classes like CMOOSApp and CMOOSIn-
strument - you use thse to make application writing
very easy

4

Comms contains everything to do with MOOS IPC com-
munications

Utils contains everything that used to be in MOOSGenLib
(with some nice additions)

Thirdparty contains small lumps of thirdparty code which
is being leveraged in V10 (all licenses included)

include contains some high level include directories that
make using libMOOS easy (and backwards compati-
ble)

The directory called MOOSDB contains the source-code of the MOOSDB and has a subdirectory containing
various small testing programs. The MOOSDB program has a dependency on core-moos but nothing
else. The only other directory of interest is tools which is home to ’umm’ the swiss army knife of
MOOS.

2.3.1 Header structure

Figure 3: Top-level directory
structure for MOOS V10

It is important to understand where the header files are found in
the file structure of the MOOS project - they typically do not live
along side the corresponding .cpp files. Take for example CMOOS-
App.cpp which lives at Core/libMOOS/Apps/CMOOSApp.cpp -
the actual location of CMOOSApp.h is libMOOS/Apps/include/-
MOOS/libMOOS/Apps/CMOOSApp.h. This may seem convoluted
but it eases many things when it comes to developing in various
IDE’s and a constant way to reference headerfiles in during develop-
ment and when installed. In this case CMOOSApp.h is included by
writing #include “MOOS/libMOOS/Apps/CMOOSApp.h” whether
or not the headers are installed or whether or not you are tinkering
with MOOS source itself. So it helps to have a rule. If the source
file is in libMOOS/X/file.cpp then the header is included as #include
“MOOS/libMOOS/X/file.h” - simple.

2.4 Importing and Building Against MOOS-V10
So now you have built the new MOOS. Next questions is “how do you
link against it”. If you use CMake then this is trivial you just need
to insert the line find_package(MOOS 10) in your CMakeList.txt
script. This goes and finds the latest build you made of MOOS V10
(and only V10) and collects the correct include paths, library names
and library paths and puts them in the following CMake variables:

MOOS_INCLUDE_DIRS This contains the list of include directories you need to include to find MOOS V10
header files.

MOOS_DEPEND_INCLUDE_DIRS This contains the list of include directories which MOOS needs to find
teh headers it depends on (should be empty)

MOOS_LIBRARIES This contains the precise library name (absolute path) for libMOOS

MOOS_DEPEND_LIBRARIES This contains the absolute paths for the libraries MOOS depends on (should
be empty)

5

These variables can be used to import all you need to know about MOOS into an external project.
You can see how to do this in some the example CMakeLists.txt file given below. Here we make an
executable called example_moos , explicitly search for MOOS-V10, set up include paths, set up an
executable and finally indicate how to link.

#th i s bu i l d s some code us ing MOOS
se t (EXECNAME example_moos)

#f i nd MOOS ve r s i on 10 be e x p l i c i t about ve r s i on 10 so we don ' t
#f i nd another o ld ve r s i on
find_package (MOOS 10)

#what source f i l e s are needed to make t h i s exec tu tab l e ?
s e t (SRCS example_moos . cpp)

#where should one look to f i nd headers ?
include_directories (${MOOS_INCLUDE_DIRS} ${MOOS_DEPEND_INCLUDE_DIRS })

#s t a t e we wish to make a computer program
add_executable (${EXECNAME} ${SRCS})

#and s t a t e what l i b r a r i e s sa id program needs to l i n k aga in s t
target_link_libraries (${EXECNAME} ${MOOS_LIBRARIES} ${MOOS_DEPEND_LIBRARIES })

2.4.1 How is MOOS found?

You have probably noticed that you do not need to install MOOS V10 for find_package(MOOS V10)
to work. CMake simply appears to automagically find the latest build directory. It is worth un-
derstanding how this is done. CMake provides support for find_package by writing at build time
to a file in ~/.cmake/modules. In this case because we are talking about MOOS there is a file in
~/.cmake/modules/MOOS (who’s name is a whole load of crazy letters) inside of which is the location
to a file called MOOSConfig.cmake. This file is created in the build directory when MOOS is config-
ured. The find_package directive imports MOOSConfig.cmake (and from there UseMOOS.cmake) and
this tells the importing CMake instance how to use MOOS.

2.4.2 Trouble Shooting

All the above should go smoothly but there have been instances reported in which things go wrong
- this is always due to previous installations of MOOS and old configuration files hanging around.
Executing the following steps should help if you get into trouble

• clean down the MOOS-V10 project (why not remove the whole build directory?)

• remove all contents of ~/.cmake/modules/MOOS

• remove any old copies of MOOSConfig.cmake you may have hanging around in you build tree.
Note that once upon a time, long ago there was a MOOSConfig.cmake file checked into the source
tree of MOOS-IvP. This can cause all kinds of trouble......

• If header files are not being found by your project:

– if your code previously worked with older versions of MOOS did you change your source
code to reflect the new locations of headers? Or, if you really don’t want to change you
code, did you enable V10_COMPATIBILITY when you built MOOS-V10?

6

MOOSDB

program A program B

CommsClient ObjectCommsClient Object

Figure 4: the simplest of MOOS communities - a DB and two programs which communicate with each
other (share data). The red circles represent an instance of a CommsClient object. Note how the DB
acts as a communications hub. We often refer to program A and program B as “clients”. There is
no restriction of the number of clients a community can have and they can live on as many different
computers as there are clients.

3 Basic MOOS Concepts
Before we start writing some code, we need to cover some basics. If you are already a MOOS users
you can skip to the next section.

3.1 The MOOSDB

This is a program which coordinates all the communications beween any and all programs using the
MOOS communication facility. You typically run MOODSB2 from the command line. Having started
it you can safely leave it running for ever - you don’t need to interact with it in any way. Its not a
bad idea to set it up as a daemon. The MOOSDB does have some command line switches and you
can read about them in Section 6 - but for now simply running ./MOOSDB will start it running with a
very useable set of defaults.

You should think of the MOOSDB as a program containing a list of named variables which, in concert,
represent the state of your system. As a user of MOOS your applications can push data to the MOOSDB
and have data sent to them in response to some other application pushing data. You can request to
be told about every push or limit it to no more than once every τ seconds where τ is a value or your
choosing.

3.2 Data Types and CMOOSMsg

The data which MOOS sends between processes is wrapped in a CMOOSMsg. You will ultimately,
pehaps behind the scenes in an API call, package your data, be that string, double or a chunk of

2I wish I had not called it MOOSDB - of the DB because that brings with it a whole load of connotations of
heavyweight databases. But this is a case of horse stable and bolted.

7

binary data, in a CMOOSMsg. Sometimes we refer to the delivery or transmission of one or more
CMOOSMsg as getting or sending “Mail”. Maybe not the best noun to have choosed with hindsight
as in the UK at least in real life mail often gets lost and is often late. Luckily the opposite is true in
MOOS.

You should think of a CMOOSMsg as a communique about a named lump of data. This data could
be a double floating point value, a string or a binary chunk - it all depends on client who perfomed
the first push of this named data to the MOOSDB - after that its type is set in stone.

3.2.1 How do I know what the payload of a CMOOSMsg is?

Good question. If you are processing a CMOOSMsg in your code it is because you have requested
to be informed when that data has been updated (you do this by calling ::register from your code -
see Section 3.3.5) . So this means you must have had a conversation with the author of the program
that is doing the pushing (maybe even in your own head) so you are likely to know for example that a
variable called “LeftImage” is a binary lump, or “battery_percentage” is a double. However if you are
not sure you can use the methods IsDouble() IsString() IsBinary().

3.3 Comms Clients CMOOSCommClient and MOOS::AsyncCommClient

The term comms client is used to refer to an c++ object which you as a developer can use to send
and receive data via the MOOSDB. The object handles all of the details of managing the connection
to the DB all you have to do is push data into it and using one of more of the API’s get one or more
(always in a std::list) of CMOOSMsgs out of it. There are some key methods offered by the comms
clients which you need to know about and these will be covered in upcoming sections. But before we
do that you should know that there are two kinds of comms clients - one old one new:

MOOS::AsyncCommClient This is the one you should use and was introduced in MOOS-V10 in
2013. It offers the fastest (lowest latency) way of getting data between applications. It manages two
queues - one for outgoing messages and one for incomming messages and they run independently. Of
course you as a user don’t get to see this. As far as you are concerned a comms client is a portal into
which you pour outgoing messages and receive them from

CMOOSCommClient This is the orginal client written in 2003 when MOOS was in its infancy.
You can use it of course and it is after all the base class of MOOS::AsyncCommClient but if you do,
you will be missing out on many good things. This client has a single thread managing communications
in the background - input is coupled to output.

The following few sub sections will introduce you to small set of methods (functions) which you will
need to know about to use MOOS. After that we’ll bring them all together in some simple examples.
The thinking is its a good idea to get the right nouns installed before getting going. Of course if you
prefer you can jump straight to the examples in Section 4

3.3.1 Sending Data with Notify

use this method and its overides to send either double, std::string or binary data of any size. The
overloaded versions

•
bool Notify (const std : : string & sVarName , const std : : string & sVal , ←↩

double dfTime=−1)

bool Notify (const std : : string & sVarName , double dfVal , double dfTime=−1)

8

••
bool Notify (const std : : string & sVarName , const std : : vector<unsigned char←↩

>& vData , double dfTime=−1)

which send a string a double and a vector of bytes (use this for binary data) respectively under
the variable name sVarName

3.3.2 Grabbing Mail with Fetch

3.3.3 Configuring Notfications with SetOnMailCallBack

3.3.4 Configuring Connection Notification with SetOnConnectCallBack

3.3.5 Configuring Mail Delivery with Register

3.3.6 Collecting Mail with Fetch

3.3.7 Starting communications with Run

3.4 Application Writing with CMOOSApp

4 Programming with MOOS Clients

4.1 The Hello World example

Listing 1: A simple example using MOOSAsyncCommClient and polling for mail

#inc lude "MOOS/libMOOS/Comms/MOOSAsyncCommClient . h"

bool OnConnect (void ∗ pParam) {
CMOOSCommClient∗ pC = re in t e rp r e t_cas t <CMOOSCommClient∗> (pParam) ;
pC−>Register ("Greet ing " , 0 . 0) ;
r e turn true ;

}

i n t main (i n t argc , char ∗ argv []) {

// con f i gu r e the comms
MOOS : : MOOSAsyncCommClient Comms ;
Comms . SetOnConnectCallBack (OnConnect ,&Comms) ;

// s t a r t the comms running
Comms . Run (" l o c a l h o s t " ,9000 , "EX10") ;

MOOSMSG_LIST M ;
f o r (; ;) {

MOOSPause (1000) ;
Comms . Notify ("Greet ing " , " He l lo ") ;
Comms . Fetch (M) ;
MOOSMSG_LIST : : iterator q ;
f o r (q = M . begin () ; q !=M . end () ; q++)
{

q−>Trace () ;
}

9

}
return 0 ;

}

4.2 Installing a Mail callback
The simplest (in terms of its proximity to the core communication classes) example of using MOOS-V10
communications is given in Listing 2 below. Here a MOOS::MOOSAsyncCommClient is instantiated
in its rawest form. It is configured with a Mail and OnConnect callback and set free with a call to
Run. Note that in the Connect callback it registers for the data that is being posted once a second
in the main() forever loop. Many MOOS users will be used to using CMOOSApp which manages the
interaction with the Comms Client Objects however it is instructive to look at the most fundamental
example.

Listing 2: A simple example using MOOSAsyncCommClient

#inc lude "MOOS/libMOOS/Comms/MOOSAsyncCommClient . h"

bool OnConnect (void ∗ pParam) {
CMOOSCommClient∗ pC = re in t e rp r e t_cas t <CMOOSCommClient∗> (pParam) ;
pC−>Register ("Greet ing " , 0 . 0) ;
r e turn true ;

}

bool OnMail (void ∗pParam) {
CMOOSCommClient∗ pC = re in t e rp r e t_cas t <CMOOSCommClient∗>(pParam) ;
MOOSMSG_LIST M ;
pC−>Fetch (M) ; // get the mail
MOOSMSG_LIST : : iterator q ; // p roce s s i t
f o r (q=M . begin () ; q !=M . end () ; q++){

q−>Trace () ;
}
re turn true ;

}

i n t main (i n t argc , char ∗ argv []) {

// con f i gu r e the comms
MOOS : : MOOSAsyncCommClient Comms ;
Comms . SetOnMailCallBack (OnMail ,&Comms) ;
Comms . SetOnConnectCallBack (OnConnect ,&Comms) ;

// s t a r t the comms running
Comms . Run (" l o c a l h o s t " ,9000 , "EX20") ;

f o r (; ;) {
MOOSPause (1000) ;
Comms . Notify ("Greet ing " , " He l lo ") ;

}
re turn 0 ;

}

This example is certainly raw, it assumes the MOOSDB is on localhost and port 9000. We could
do a lot better by using the MOOS::CommandLineParser and using it to discover options provided on

10

the command line as shown in listing 3:

Listing 3: A fuller example using MOOSAsyncCommClient

/∗
∗ A simple example showing how to use a comms c l i e n t
∗/

#inc lude "MOOS/libMOOS/Comms/MOOSAsyncCommClient . h"
#inc lude "MOOS/libMOOS/ Ut i l s /CommandLineParser . h"

bool OnConnect (void ∗ pParam) {
CMOOSCommClient∗ pC = re in t e rp r e t_cas t <CMOOSCommClient∗> (pParam) ;
pC−>Register ("X" , 0 . 0) ;
r e turn true ;

}

bool OnMail (void ∗pParam) {
CMOOSCommClient∗ pC = re in t e rp r e t_cas t <CMOOSCommClient∗>(pParam) ;

MOOSMSG_LIST M ; // get the mail
pC−>Fetch (M) ;

MOOSMSG_LIST : : iterator q ; // p roce s s i t
f o r (q=M . begin () ; q !=M . end () ; q++){

q−>Trace () ;
}
re turn true ;

}

i n t main (i n t argc , char ∗ argv []) {

// understand the command l i n e
MOOS : : CommandLineParser P (argc , argv) ;

std : : string db_host=" l o c a l h o s t " ;
P . GetVariable ("−−moos_host" , db_host) ;

i n t db_port=9000;
P . GetVariable ("−−moos_port" , db_port) ;

std : : string my_name ="ex30" ;
P . GetVariable ("−−moos_name" , my_name) ;

// c on f i gu r e the comms
MOOS : : MOOSAsyncCommClient Comms ;
Comms . SetOnMailCallBack (OnMail ,&Comms) ;
Comms . SetOnConnectCallBack (OnConnect ,&Comms) ;

// s t a r t the comms running
Comms . Run (db_host , db_port , my_name) ;

// f o r ever loop sending data
std : : vector<unsigned char> X (100) ;
f o r (; ;) {

MOOSPause (1000) ;
Comms . Notify ("X" ,X) ;

}

11

re turn 0 ;
}

To be complete, Listing 5 shows the complete CMakeLists.txt file for this example is given in
listing 5

Listing 4: CMakeLists.txt for the simple example above

CMAKE_MINIMUM_REQUIRED (VERSION 2 . 8)

i f (COMMAND cmake_policy)
cmake_policy (SET CMP0003 NEW)

endif (COMMAND cmake_policy)

#th i s bu i l d s an example program
set (EXECNAME ex30)

find_package (MOOS 10)

#what f i l e s are needed ?
SET (SRCS ex30 . cpp)

include_directories (${MOOS_INCLUDE_DIRS} ${MOOS_DEPEND_INCLUDE_DIRS })
add_executable (${EXECNAME} ${SRCS})
target_link_libraries (${EXECNAME} ${MOOS_LIBRARIES} ${MOOS_DEPEND_LIBRARIES })

4.2.1 What is bad about this design?

While this is a simple design it is not the best plan - it opens the door for doing an unbounded amount
of work in the callback which is invoked by one of the threads which is used in handling communication
with the MOOSDB. Now V10 DB’s can handle this but...

4.3 Adding Threaded Message Channels

Listing 5: Installing a per-message callback

/∗
∗ A simple example showing how to use a comms c l i e n t
∗/

#inc lude "MOOS/libMOOS/Comms/MOOSAsyncCommClient . h"
#inc lude "MOOS/libMOOS/ Ut i l s /CommandLineParser . h"
#inc lude "MOOS/libMOOS/ Ut i l s /ConsoleColours . h"
#inc lude "MOOS/libMOOS/ Ut i l s /ThreadPrint . h"

MOOS : : ThreadPrint gPrinter (std : : cout) ;

bool OnConnect (void ∗ pParam) {
CMOOSCommClient∗ pC = re in t e rp r e t_cas t <CMOOSCommClient∗> (pParam) ;
pC−>Register ("X" , 0 . 0) ;
pC−>Register ("Y" , 0 . 0) ;

12

pC−>Register ("Z" , 0 . 0) ;
r e turn true ;

}

bool OnMail (void ∗pParam) {
CMOOSCommClient∗ pC = re in t e rp r e t_cas t <CMOOSCommClient∗>(pParam) ;

MOOSMSG_LIST M ; // get the mail
pC−>Fetch (M) ;

MOOSMSG_LIST : : iterator q ; // p roce s s i t
f o r (q=M . begin () ; q !=M . end () ; q++){

gPrinter . SimplyPrintTimeAndMessage ("mail : "+q−>GetSource () , MOOS : :←↩
ThreadPrint : : GREEN) ;

}
re turn true ;

}

bool funcX (CMOOSMsg & M , void ∗ TheParameterYouSaidtoPassOnToCallback)
{

gPrinter . SimplyPrintTimeAndMessage (" c a l l back f o r X" , MOOS : : ThreadPrint : :←↩
CYAN) ;

r e turn true ;
}

bool funcY (CMOOSMsg & M , void ∗ TheParameterYouSaidtoPassOnToCallback)
{

gPrinter . SimplyPrintTimeAndMessage (" c a l l back f o r Y" , MOOS : : ThreadPrint : :←↩
MAGENTA) ;

r e turn true ;
}

i n t main (i n t argc , char ∗ argv []) {

// understand the command l i n e
MOOS : : CommandLineParser P (argc , argv) ;

std : : string db_host=" l o c a l h o s t " ;
P . GetVariable ("−−moos_host" , db_host) ;

i n t db_port=9000;
P . GetVariable ("−−moos_port" , db_port) ;

std : : string my_name ="ex40" ;
P . GetVariable ("−−moos_name" , my_name) ;

// c on f i gu r e the comms
MOOS : : MOOSAsyncCommClient Comms ;
Comms . SetOnMailCallBack (OnMail ,&Comms) ;
Comms . SetOnConnectCallBack (OnConnect ,&Comms) ;

// here we add per message c a l l b a c k s
// f i r s t parameter i s the channel nick−name , then the func t i on
// to c a l l , then a parameter we want passed when ca l l b a ck i s

13

SOCKET

Queue

WRITE READ

USER-CODE

AsyncCommClient

::Post()

Queue Queue Queue

 C
allback(M

sg)

Queue

::Fetch()

Filter
 M

ailC
allback(M

sgs)

 C
allback(M

sg)

 C
allback(M

sg)

MOOSDB

Application

Figure 5: The threading model of the AsyncCommClient. Things to note are...

// invoked
Comms . AddMessageCallback (" callback_X" , "X" , funcX , NULL) ;
Comms . AddMessageCallback (" callback_Y" , "Y" , funcY , NULL) ;

// s t a r t the comms running
Comms . Run (db_host , db_port , my_name) ;

// f o r ever loop sending data
std : : vector<unsigned char> X (1000) ;
f o r (; ;) {

MOOSPause (10) ;
Comms . Notify ("X" ,X) ; // f o r callback_X
Comms . Notify ("Y" , "This i s Y") ; // f o r callback_Y
Comms . Notify ("Z" , 7 . 0) ; //no ca l l b a ck

}
return 0 ;

}

14

// r e g i s t e r f o r a l l v a r i a b l e s ending with " image"
// from any proce s s with an name beg inning with "camera_"
CommsObject . Register ("∗ image" , "camera_∗" , 0 . 0) ;

// r e g i s t e r f o r every s i n g l e v a r i ab l e coming from a proce s s
// c a l l e d " system_control "
CommsObject . Register ("∗" , " sytem_control " , 0 . 0) ;

// r e g i s t e r f o r any va r i ab l e beg inning with " error_" and
//produced by a proce s s with a nine l e t t e r name beg inning
//with "process_0" but p lease , only t e l l us at most twice
//a second
CommsObject . Register (" error_ ∗" , "process_0 ?" , 2 . 0) ;
r e turn true ;

Figure 6: Using wildcard registration via the Register method

4.4 Threading Model

4.5 Wildcard Subscriptions
MOOS-V10 offers a great deal of flexibilty in which clients can subscribe for data by allowing so
called “wildcard subscriptions”. A client can register its interest in variable whose name and source
matches a simple regex pattern. Only patterns containing * and ? wildcards are supported with
their usual meanings i.e. ’?’ means any single character and ’*’ means any number of characters.
An example will make this whole thing clear and we will be using the Register(sVarPattern,
sAppPattern,dfInterval) interface. Imagine we have a Comm Client object called CommsObject

The logic which supports this new functionality is implemented at the MOOSDB and turns out to
be a pretty useful and compact way to define some fine granularity on what data is received. Of course
it can also be used to achieve blunderbuss subscriptions by subscribing to all variables from a given
process - Register(“*”,ProcessName) - or even all variables from all processes - Register(“*”,”*”)
the ultimate wildcard.

5 Writing Applications with CMOOSApp
We can of course achieve the same thing by subclassing CMOOSApp. The code listing below shows
how.

Listing 6: A simple example using MOOSAsyncCommClient

/∗
∗ s imple MOOSApp example
∗/

#inc lude "MOOS/libMOOS/App/MOOSApp. h"

c l a s s ExampleApp : pub l i c CMOOSApp
{

bool OnNewMail (MOOSMSG_LIST & Mail)
{

// proce s s i t

15

MOOSMSG_LIST : : iterator q ;
f o r (q=Mail . begin () ; q !=Mail . end () ; q++){

//q−>Trace () ;
}
re turn true ;

}
bool OnConnectToServer ()
{

re turn Register ("X" , 0 . 0) ;
}
bool Iterate ()
{

std : : vector<unsigned char> X (100) ;
Notify ("X" ,X) ;
r e turn true ;

}
} ;

i n t main (i n t argc , char ∗ argv [])
{

// here we do some command l i n e par s ing . . .
MOOS : : CommandLineParser P (argc , argv) ;
// miss ion f i l e could be f i r s t f r e e parameter
std : : string mission_file = P . GetFreeParameter (0 , "Miss ion . moos") ;

//app name can be the second f r e e parameter
std : : string app_name = P . GetFreeParameter (1 , "ExampleApp") ;

ExampleApp App ;

App . Run (app_name , mission_file , argc , argv) ;

r e turn 0 ;
}

6 Configuring MOOSDB

6.1 Command Line Help
MOOSDB offers a command line interface which allows you to set the port it is serving on and various
other configurations. All are accessed via ./MOOSDB --help

>>pmn@mac . / MOOSDB −−help
MOOSDB command line help :
−−moos_file=<string> specify mission file name
−−moos_port=<positive_integer> specify server port number
−−moos_timewarp= <positive_float> specify time warp
−−moos_community=<string> specify community name
−−moos_timeout=<positive_float> specify client timeout
−−response=<string−list> specify client response times <name :←↩

response_ms , . . . >
−−warn_latency=<positive_float> specify latency above which warning is ←↩

issued in ms
−−webserver_port=<positive_integer> run webserver on given port

16

−−tcpnodelay disable nagle algorithm
−s (−−single_threaded) run as a single thread
−d (−−dns) run with dns lookup
−b (−−moos_boost) boost priority of communications
−h (−−help) print help and exit

6.2 Configuring Client Response Times
The MOOSDB has some inbuilt security controls that are designed to prevent a rogue, ill mannered
client to hog resources. It seems improper that a random client joining a community can decide to
send 10 million messages persecond and because of that, reduce the performance of other clients. On
the other hand it seems inappropriate to disallow all clients for all time very rapid performance simply
because of a percieved risk. The solution offered in MOOS-V10 is that the MOOSDB by default offers
premiums service to all comers 3 - in other words every client will be serviced as soon as possible and
all clients will be have data pushed to them as soon as possible. However the launcher of the MOOSDB
may choose to restrict response times for clients- this has the effect of having each transaction with the
DB contain more indvidual messages and prevents rogue clients being disruptive. Even introducing a
repsonse time of 10ms can have a marked increase in performance for a very heavily loaded system. It
is also possible to control which clients should be throttled and which should not.

pmn@mac:~$./ MOOSDB --response =*:20
pmn@mac:~$./ MOOSDB --response=VisualOdometry:10
pmn@mac:~$./ MOOSDB --response=Camera ??:10, VisualOdometry:10,*:20

In the above, the first example sets all clients to have a minimum reposnse time of 20ms. The
second example expicitly sets a client called VisualOdometry to have a 10ms response while all others
have the default of 0ms (instant response). The final example has any client whos name begins with
“Camera” followed by two characters set to 10ms and VisualOdometry at 10ms and every other client
at 20ms.

6.3 Specifying When Clients are Assumed Dead
MOOSDB has alway been suspicious of clients that unexpectedly go quiet (the comms thread, which
operates behind the scenes, stops working) and it will disconnect them. However its pretty annoying
if you are debugging an application and because you could not solve you problem in 5 seconds, the DB
disconnects your application and so differnt behaviour is invoked while debugging (the app will try to
reconnect as soon the debugger sets teh application free). In V10, MOOSDB has the --moos_timeout
option which allows you to specify the time in seconds the DB should tolerate a silent client. Set this
to a big number when you are debugging.

6.4 Live Network Audit
Sometimes its nice to quickly get a summary of the network performance of the MOOSDB and the
clients it supports. The MOOS V10 DB supports a very lightweight way to see how things are going.
When the DB starts you’ll see it print out something like “network performance data published on
localhost:9090 listen with "nc -u -lk 9090" ”. So if you follow this advice and in a terminal
start netcat (which is the “nc” command) listening on port 9090 it will receive UDP packets which
contain performance data. Here is an example output - don’t be put off by the fact that the client

3if they are using the AsyncComms

17

names are actually numbers in this case - that just happens to be the naming scheme this community
was running. The network summary packet is sent once a second and contains valid statistics for that
last second.

client name pkts in pkts out msgs in msgs out B/s in B/s out
0 20 17 20 20 1207 1227
1 19 19 19 19 1216 2177

total 39 36 39 39 2423 3404

7 Further Examples

7.1 Sharing Video Rate Data
Here is a simple example code for sharing video data using the package OpenCV 4. The program can
be started in one of two ways - once as a server which opens a camera and starts streaming images
and as a client which displays them in a window. Note this is not an elegant program - it fixes the
images size and does a fairly ugly bit of memory management. It is presented here as a quick and
dirty exposition of using MOOS to send data at a moderate rate - its not an example of good use of
OpenCV.

• Start a MOOSDB

• To start a server in a terminal window from the command line whilst in the directory containing
the binary type :

– ./camera_example -s --moos_name SERVER

• To start a client from a similar terminal to that above type :

– ./camera_example --moos_name A

• To start another client, you guess it, open another terminal and try

– ./camera_example --moos_name B

If you do the above you should see you camera output appearing in two windows with very little lag.

Listing 7: Example code to build a camera sharing example

#inc lude "opencv2/opencv . hpp"
#inc lude "MOOS/libMOOS/App/MOOSApp. h"

c l a s s CameraApp : pub l i c CMOOSApp
{
pub l i c :

bool Iterate ()
{

i f (server_) {
vc_>>capture_frame_ ;
cv : : cvtColor (capture_frame_ , bw_image_ , CV_BGR2GRAY) ;

4so you will need OpenCV installed on your machine. The CMakeLists.txt file should find this installation and handle
everything for you but if you are using mac ports you may need to specify the location of OpenCV in the ccmake gui as
Cmake does not look in /opt by default.

18

cv : : resize (bw_image_ , image_ , image_ . size () , 0 , 0 , cv : :←↩
INTER_NEAREST) ;

Notify ("Image" , (void ∗) image_ . data , image_ . size () . area () ,←↩
MOOSLocalTime ()) ;

}
e l s e {

cv : : imshow (" d i sp l ay " , image_) ;
cv : : waitKey (10) ;

}
re turn true ;

}
bool OnStartUp ()
{

SetAppFreq (20 ,400) ;
SetIterateMode (COMMS_DRIVEN_ITERATE_AND_MAIL) ;

image_ = cv : : Mat (378 ,512 , CV_8UC1) ;

i f (server_) {
i f (! vc_ . open (0))

re turn f a l s e ;
}
e l s e {

cv : : namedWindow (" d i sp l ay " ,1) ;
}

re turn true ;
}
void OnPrintHelpAndExit ()
{

PrintDefaultCommandLineSwitches () ;
std : : cout<<"\ napp l i c a t i on s p e c i f i c he lp : \ n" ;
std : : cout<<" −s : be a video s e r v e r grabs and sends images←↩

(no window) \n" ;
exit (0) ;

}
void OnPrintExampleAndExit ()
{

std : : cout<<" ./ video_share −s \n" ;
std : : cout<<" and on another te rmina l . . \ n" ;
std : : cout<<" ./ video_share \n" ;
exit (0) ;

}

bool OnProcessCommandLine ()
{

server_=m_CommandLineParser . GetFlag ("−s ") ;

r e turn true ;
}
bool OnNewMail (MOOSMSG_LIST & mail)
{

MOOSMSG_LIST : : iterator q ;
f o r (q = mail . begin () ; q !=mail . end () ; q++){

i f (q−>IsName ("Image")) {
std : : cerr<<"bytes : "<<q−>GetBinaryDataSize ()<<" la t ency "<<

19

std : : setprecision (3)<<(MOOSLocalTime ()−q−>GetTime ()) ∗1←↩
e3<<" ms\ r " ;

memcpy (image_ . data , q−>GetBinaryData () ,
q−>GetBinaryDataSize ()) ;

}
}
re turn true ;

}
bool OnConnectToServer ()
{

i f (! server_)
Register ("Image" , 0 . 0) ;

r e turn true ;
}

protec ted :
cv : : VideoCapture vc_ ;
cv : : Mat capture_frame_ , bw_image_ , image_ ;
bool server_ ;

} ;
i n t main (i n t argc , char ∗ argv [])
{

// here we do some command l i n e par s ing . . .
MOOS : : CommandLineParser P (argc , argv) ;
// miss ion f i l e could be f i r s t f r e e parameter
std : : string mission_file = P . GetFreeParameter (0 , "Miss ion . moos") ;
//app name can be the second f r e e parameter
std : : string app_name = P . GetFreeParameter (1 , "CameraTest") ;

CameraApp App ;
App . Run (app_name , mission_file , argc , argv) ;

r e turn 0 ;
}

Listing 8: CMakeLists.txt to build the camera sharing example above

#th i s bu i l d s an example program
project (camera_example)
i f (COMMAND cmake_policy)

cmake_policy (SET CMP0003 NEW)
endif (COMMAND cmake_policy)

cmake_minimum_required (VERSION 2 . 8)

#f i nd MOOS ve r s i on 10 or l a t e r
find_package (MOOS 10)

find_package (OpenCV)

set (EXECNAME video_share)

#what f i l e s are needed ?

20

set (SRCS CameraExample . cpp)

#what inc lude d i r e c t i v e s ?
include_directories (${MOOS_INCLUDE_DIRS} ${MOOS_DEPEND_INCLUDE_DIRS} ${←↩

OpenCV_INCLUDE_DIRS })

#make a program !
add_executable (${EXECNAME} ${SRCS})

#and l i n k thus . . .
target_link_libraries (${EXECNAME} ${MOOS_LIBRARIES} ${MOOS_DEPEND_LIBRARIES} $←↩

{OpenCV_LIBS })

There are several things to note about this example which are worth spotting:

1. The way in which MOOS-V10 can handle command line argument parsing for you using the
OnParseCommandLine() virtual function in CMOOSApp. Also note that the switches like --moos_name
are handled automatically for you. If this is a surprise read section ??.

2. The way in which in this example SetIterateMode is used to make the application respond
quickly to the reception of mail.

8 Index of Example Codes
All of the examples given in the document can be found in the examples subdirectory. Here is a table
describing what example shows what.

Example Description New Detail
ex10 Simplest standalone comms client configuration. Uses polling to retrieve mail
ex20 Use of MailCallback instead of user polling for mail Use of Mail callback
ex30 as ex20 only with command line parsing command line parsing
ex40 Standalon comms client with per message callbacks per message callbacks

21

