
Overview of Manifests
January 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering, CSAIL

MIT, Cambridge MA 02139

1 Manifests Overview 1
1.1 An Example Manifest File . 2
1.2 Motivation . 2

2 Components of a Manifest 3
2.1 Minimal Components of a Manifest . 3
2.2 Optional Components of a Manifest . 4

3 Two Manifest Related Programs in the MOOS-IvP Tree 4
3.1 The manifest test Utility . 4
3.2 The manifest wiki Utility . 5

4 Further Detail on File Syntax 5
4.1 Multi-line Entries . 5
4.2 Comments and Blank Lines . 6
4.3 Module Types . 6
4.4 Author, Contact and Organization Fields . 7
4.5 The BornDate Field . 7
4.6 The DocURL and Distro Fields . 7

5 Including Lines of Code Information in Manifests 8
5.1 The Free Code Analysis Utility - sloccount . 8
5.2 Generating a LOC File to Augment Manifest Information . 9

6 Creating Your Own Manifest Set 10
6.1 Conventions for Organizing A Manifest Set . 10
6.2 A Group Manifest . 11
6.3 Checking Your Manifest Set . 12
6.4 How to Share your Manifest Set . 12

7 Full Description of the manifest test Utility 12
7.1 Content Input . 12
7.2 The Full Set of Test Options . 12
7.3 The Verbose Mode . 13
7.4 The manifest test Return Value . 13

1 Manifests Overview

A manifest is a short description of a software module, in a particular syntactic format. It also
contains enough information to enable contact with the current maintainer of the code, and determine

1

the software dependencies associated with the code. The goal is to increase the likelihood of code
sharing by allowing a quick determination if an existing suitable module may already exist.

1.1 An Example Manifest File

Here is an example manifest for the IvP Helm:

module = pHelmIvP

type = MOOS App

author = Michael Benjamin

contact = mikerb@mit.edu, issues@moos-ivp.org

org = MIT

thumb = A behavior-based helm with multi-objective optimization based

(IvP) action selection.

depends = lib_helmivp, lib_contacts, lib_behaviors-marine,

lib_behaviors-colregs, lib_behaviors, lib_bhvutil, lib_ivpbuild,

lib_ivpcore, lib_ivpsolve, lib_geometry, lib_apputil, lib_mbutil,

lib_logic, lib_genutil, lib_MOOS

group = Core Autonomy

borndate = 020101

doc_url = http://oceanai.mit.edu/ivpman/apps/pHelmIvP

license = GPL

distro = moos-ivp.org

synopsis = pHelmIvP is a behavior-based autonomous decision-making

MOOS application. It consists of a set of behaviors reasoning over a

common decision space such as the vehicle heading and speed.

Behaviors are reconciled using multi-objective optimization with the

Interval Programming (IvP) model.

More info on syntax is given below in Sections 2 and 4. There is also a command line utility which
can quickly confirm the validity of manifest file:

$ manifest_test myfile.mfs

The manifest test utility is discussed in Section 7.

1.2 Motivation

Manifests accomplish two things:

� For publicly available code, manifests help users navigate code options, to hopefully quicken
the process of finding what is needed, before re-writing it, perhaps unnecessarily.

� For non publicly available code, manifests help users learn about the existence of code, to
facilitate a direct connection between potential user and code author, for direct sharing of
beta code, or licensing of proprietary or classified code.

The latter may be the more important of the two. First, existing publicly available code is more
likely to have user documentation. Interested users can simply read the documentation. The
manifests in this case only make the search process quicker, which is still of significant value.

2

The real value lies in manifests of non publicly available code. To begin with, this codebase may
be much larger, comprising many dozens of work-years of effort, on code that may have substantial
field-trial experience. For many organizations, publicly releasing code is difficult. It may contain
proprietary intellectual property, or it may be related to a classified project. Release of code publicly
is also a hurdle many code authors are uncomfortable with until those proverbial last features are
built, or until the documentation has finally been written. These hurdles in practice often are never
surmounted, especially when the motivation is to release the code publicly to unknown users.

A manifest is powerful because it requires several orders of magnitude less work than actual
documentation, and it does not require or even imply public release of code. But it does allow
potential users to learn about other non public efforts and reach out to the manifest author(s) to
make a direct connection. This is especially relevant to work at government labs. Government lab
work is (a) very likely non public, (b) paid with tax dollars which should be motivation enough to
re-use substantial investments in code development, and (c) very likely sharable directly between
labs or projects.

Finally, a note to project managers (and this could be a project manager at a government or
industry research lab, or an academic advisor). A huge impediment to progress on the five year
scale or higher, is the inability to re-use code. This is largely due to the fact that code is typically
written on the 1-3 year scale, for a particular grant or thesis project. The original author often is
just not around after a few years. An important way to mitigate this problem is if other users (later
students or later projects) take an interest in the code as it emerges. This hand-off of custodianship
is more likely to happen if the original module’s manifest emerges and is socialized earlier in the
development process.

A forum for listing manifests is great beginning to ensure the gems of prior projects are further
refined in later projects. Steadily building solid capabilities through well organized software may
have a huge impact on a lab or research group’s ability to advance marine autonomy in the 5-15
year time-scale. If this vision is properly conveyed to each code developer, it may motivate code
development to take on a different mind-set from the outset - to build something meaningful that
outlives the current deadline.

2 Components of a Manifest

A manifest is simply a text file. A manifest set is a collection of manifests, perhaps in many files,
or all in a single file. A manifest a has several fields, some of which are mandatory (if they are to
be accepted in utilities that manage them and generate web content), and some components are
optional.

2.1 Minimal Components of a Manifest

The following are the absolute bare-minimum fields for a module manifest.

� module: The name of the module.

� contact: Email or other means for contacting the author or current maintainer the code.

� thumb: A short one sentence description.

3

2.2 Optional Components of a Manifest

The following are additional fields which also really should be included. However, if the module
name and one-line description above, also includes a valid point of contact, the below information
can at least be asked by direct contact. Here are the additional fields:

� type: MOOS App, Command line utility, GUI utility, Library, Behavior.

� author: One or more authors (comma-separated, Firstname Lastname).

� depends: A list of library dependencies.

� group: One or more groups that relate to this module.

� borndate: Best guess date on when development began on this module.

� doc url: A URL where one may find documentation for this module.

� license: License under which this code is available for sharing.

� distro: Name of the distribution if this code is part of one.

� synopsis: A 1-2 paragraph description of the code module.

3 Two Manifest Related Programs in the MOOS-IvP Tree

Although a manifest is just a text file, the goal is to support a utility for auto-generating web pages,
from a folder of individual manifest files, into cross-correlated web page content. The web pages
help sort modules by groups, show common dependencies and also provide estimates of work year
efforts and lines of code per module and groups of modules.

To this end, there are two command-line utilities:

� manifest test: A utility for validating that one or more manifest files are syntactically correct
and have the minimum required information.

� manifest wiki: A utility for generating a set of wiki pages with information pulled from the
whole set of manifest files.

3.1 The manifest test Utility

The first utility, manifest test, is a convenience utility for manifest authors. It will check for syntax
and semantic correctness of manifest files. Ideally this utility is used by all manifest authors prior
to sharing their content. This utility is included in the MOOS-IvP codebase in releases after 17.7,
and in the development trunk as of this writing. So it should already be in your shell path if other
MOOS-IvP applications are there. It can be run as below:

$ manifest_test full/path/to/my/manifest_files/*.mfs

It will run a handful of tests. The first three reveal errors that need to be fixed. The later tests
reveal warnings that probably should be fixed. A successful test output would look like:

4

$ cd full/path/to/my/manifest_files/

$ manifest_test *.mfs *.loc --all

=================== TEST BEGIN ========================

Phase 1: All files readable with valid syntax: PASS

Phase 2: All manifests have a unique module name: PASS

Phase 3: All manifests have all required fields: PASS

Phase 4: All manifests have all optional fields: PASS

Phase 5: All manifest dependency libs are known: PASS

Phase 6: All manifests have lines-of-code stats: PASS

=================== TEST COMPLETE =====================

More detail is given on this utility in Section 7. If any part fails, the test can be re-invoked in
verbose mode to find out precisely what has been flagged.

3.2 The manifest wiki Utility

The second utility, manifest wiki, is used for auto-generation of web pages. While this is also part
of the MOOS-IvP distribution, it primarily does its thing on the web server hosting MOOS-IvP
to generate web content as manifest files change. The typical user or author of manifest content
will never need to run this. But the end goal is to generate valid manifest file content as input
to manifest wiki to produce rich manifest web content. All of the manifest web pages on the
moos-ivp.org website were produced by manifest wiki.

4 Further Detail on File Syntax

You may have noticed, by the example manifest file Section 2, that manifest files are not written in
XML format. They are written in a simpler, flat format. Each component of a manifest is of the
form:

keyword = value

For example:

module = pHelmIvP

type = MOOS App

4.1 Multi-line Entries

Most items fit on a single short line. For items with longer lines, the long line may be broken up
into several lines in the file, for better readability, by indenting the continuing line(s) with one or
more white space. For example the following is treated as one long single line:

synopsis = pHelmIvP is a behavior-based autonomous decision-making

MOOS application.

It is equivalent to:

5

moos-ivp.org

synopsis = pHelmIvP is a behavior-based autonomous decision-making MOOS application.

A note of caution: the following line would produce an error:

synopsis = pHelmIvP is a behavior-based autonomous decision-making

MOOS application.

In this case the continuing line is not indented, and the text "MOOS application" is not a valid
keyword = value format.

4.2 Comments and Blank Lines

Comment lines have the characters "//" as the first two non-white space characters. Blanks lines
simply ignored.

For example, the following two snippets are equivalent:

// This is the manifest for the pHelmIvP MOOS application

module = pHelmIvP

// The Core Autonomy group has all things helm related

group = Core Autonomy

synopsis = pHelmIvP is a behavior-based autonomous decision-making

MOOS application. It consists of a set of behaviors reasoning over a

common decision space such as the vehicle heading and speed.

// And we have more to say about this here:

Behaviors are reconciled using multi-objective optimization with the

Interval Programming (IvP) model.

The second snippet represents the same data:

module = pHelmIvP

group = Core Autonomy

synopsis = pHelmIvP is a behavior-based autonomous decision-making

MOOS application. It consists of a set of behaviors reasoning over a

common decision space such as the vehicle heading and speed.

Behaviors are reconciled using multi-objective optimization with the

Interval Programming (IvP) model.

4.3 Module Types

Each manifest has a type field. Currently the below five types cover all modules in the MOOS-IvP
code base.

� MOOS App: For example pLogger, pHelmIvP and iSay.

� Behavior: For example BHV Waypoint, BHV Loiter and BHV AvdColregs.

� Command Line Utility: For example alogscan, alogrm and ippsolve.

6

� GUI Utility: For example alogview, zaic hdg and zaic peak.

� Library: For example lib contacts, lib helmivp and lib mbutil.

Currently, listing a type other than the above five will not result in a warning when running
manifest test. When manifest wiki is invoked to create web pages, it will use the group information
accordingly, e.g, creating a page for all behaviors, and all libraries. In grouping, the type information
is case insensitive.

4.4 Author, Contact and Organization Fields

Each manifest has a author field. For a single author, the format is simply ”first-name last-name”.
Multiple authors are separated by a comma.

author = Jane Doe

author = Jane Doe, Joaquin Phoenix

Presently no sorting or web page generation is done by author name. In the cases where the author
is not the maintainer, use the contact field to indicate the current maintainer of the software. This
field should be a comma-separated list of email addresses:

contact = jake@gmail.com, mary@cs.college.edu

The organization name is similarly specified by a simple string, comma-separated if multiple
organizations are involved:

org = MIT, Oxford

Presently no sorting or web page generation is done by organization. This will likely change in the
near future.

4.5 The BornDate Field

Each manifest has a borndate field, indicating the earliest date of any file in the module. Admittedly
this may only be a rough measure in many cases, especially if substantial modifications or additions
occurred well after the first file was created. But nevertheless it can provide useful information to
external users. The date is in the format of six numbers YYMMDD.

4.6 The DocURL and Distro Fields

The doc url field should be a valid URL link to either a web page or a PDF.

The distro may indicate the name of a software tree if the code is publicly available or is in any
form for later private sharing. It could also be a git or scn URL.

7

5 Including Lines of Code Information in Manifests

Applications require varying degrees of effort to write, and having a feel for this aspect of a module
may help gauge whether to adopt, modify or re-write a module. The most common metrics are

� Logical lines of code

� Files of code

� Workyears invested

Manifest files may be augmented with one or more instances of an additional type of file, a lines-of-
code, or .loc file. This file contains the above three pieces of information for each software module.
For example:

module=uFldMessageHandler, loc=385, foc=5, wkyrs=0.07

module=uFldNodeBroker, loc=517, foc=5, wkyrs=0.10

module=uFldNodeComms, loc=790, foc=5, wkyrs=0.16

module=uFldShoreBroker, loc=515, foc=5, wkyrs=0.10

module=uHelmScope, loc=1301, foc=9, wkyrs=0.26

module=uLoadWatch, loc=349, foc=5, wkyrs=0.07

There are four columns of data - the module name, the number of logical lines of code, the number
of files, and the estimated number of work years of effort.

When the full manifest set is processed by manifest wiki, it will include this information for each
module in the resulting web content. For many applications, the heavy lifting in the implementation
is done in the dependent libraries. In these cases, the three metrics should also include the dependent
libraries to provide a more accurate picture. The manifest wiki utility will ingest both the lines-of-
code and dependency information to generate two values. For example, with the pHelmIvP MOOS
app, over 95% of the implementation is in the libraries:

pHelmIvP:

Lines of Code: 1,701 (with libraries: 66,947)

Files of Code: 7 (with libraries: 573)

Work Years: 0.35 (with libraries: 14.8)

5.1 The Free Code Analysis Utility - sloccount

Counting the logical lines of code is preferred to just counting the lines in a file, with the wc -l

utility for example. The former does not count comments and blank lines. And disregards other
style issues like whether a developer uses a whole line for an open or close brace in a for-loop.
To count the logical lines of code, we use sloccount. This utility is available in common package
managers in MacOS and Linux.

To run sloccount, simply provide the directory as a command line argument. By default, it will
produce a report similar to the following:

8

$ cd moos-ivp/ivp/src/

$ sloccount lib_mbutil

Creating filelist for lib_mbutil

Categorizing files.

Finding a working MD5 command....

Found a working MD5 command.

Computing results.

SLOC Directory SLOC-by-Language (Sorted)

3315 lib_mbutil cpp=3315

Totals grouped by language (dominant language first):

cpp: 3315 (100.00%)

Total Physical Source Lines of Code (SLOC) = 3,315

Development Effort Estimate, Person-Years (Person-Months) = 0.70 (8.45)

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.47 (5.62)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 1.50

Total Estimated Cost to Develop = $ 95,093

(average salary = $56,286/year, overhead = 2.40).

SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to

redistribute it under certain conditions as specified by the GNU GPL license;

see the documentation for details.

Please credit this data as "generated using David A. Wheeler’s ’SLOCCount’

Files of code may be insightful. For example, you might be leery of a module with 5,000 lines of
code in one file. The level of effort in terms of work years is trickier to measure. We use the

5.2 Generating a LOC File to Augment Manifest Information

While sloccount provides all the information needed to make a .loc file as described in Section 5,
it would require a lot of tedious work to make a .loc file by hand. Here we describe a shell script
used for auto-generating such a file.

This script is available in the MOOS-IvP trunk in moos-ivp/scripts/, and in MOOS-IvP releases
after 17.7.

$ cd moos-ivp/scripts

$ cat slocgen.sh

9

#!/bin/bash

This is slocgen.sh (M. Benjamin, MIT, December 2017)

for D in *; do

if [-d "${D}"]; then

LOC=‘sloccount "${D}" 2> /dev/null | fgrep "cpp:" | awk -F’ ’ ’{print $2}’‘

FOC=‘sloccount --filecount "${D}" 2> /dev/null | fgrep "cpp:" | awk -F’ ’ ’{print $2}’‘

WYR=‘sloccount "${D}" 2> /dev/null | fgrep "Development" | awk -F’ ’ ’{print $7}’‘

printf "module=${D}, loc=${LOC}, foc=${FOC}, wkyrs=${WYR}\n"

fi

done

exit 0

This script assumes that all the source code is in a single folder, e.g., src/, and that all source code
sub-folders are to be included. If you have a different arrangement, you can simply replace the for

D in *; do, which looks at all sub-folders of the current directory, with something like:

for D in {pFooBar iUtility pSomething}; do

Finally, remember that the slocgen.sh script does not actually create a file. But this is generally
accomplished by redirecting the output to a file:

$ cd moos-ivp-mytree/src

$ slocgen.sh > mytree.loc

6 Creating Your Own Manifest Set

This section is a checklist guide for manifest authors. A minimal manifest set is just a few lines of
text for each software module. But richer manifests are encouraged, especially those that contain
concise synopses, and statistics from sloccount.

6.1 Conventions for Organizing A Manifest Set

A manifest set is a collection of manifest (.mfs) files, and lines-of-code (.loc) files. A reasonable way
to organize this is to have a single directory with all files. The manifest software can also handle
having all manifests in a single file. Likewise for the lines-of-code data. So minimally there will
be one .mfs file. More typically a manifest set will be comprised of several .mfs files, one for each
module, and one .loc file.

The manifest set for MOOS-IvP is part of the MOOS-IvP distribution. If you have that
downloaded, you can just check out the directory moos-ivp/manifests. If you don’t have the tree
handy, or if you have an older release, you can pull down just the manifest set from svn with:

$ svn co https://oceanai.mit.edu/svn/moos-ivp-aro/trunk/manifests

10

6.2 A Group Manifest

A single group manifest is a very good idea. This allows you to generate a short description of
your organization or research group. Likely all your manifests will include this group name in each
manifest group list. Remember a manifest can belong to more than one group. So a manifest can
belong to the group ”ACME Autonomy Lab”, and the group ”Simulation” for example. Here is an
example group manifest:

//==

module = Simulation

type = group

author = Michael Benjamin

contact = mikerb@mit.edu

org = MIT

synopsis = The Simulation Toolbox contains a number of tools for supporting

multi-vehicle missions where each vehicle is connected to a shoreside

community. This includes both simulation and real field experiments.

It also contains a number of simulated sensors that run on off-board

the vehicle on the shoreside.

group = Simulation

doc_url = http://oceanai.mit.edu/ivpman/tools

distro = moos-ivp.org

The above group manifest describes a set of modules with common function. Another type of group
manifest would describe modules from a common organization:

//==

module = StateU Robot Lab

type = group

author = Prof. Lab Leader

contact = lab_leader@stateu.edu

org = StateU

synopsis = The StateU Robot Lab specializes robotic software.

This software toolbox contains several applications and utilities

suitable for fielding marine robots.

group = StateU Robot Lab

doc_url = http://robots.stateu.edu/main_page

distro = https://github.com/StateURobotLab/moos-ivp_apps

The organization manifest is paticularly useful if your group is creating a manifest set to be included
on the moos-ivp.org web site. Your modules will have a single link on the left-hand main menu,
which will link to a single page with the above group manifest information. On this page will be a
link to all modules belonging to this group.

Note: While group manifest files and software manifest files have the very same structure and sytax,
out of convenience the group manifest files may have the .gfs suffix instead. Files with this syntax
are ingested by manifest test and manifest wiki exactly the same.

11

6.3 Checking Your Manifest Set

Use the manifest test command line tool (Section 7) to verify the correctness and completeness of
your manifest set. The goal is to pass as many or all of the tests in this utility as possible.

6.4 How to Share your Manifest Set

The goal, in writing this document, is to include your manifest set on the web pages on the
moos-ivp.org web site. Perhaps the simplest way is to send us a tar file of your manifest set.
Alternatively, if your manifest set is available via version control, e.g., svn or git, with anonymous
read-only access, we can make provisions to check out a local copy onto the moos-ivp.org web
server. Contact us if you have questions. We’re open to other ideas.

7 Full Description of the manifest test Utility

More details on the manifest test utility. This utility is designed for manifest authors to help catch
broken, missing or inconsistent items in a manifest set, before exporting for sharing.

7.1 Content Input

The utility accepts any number of manifest or lines-of-code files as input to the command line.
Typical usage would be to run this utility from within the directory where all your manifest and
lines-of-code files live.

$ cd full/path/to/my/manifest_files/

$ manifest_test *.mfs *.loc

Additional files may be specified by providing the full path name. For example, to include all the
MOOS-IvP manifest files:

$ cd full/path/to/my/manifest_files/

$ manifest_test *.mfs *.loc ~/moos-ivp/manifests/*.mfs ~/moos-ivp/manifest/*.loc

The latter may be desirable since Phase 5 of the manifest test is to check that all named library
dependencies are known/valid. If any of your manifests link to MOOS-IvP libraries, this allows this
test to proceed without warnings.

7.2 The Full Set of Test Options

There are six phases of tests supported. The first three are always conducted. Phase 1 will confirm
that all manifest and lines-of-code files given on the command line exist, are readable and contain
valid syntax. Phase 2 will confirm that no two manifests contain the same module name. The
module name is regarded as the key in the set of manifests and must be unique. Phase 3 checks
that all manifests contain the minimum fields described in Section 2.1. By default, only the first
three phases are conducted when invoking manifest test:

12

moos-ivp.org
moos-ivp.org

$ cd full/path/to/my/manifest_files/

$ manifest_test *.mfs *.loc

=================== TEST BEGIN ========================

Phase 1: All files readable with valid syntax: PASS

Phase 2: All manifests have a unique module name: PASS

Phase 3: All manifests have all required fields: PASS

The Phase 4 test is optional and is invoked with the --warnings or -w command line option. This
test checks whether all manifests contain all the optional fields described in Section 2.2. Since they
are optional fields, it is quite likely they do not.

The Phase 5 test is optional and is invoked with the --depends or -d command line option. This
test checks whether all library dependencies listed in any of the manifests, is a known library. A
mis-spelled library name may result in an inaccurate description of an app in terms of lines-of-code
or work-years since the mis-spelled library would not be included. In some cases a module may
have a ”system” library dependency, e.g., lib fltk. To avoid raising warnings for such libraries, the
manifest test utility allows you to specify a colon-separated list of libraries to ignore:

$ cd full/path/to/my/manifest_files/

$ manifest_test *.mfs *.loc --ignore_libs=lib_fltk:lib_fltk_gl

The last, Phase 6 test, is optional and is invoked with the --stats or -s command line option. This
test checks whether all modules have sloccount statistics: lines-of-code, files-of-code, and work-years.
This information is typically found in one or more .loc files.

All three optional tests can be invoked simply with the --all or -a command line option:

$ cd full/path/to/my/manifest_files/

$ manifest_test *.mfs *.loc --all

If any of the first three tests fail, the manifest test utility will exit. Failures in the last three tests
will not result in the early exit of the program.

7.3 The Verbose Mode

If one of the manifest test parts fail, you may can find more information by re-running with the
--verbose command line option. It will produce a much more detailed report of all phases.

7.4 The manifest test Return Value

The manifest test utility will have a return value of 0 if all invoked phases pass. It will have a
value of 1 otherwise. This allows the manifest test utility to work within a shell script, possibly
requiring a successful test before updating web pages.

13

	Manifests Overview
	An Example Manifest File
	Motivation

	Components of a Manifest
	Minimal Components of a Manifest
	Optional Components of a Manifest

	Two Manifest Related Programs in the MOOS-IvP Tree
	The manifest_test Utility
	The manifest_wiki Utility

	Further Detail on File Syntax
	Multi-line Entries
	Comments and Blank Lines
	Module Types
	Author, Contact and Organization Fields
	The BornDate Field
	The DocURL and Distro Fields

	Including Lines of Code Information in Manifests
	The Free Code Analysis Utility - sloccount
	Generating a LOC File to Augment Manifest Information

	Creating Your Own Manifest Set
	Conventions for Organizing A Manifest Set
	A Group Manifest
	Checking Your Manifest Set
	How to Share your Manifest Set

	Full Description of the manifest_test Utility
	Content Input
	The Full Set of Test Options
	The Verbose Mode
	The manifest_test Return Value

