
12/4/20

1

An Introduction to Robot Autonomy

with 
MOOS-IvP

and 

Aquaticus

Lecture 5: Inter-Vehicle Messaging

Michael Benjamin, PhD
MIT Dept of Mechanical Eng.
mikerb@mit.edu

Prof. Michael “Misha” Novitzky
United States Military Academy
michael.novitzky@westpoint.edu

MOOS-IvP Supported by ONR Code 311 since 2000

Aquaticus Supported by ONR, DARPA, Battelle and the Army Research Lab

1

Inter-Vehicle Communications

• Methods of Inter-vehicle communications
• Limits on inter-vehicle communications
• Simulating inter-vehicle communications on a network
• uFieldNodeComms
• uFieldMessageHandler
• Indicators of successful messaging
• Debugging dropped messages
• Lab Preview

2



12/4/20

2

Inter-Vehicle Communications

How do two vehicles / robots / machines talk to each other?
• Depends on how far away they are from each other
• Depends on what is between them (air, water, or both)
• Messages may be sent directly between robots, or over a network

3

Inter-Vehicle Communications

How do two vehicles / robots / machines talk to each other?
• Depends on how far away they are from each other
• Depends on what is between them (air, water, or both)
• Messages may be sent directly between robots, or over a network

4



12/4/20

3

Inter-Vehicle Communications

Assumptions for now:
• All robots have a unique name with known address
• Messages may be sent to an individual robot, all robots, or a group of robots 
• A message may or may not received by the target robot
• No acknowledgement is built in to the messaging structure (although you can 

do this yourself)
• A message may be range-limited (the receiving robot is too far away)
• A message may be band-width limited (the message has a max length)
• A message may be frequency limited (minimum wait time between messages)
• A message may have latency (arrival time at receiving robot is not guaranteed)

How do two vehicles / robots / machines talk to each other?
• Depends on how far away they are from each other
• Depends on what is between them (air, water, or both)
• Messages may be sent directly between robots, or over a network

5

Inter-Vehicle Communications

How do two vehicles / robots / machines talk to each other?
• Depends on how far away they are from each other
• Depends on what is between them (air, water, or both)
• Messages may be sent directly between robots, or over a network

Focus

How can we use 
robot mobility and 
autonomy to 
overcome these 
limitations?

Assumptions for now:
• All robots have a unique name with known address
• Messages may be sent to an individual robot, all robots, or a group of robots 
• A message may or may not received by the target robot
• No acknowledgement is built in to the messaging structure (although you can 

do this yourself)
• A message may be range-limited (the receiving robot is too far away)
• A message may be band-width limited (the message has a max length)
• A message may be frequency limited (minimum wait time between messages)
• A message may have latency (arrival time at receiving robot is not guaranteed)

6



12/4/20

4

uField Toolbox – Sending a Message Between Vehicles

NODE_MESSAGE_LOCAL = “src_node=alpha,dest_node=bravo,
var_name=STATUS,string_var=searching”(Some MOOS App)

Publishes:

Vehicle alpha (source vehicle)

uFldMessageHandler
Subscribes/Handles:

Publishes:

Vehicle bravo (dest vehicle)
NODE_MESSAGE = “src_node=alpha,dest_node=bravo,

var_name=STATUS,string_var=searching”

STATUS = “searching” 

7

The uFldMessageHandler app is running on all vehicles wishing to receive messages.

uField Toolbox – Sending a Message Between Vehicles

8



12/4/20

5

uField Message Routing

• Message routing is handled on the shoreside.
• But it’s not the case that all messages make it through
• They are handled by uFldNodeComms

Vehicle 

Shoreside

NODE_MESSAGE_LOCAL

NODE_MESSAGE

Vehicle 

NODE_MESSAGE_HENRY

NODE_MESSAGE

Shoreside

Field

ProcessConfig = uFieldShoreBroker
{

qbridge= NODE_MESSAGE
}

ProcessConfig = uFieldNodeBroker
{

bridge = src=NODE_MESSAGE_LOCAL,
alias=NODE_MESSAGE

}

9

uField Message Routing Sequence

• The sequence of events, from the generation of 
the message all the way to the receipt on the 
destination robot(s)

Vehicle 

Shoreside

NODE_MESSAGE_LOCAL

NODE_MESSAGE

Vehicle 

NODE_MESSAGE_HENRY

NODE_MESSAGE

Shoreside

Field

1

2

3

4

5

Some app on the source vehicle publishes an 
outoing message in the form of 
NODE_MESSAGE_LOCAL

The source vehicle shares it via 
pShare to the Shoreside computer

It arrives at Shoreside as NODE_MESSAGE

Shoreside uFldNodeComms examines the 
message, location of vehicles and other range, 
bandwidth criteria and may decide to send it.

If uFldNodeComms decides to send it, it is 
published as NODE_MESSAGE_VNAME which 
is only shared to the robot named VNAME

1

2

3
4

5

6

7

6 It arrives on the destination vehicle simply 
as the MOOS variable NODE_MESSAGE

7 The final message is unpacked by 
uFldMessageHandler and posted as a MOOS 
variable-value pair to the local MOOSDB.

10



12/4/20

6

The uFldNodeComms App
Typical Application Toplogy

The uFldNodeComms app runs on the shoreside, limits intervehicle messaging.

• It subscribes for the the NODE_REPORT
messages arriving from all vehicles.

• It knows the position of all vehicles.
• It shares vehicle position information to all 

other vehicles. To support collision avoidance. 
Separate from message passing.

• It knows the range between any pair of 
vehicles and may use that to block a message.

• It keeps track of when each vehicle sent its 
previous message, to perhaps limit message 
frequency.

• It publishes visual objects for pMarineViewer to 
indicate comms status.

• It keeps track of all sent and dropped 
messages for viewing and debugging in its 
AppCast output, viewable in pMarineViewer.

11

The uFldNodeComms Configuration

The uFldNodeComms configuration parameters:

ProcessConfig = uFieldNodeComms
{

comms_range      = 200
min_msg_interval = 60
max_msg_length   = 100

view_node_report_pulses = true

stale_time       = 5
groups           = true

critical_range   = 1000

}

Distance in meters between vehicles (default is 100m)

Min time in seconds between messages from a vehicle (default is 30 sec)

Max chars in a string message (default is 1,000 characters)

Boolean indicating whether visual artifacts are to be generated 
indicating that node reports are being shared between vehicles

12



12/4/20

7

The uFldNodeComms Basic Configuration

The uFldNodeComms configuration parameters:

ProcessConfig = uFieldNodeComms
{

comms_range      = 200
min_msg_interval = 60
max_msg_length   = 100

view_node_report_pulses = true

stale_time       = 5
groups           = true

critical_range   = 1000

}

Distance in meters between vehicles (default is 100m)

Min time in seconds between messages from a vehicle (default is 30 sec)

Max chars in a string message (default is 1,000 characters)

Boolean indicating whether visual artifacts are to be generated 
indicating that node reports are being shared between vehicles

13

The uFldNodeComms Handling Stale Vehicles

The uFldNodeComms configuration parameters:

ProcessConfig = uFieldNodeComms
{

comms_range      = 200
min_msg_interval = 60
max_msg_length   = 100

view_node_report_pulses = true

stale_time       = 5
groups           = true

critical_range   = 1000

}

stale_time: Time in seconds after which a vehicle will not receive 
node reports or messages unless a node report has been received 
by that vehicle. The default is 5 seconds. 

• Since up-to-date inter-vehicle range information is used as part of 
the criteria in determining whether a vehicle receives a new node 
report from another, the position of the candidate recipient vehicle 
needs to reasonably up-to-date. 

• If a recipient vehicle becomes stale, it will not receive 
NODE_REPORT and will not receive NODE_MESSAGE messages.

14



12/4/20

8

The uFldNodeComms Support for Groups

The uFldNodeComms configuration parameters:

ProcessConfig = uFieldNodeComms
{

comms_range      = 200
min_msg_interval = 60
max_msg_length   = 100

view_node_report_pulses = true

stale_time       = 5
groups           = true

critical_range   = 1000

}

groups: If true, inter-vehicle node reports are shared only if two vehicles 
are in the same group. Default is false.
• The group name is a field contained in the node report itself, so the onus 

is on the vehicle to include this information as part of its report. 
• pNodeReporter  can be configured with group=<group-name> where 

the group information is declared for inclusion in all node reports. 

• Motivation for groups: to support multi-
vehicle competitions where some 
vehicles want to convey positions to 
teammates, but not adversaries.

15

The uFldNodeComms Critical Range

The uFldNodeComms configuration parameters:

ProcessConfig = uFieldNodeComms
{

comms_range      = 200
min_msg_interval = 60
max_msg_length   = 100

view_node_report_pulses = true

stale_time       = 5
groups           = true

critical_range   = 1000

}

critical range: Range in meters within which inter-vehicle node reports will 
be shared even if group membership would otherwise disallow. The default 
is 30 meters.

• When the two vehicles are within a range deemed critical, as set by 
the critical_range configuration parameter, node reports are shared 
between vehicles regardless of the comms_range parameter and 
the groups parameter. 

• The default for this parameter is 30 meters. 
• The thought behind this feature is that, while it may be advantageous to 

not broadcast your own vehicle position to non group members for the 
purposes of a competition, it may be a good idea to share this information 
for the sake of collision avoidance.

16



12/4/20

9

The uFldMessageHandler Configuration

The uFldMessageHandler configuration parameters:

ProcessConfig = uFieldMessageHandler
{

strict_addressing = false

appcast_trunc_msg = 60
}

strict_addressing: If true, only messages with a destination 
specified by dest_node, matching the local community name are 
processed. Other messages with a destination specified by a 
group designation are ignored. The default is false.

appcast_trunc_msg: Number of characters allowed in the 
appcast report for each line reporting a successful message. The 
default is 75. Setting it to zero means no truncating will be applied.

17

Signs of Healthy Messaging

18



12/4/20

10

Visual Signs of Healthy Messaging

From the charlie_dana_messaging mission in Lab 11 NODE_REPORT messages are being shared

NODE_MESSAGE messages are being shared

19

AppCasting Signs of Healthy Messaging

Status of uFldNodeComms
is contained in its AppCast 
output.

There are several fields 
confirmirmation healthy 
messaging.

Lots of messages received 
and sent – that’s a good 
sign!

No blocked messages. Also 
a good sign!

20



12/4/20

11

AppCasting Signs of Healthy Messaging
Status of  uFldMessageHandler is 
contained in its AppCast output

1 ===================================================================
2 uFldMessageHandler gilda 0/0(841)
3 ===================================================================
4 Overall Totals Summary
5 ======================================
6 Total Received Valid: 3
7 Invalid: 0
8 Rejected: 0
9 Time since last Msg: 101.3 

10 
11 Per Source Node Summary 
12 ====================================== 
13 Source Total Elapsed Variable Value 
14 ------ ----- ------- -------- -----
15 henry  3     101.3   RETURN   true 
16 
17 Last Few Messages: (oldest to newest) 
18 ====================================== 
19 Valid Mgs: 
19   src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed 
20   src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed 
21   src_node=henry,dest_node=gilda,var_name=RETURN,string_val=true 
22 Invalid Mgs:
23   NONE 
24 Rejected Mgs: 
25   NONE

• Totals valid messages 
• Invalid messages are ill-formed
• Rejected messages failed one of the 

range, bandwidth etc. criteria

• Per source summary, one line 
per other robot.

• Finite list of most recent messages.
• Automatically truncated in number.
• Truncated in length as per set by the 

user with the appcast_trunc_msg
parameter.

21

ALog Signs of Healthy Messaging

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% LOG FILE:       ./LOG_SHORESIDE_18_3_2018_____16_36_18/LOG_SHORESIDE_18_3_2018_____16_36_18.alog
%% FILE OPENED ON  Wed Dec 31 19:00:00 1969
%% LOGSTART               22821080675.4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
120.863         NODE_MESSAGE_CHARLIE uFldNodeComms   src_node=dana,dest_node=all,var_name=UP_LOITER,string_val=ycenter_assign=-43.075 
127.423         NODE_MESSAGE_DANA    uFldNodeComms   src_node=charlie,dest_node=all,var_name=UP_LOITER,string_val=ycenter_assign=-19.65 
553.160         NODE_MESSAGE_CHARLIE uFldNodeComms   src_node=dana,dest_node=all,var_name=UP_LOITER,string_val=ycenter_assign=-24.35 
572.299         NODE_MESSAGE_DANA    uFldNodeComms   src_node=charlie,dest_node=all,var_name=UP_LOITER,string_val=ycenter_assign=-69.675   
Total lines retained: 9 (0.01%)  
Total lines excluded: 60558 (99.99%)  
Total chars retained: 839 (0.01%)  
Total chars excluded: 9972138 (99.99%)  
Variables retained: (2) NODE_MESSAGE_CHARLIE, NODE_MESSAGE_DANA

$ cd LOG_SHORESIDE_18_3_2018_____16_36_17
$ aloggrep *.alog NODE_MESSAGE_CHARLIE NODE_MESSAGE_DANA

NODE_MESSAGE_CHARLIE entries indicate outgoing 
messages to charlie. In this case we can also see they are 
coming from dana.

We can check the log files on the Shoreside:

22



12/4/20

12

When Things Go Wrong

(How to Debug)

23

When Things Go Wrong

You were expecting: But you’re seeing this instead (no comms pulses)

24



12/4/20

13

Debugging Broken Messaging

• Re-visiting the message passing 
“pipeline”:

Vehicle 

Shoreside

NODE_MESSAGE_LOCAL

NODE_MESSAGE

Vehicle 

NODE_MESSAGE_HENRY

NODE_MESSAGE

Shoreside

Field

1

2

3

4

5

Some app on the source vehicle publishes an 
outoing message in the form of 
NODE_MESSAGE_LOCAL

The source vehicle shares it via 
pShare to the Shoreside computer

It arrives at Shoreside as NODE_MESSAGE

Shoreside uFldNodeComms examines the 
message, location of vehicles and other range, 
bandwidth criteria and may decide to send it.

If uFldNodeComms decides to send it, it is 
published as NODE_MESSAGE_VNAME which 
is only shared to the robot named VNAME

1

2

3
4

5

6

7

6 It arrives on the destination vehicle simply 
as the MOOS variable NODE_MESSAGE

7 The final message is unpacked by 
uFldMessageHandler and posted as a MOOS 
variable-value pair to the local MOOSDB.

25

Debugging Broken Messaging (Stage 1)

• Re-visiting the message passing “pipeline”:

1 Some app on the source vehicle publishes an 
outoing message in the form of 
NODE_MESSAGE_LOCAL

-----------------------------------
DEBUGGING STEPS 
-----------------------------------

• Was NODE_MESSAGE_LOCAL ever actually posted to the 
MOOSDB on the vehicle?

• You can check while running the mission by running a scope: 

• You can check after running the mission by examining the 
alog file:

• If it was never posted, re-examine what was supposed to 
generate this posting.

$ uXMS mission.moos NODE_MESSAGE_LOCAL

$ aloggrep file.alog NODE_MESSAGE_LOCAL

26



12/4/20

14

Debugging Broken Messaging (Stage 2/3)

-----------------------------------
DEBUGGING STEPS 
-----------------------------------

• Did NODE_MESSAGE arrive in the Shoreside?
• You can check after running the mission by 

examining the Shoreside alog file:

• If it was never posted, things to check:
• Was pShare running on vehicle? Shoreside?
• Did the vehicle uFldNodeBroker config block 

include sharing for NODE_MESSAGE_LOCAL?

$ aloggrep shoreside.alog NODE_MESSAGE

2 The source vehicle shares it via pShare to the 
Shoreside computer

3 It arrives at Shoreside as NODE_MESSAGE

• Re-visiting the message passing “pipeline”:

27

Debugging Broken Messaging (Stage 4)
-----------------------------------
DEBUGGING STEPS 
-----------------------------------

• In this stage uFldNodeComms will ingest a NODE_MESSAGE
and post a NODE_MESSAGE_VNAME if all goes well. Was 
NODE_MESSAGE_VNAME posted?

• You can check after running the mission by examining the 
Shoreside alog file:

• If it was never posted, things to check:
• Was the message blocked because it was ill-formed?
• Was the message blocked due to range between vehicles?
• Was the message blocked due to message length?
• Was the message blocked due to a stale receiving vehicle?
• Was the message blocked due to frequency constraints?
For debugging blocked messages, the AppCasting output 
of uFldNodeComms is your most powerful debugging tool.

$ aloggrep shoreside.alog NODE_MESSAGE_HENRY

4 Shoreside uFldNodeComms examines the 
message, location of vehicles and other range, 
bandwidth criteria and may decide to send it.

• Re-visiting the message passing “pipeline”:

28



12/4/20

15

Debugging Blocked Messages at the Shoreside

A blocked message at the Shoreside is a one where 
uFldNodeComms has ingested a NODE_MESSAGE, but has 
not made a corresponding NODE_MESSAGE_VNAME post.

Possible reasons for blocking:
• The message was ill-formed.
• The message was blocked due to range between 

vehicles.
• The message was blocked due to message length.
• The message was blocked due to frequency constraints. 

(too soon since the previous successful message)
• The message was blocked due to a stale receiver 

vehicle, or the receiver vehicle is not known to 
uFldNodeComms.

• Re-run the mission and check the AppCast output of 
uFldNodeComms (see right).

• As of now, uFldNodeComms does not produce similar 
output to debugging MOOS variables for logging.

If there are blocked 
messages, they would be 
reported here

29

Debugging Broken Messaging (Stage 5/6)
-----------------------------------
DEBUGGING STEPS 
-----------------------------------

• uFldNodeComms has published a NODE_MESSAGE_VNAME 
and it should have resulted in NODE_MESSAGE on the vehicle.

• You can the vehicle alog file:

If it was never posted, things to check:
• Was pShare running on the Shoreside
• Was pShare running on the vehicle?
• If you were able to deploy the vehicles and see their positions 

updated on pMarineViewer, then very likely pShare was running 
on both vehicles. 

• Was the Shoreside pShare configured to share 
NODE_MESSAGE_VNAME and to NODE_MESSAGE? Check the 
configuration block for uFldShoreBroker and look for a 
configuration like like:

$ aloggrep vehicle.alog NODE_MESSAGE

• Re-visiting the message passing “pipeline”:

5 If uFldNodeComms decides to send it, it is 
published as NODE_MESSAGE_VNAME which 
is only shared to the robot named VNAME

6 It arrives on the destination vehicle simply 
as the MOOS variable NODE_MESSAGE qbridge = NODE_MESSAGE

30



12/4/20

16

Debugging Broken Messaging (Stage 7)
-----------------------------------
DEBUGGING STEPS 
-----------------------------------

• A NODE_MESSAGE has arrived on the vehicle, but the contents 
of the message have not been posted.

• Again, you can verify that NODE_MESSAGE has been received 
on the vehicle by checking the vehicle alog file:

If the contents of the message was not posted, things to 
check:
• The message was invalid (ill-formed syntactically)
• The message was rejected, perhap because the ”addressee” 

was set to “all”, and message handler was configured to require 
strict matching of vehicle name.

• For debugging blocked messages, the AppCasting output 
of uFldMessageHandler is your most powerful debugging 
tool.

$ aloggrep vehicle.alog NODE_MESSAGE

• Re-visiting the message passing “pipeline”:

7 The final message is unpacked by 
uFldMessageHandler and posted as a MOOS 
variable-value pair to the local MOOSDB.

31

Debugging Broken Messaging (Stage 7)

1 ===============================================================
2 uFldMessageHandler gus 0/0(841)
3 ===============================================================
4 Overall Totals Summary
5 ======================================
6 Total Received Valid: 3
7 Invalid: 0
8 Rejected: 0
9 Time since last Msg: 101.3 

10 
11 Per Source Node Summary 
12 ====================================== 
13 Source Total Elapsed Variable Value 
14 ------ ----- ------- -------- -----
15 hal    3     101.3   RETURN   true 
16 
17 Last Few Messages: (oldest to newest) 
18 ====================================== 
19 Valid Mgs: 
19   src_node=hal,dest_node=gus,var_name=UP_LOITER,string_val=speed 
20   src_node=hal,dest_node=gus,var_name=UP_LOITER,string_val=speed 
21   src_node=hal,dest_node=gus,var_name=RETURN,string_val=true 
22 Invalid Mgs:
23   NONE 
24 Rejected Mgs: 
25   NONE

Possible reasons for unposted messages from an 
incoming NODE_MESSAGE on a vehicle:
• The message was invalid (ill-formed syntactically)
• The message was rejected, perhap because the 

”addressee” was set to “all”, and message handler 
was configured to require strict matching of vehicle 
name.

If there are invalid or rejected 
messages, they would be 
reported here

Contents of recent invalid or rejected 
messages, are shown here

32



12/4/20

17

Lab Preview

Exercise 1: Charlie-Dana baseline

Exercise 2: Charlie-Dana NodeComms

33

Lab Preview

Exercise 1: Charlie-Dana baseline

Exercise 2: Charlie-Dana NodeComms

Exercise 3: Charlie-Dana Message Mission

Exercise 4: Charlie-Dana ReAssigne Mission

34



12/4/20

18

Lab Preview

Exercise 5: (BONUS) Charlie-Dana Recover Mission

35

Tag Manager and Flag Manager

The Tag Manager and the Flag Manager are two key apps that implement the Aquaticus 
Game Environment.
https://www.aquaticus.org/apps/tag_manager
https://www.aquaticus.org/apps/flag_manager

36

https://www.aquaticus.org/apps/tag_manager
https://www.aquaticus.org/apps/flag_manager


12/4/20

19

END

37


