

Simulating Side Scan Sonar as a MOOS app using NVIDIA OptiX

Trevor G. Anderson

t.anderson@acfr.usyd.edu.au

Funded by

Defence Science and Technology Organisation

Motivation

	REMUS 100	REMUS 600
Length	1.6m	3.25m
Diam	190mm	324mm
Weight (air)	38.5kg	240kg
Endurance	8-10hrs (typ.)	24hrs (typ.)
Speed	2.4m/s	2.1m/s
Max Depth	100m	600m
Sonar	900 + 1800 kHz side scan	200 + 400 kHz Synthetic Aperture

Iterative Development Procedure

Chapple, Philip B. "Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles." OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges. IEEE, 2009.

Simulation Constraints

- High fidelity sonar data
- Including artefacts from platform motion
- Enable transition from post-mission to on-board

Where to start?

Side Scan Basics

- Vertically aligned fan beam
- Vehicle motion defines one image axis
- Time of flight defines second axis

 Objects form highlightshadow pairs

Side Scan Beam Pattern

- Measured beam patterns are difficult
- Theoretical beam pattern from aperture size
- Import from csv
- Easily configurable

Sample Distribution

- Infinite samples \rightarrow exact solution
- Finite samples \rightarrow approximate solution

Sample Distribution

- Not limited to only increasing samples
- Samples are chosen to favour areas of greater information
- Sea floor out to max range is most significant
- Information \propto range

Sample Weighting

- Easy to determine energy density at intersection point
- density @ point × area = intensity of area
- To determine the area the single general ray (black) is approximating...

Sample Weighting

• Consider the two rays on either side (red)

Sample Weighting

- Consider the two rays on either side (red)
- Projecting perpendicular to the ray
- $A \propto r^2 \theta^2$

• Time of Flight based mapping

- Time of Flight based mapping
- Pulse shape (Gaussian time spread)

- Time of Flight based mapping
- Pulse shape (Gaussian time spread)
- Logarithmic amplifier

- Time of Flight based mapping
- Pulse shape (Gaussian time spread)
- Logarithmic amplifier
- Thermal noise

Virtual Environment

Results – Standalone Simulation

Complex Object Simulation

- Vertices: 206113
- Faces: 389552
- File size: 36.5 MB

The Role of MOOS

MOOS Visualisation Tools

Trevor G. Anderson | MOOS DAWG 2015

Integration with MOOS

A Different Bottom Type

Result - Video

