

UNDERWATER SOLUTIONS WORLDWIDE

Payload Autonomy on the Phoenix International Artemis AUV

MOOS-DAWG 2015 July 22-23

Peter McKibbin IRAD/Special Projects Manager pmckibbin@phnx-international.com

Outline

- Brief Company overview
- Our Path to Autonomy
- Horizon
- Artemis AUV
- Payload Design
- Future Developments

Phoenix International

Company Overview

- Engineering Services: Robotics & Underwater Systems Design/Build, Operations Support, R&D
- Deep Ocean Search & Recovery: NAVSEA Undersea Ops Prime <u>since 2001</u>
- Submarine Rescue Operations & Support: NAVSEA Submarine Rescue Prime <u>since 2006</u>
- **Commercial Diving & Subsea Operations:** Offshore Oil & Gas, Ocean Science, Seafloor Minerals, Surveys and Search & Recovery
- Underwater Welding & Ship Repair: NAVSEA Diving Services Prime <u>since 1997</u>

Phoenix International

Internal Research & Development

COMPANY PROPRIETARY FOR GOVERNMENT EVALUATION ONLY

Pressure Tolerant Electronics
 × Bot
 Liston Pochargophic Battorios

Li-Ion Rechargeable Batteries

- Supercapacitor UUV
 Contactless Charging
 Visible Light Data Communications
- Diver Operated xBot
- Payload Autonomy

Engineering Development

Horizon

- Multi-mission Fiber Optic Tethered UUV/ROV
 - Auto-Heading and Depth/Altitude Control for Semi-Autonomous Flight
 - Operator Control for Precision Maneuvering and Docking
- Submarine TDU launch
- Passive and Active Homing
- Segmented Vehicle with Multiple Payloads
 - Docking/Mating/Data Transfer to Subsea Fiber Connection
 - Subsea Fiber Connection
 > 360° Inspection

Engineering Capabilities

ARTEMIS AUV

Modular Payload for Changing Mission Requirements Free Flooded Architecture, Removable-Air Shippable Batteries

General Specifications

- Depth: 5000 m
- Diameter: 21 in, Length: 17.2 ft
- Weight in Air: 1600 lbs
- Speed: 2-4.5 knts
- Endurance: 20 hrs @ 3 knts
- Navigation Accuracy: 0.1% of distance traveled

Operational Resources

Underwater Solutions Worldwide

Onboard Systems

- Reson 7125 Multibeam
- EdgeTech 2200-M Side Scan Sonar
- EdgeTech DW2-16 Sub-Bottom Profiler
- Kearfott Custom KN-6053 INS
- Sonardyne AvTrak 2/Ranger 2 Gyro USBL
- Prosilica GX 1920 Digital Camera 1936 x 1456 pixels

AUV Continuing Development

- Payload Autonomy → Payload Computer Commands Vehicle Computer Based on Sensor Input
 - >Uses Open Source Middleware MOOS
 - Using Autonomous Kayaks as Development Platforms
- Collaborating with MIT
- Developing Payloads for Customers
 - ➢Oil and Gas
 - ➤ Subsea Mining
- Potential Payloads Include
 - Pinger Locator
 - Synthetic Aperture Sonar
 - Electric Field Sensors
 - > Magnetometer, etc.

Engineering Development

- Purpose
 > AUV-based leak detection system for subsea infrastructure inspection
- Backseat driver installation
 > Upgrade carried out by Bluefin
- Payload Sensors
 2 x HF sonar's and a mass spectrometer
- Payload Integration and Test
 Carried out at BHC on the Scarlett Isabella
- Test plan

Search for and acquire a simulated leak source

• Offshore test

Test the backseat driver and the system detection limits

• Results

Artemis detected the leak source, handed control over to the backseat driver and homed in on the target.

Engineering Development

Underwater Solutions Worldwide

First Payload Integration

Seafloor Mining Payload

- Mission Requirements
 Detect and map SMS (Seafloor Massive Sulfide) deposits at depths up to 3000m
- Sensor Selection
 Magnetometer, Electric Field Sensors, Conductivity Temperature and Depth sensor
- Payload Design
 Pressure housing specs
 Underwater connectors
 Low power
 Low magnetic signature
- Hardware design
 Payload computer selection
 Sensor interface circuitry
 Solid state Hard Disk capacity
 Low noise power supplies
 Underwater connector selection

Engineering Development

Underwater Solutions Worldwide

Prototype Payload Hardware

Gumstix OVERO computer and Tobi expansion board

- Software design
 Sensor data collection and logging in the client specified format
- Bench Testing
 Verify all sensors confirm timestamp and navigation data are logged in the client specified format
- Payload build
 >Bench test actual payload and sensors
- Payload Integration and Test
 Test actual payload and sensors while connected to the AUV, 8 hour tank test

Offshore test

Confirm payload can acquire a simulated targetConfirm that the logged data is of high quality

Engineering Development

Underwater Solutions Worldwide

Payload chassis topside

Payload chassis underside

Sensor Data Quality

- The challenge was that the Electric and Magnetic fields of the AUV have not been characterized
- AUV Magnetic Field

To reduce the effects of the vehicles magnetic field the magnetometer was mounted in the nose.
 Additional magnetic shielding using mu-metal

• AUV Electric Field

➤ To reduce the effects of the vehicles electric field, the SP Ag-AgCl cells were positioned in the nose and 1.5m forward of the thruster motor.

Electric Field sensor spacing

Engineering Development

Underwater Solutions Worldwide

Silver-Silver Chloride cell

Offshore Testing

- Mobilization in the Gulf of Mexico
- Dockside system and vehicle buoyancy checks
- Offshore tests
 - Calibration of the magnetometer
 - Record vehicle magnetic and electric field levels
 - Place test fixture on the seabed
 - Search for test fixture
 - ➢ Post Process data recorded during dive

Engineering Development

Payload Development Platforms

- Autonomous Kayaks (Elanor and Dee)
- Manuals and Schematics
- New Batteries
- New steering servos
- Updated software
- Function checked
- Wet test before the end of August
- Pinger Locator Payload using backseat driver

Engineering Development Underwater Solutions Worldwide

Summary

- Who Phoenix is
 >We are primarily a deep water operations company with a strong background in, engineering and design of underwater vehicles
- How we engineer
 Our Engineers have offshore experience, they use this knowledge to design equipment that can operate reliably in the offshore environment
- What we engineer
 ➤Solutions to underwater problems from the surface to 6000 m
- What we are doing with Artemis
 Exploring opportunities in the O&G, Underwater mining, Science and Defense fields
- What we intend to do with Artemis
 Continue to develop new intelligent payloads in support of Defense and Commercial customer needs

Phoenix International

UNDERWATER SOLUTIONS WORLDWIDE

QUESTIONS

Peter McKibbin IRAD/Special Projects Manager pmckibbin@phnx-international.com 301-341-7800