
Lab 2 - Introduction to MOOS

Fall 2020

Michael Benjamin, mikerb@mit.edu
Henrik Schmidt, henrik@mit.edu

Department of Mechanical Engineering
MIT, Cambridge MA 02139

1 Overview and Objectives 3
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 MOOS vs. MOOS-IvP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 More MOOS / MOOS-IvP Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The MOOS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Launching the MOOSDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Scoping the MOOSDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Poking the MOOSDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Launching a Mission with pAntler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9 Scripted Pokes to the MOOSDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 A Simple Example with pXRelay 21
2.1 Basic pXRelay Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 A Simple Example with pXRelay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Augmenting the Control Options in the Aquaticus Alpha Mission 23
3.1 Adding Button Commands to the Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Adding the iSay Application for Audio Feedback of Commands . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Adding Audio Feedback to Reverse and Toggle Commands . . . . . . . . . . . . . . . . . . . . . . . . 25

1



2



1 Overview and Objectives

This lab will introduce MOOS to new users. It assumes nothing regarding MOOS background.
The goals of this lab are to (a) understand the publish-subscribe architecture, (b) get comfortable
launching and interacting with the MOOSDB, (c) understand how to generate scripted interactions
with the MOOSDB, (d) understand how the logger operates and basic tools for examining log files

• MOOS Preliminaries: MOOS vs. MOOS-IvP, the MOOS Architecture

• Launching, Scoping, and Poking the MOOSDB

• Launching a Mission with pAntler

• Scripted Pokes the to the MOOSDB

• A Simple Example with pXRelayTest

• Modify the pXRelayTest Code

1.1 Preliminaries

This lab assumes you have a working MOOS-IvP tree checked out and built on your computer. To
verify this make sure that the following executables are built and findable in your shell path:

$ which MOOSDB

/Users/you/moos-ivp/bin/MOOSDB

$ which pHelmIvP

/Users/you/moos-ivp/bin/pHelmIvP

If unsuccessful with the above, return to the steps in Lab 1:

http://oceanai.mit.edu/pavlab/pmwiki/pmwiki.php?n=MiniCourse.LabIntro

1.2 MOOS vs. MOOS-IvP

What is the relationship between MOOS and MOOS-IvP? MOOS-IvP is a superset of MOOS. The
additional components include another architecture, the IvP Helm behavior-based architecture, and
several additional MOOS applications. This is the nested repository concept depicted in Figure 1.

3

http://oceanai.mit.edu/pavlab/pmwiki/pmwiki.php?n=MiniCourse.LabIntro


Figure 1: Nested Repositories: The MOOS-IvP tree contains the Oxford MOOS tree and additional modules from
MIT including the Helm architecture, Helm behaviors and further MOOS applications.

1.3 More MOOS / MOOS-IvP Resources

We will only just touch the MOOS basics today. A few further resources are worth mentioning for
following up this lab with your own exploration.

• The 2.680 lecture covers much of the material for this lab:
http://oceanai.mit.edu/2.680/docss/2.680-03-intro_to_moos_2018.pdf

• The ”Very Brief Overview of MOOS” page on the course documentation page:
http://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?n=Helm.MOOSOverview

• Follow the links to the documentation on the Oxford MOOS website.
http://themoos.org

1.4 The MOOS Architecture

The main idea explored today is that MOOS is a publish-subscribe architecture. A single MOOSDB

serves multiple MOOS applications by essentially handling the mail published and subscribed for by
each app. A MOOS community is a collection of applications connected to a single MOOSDB.

4

http://oceanai.mit.edu/2.680/docss/2.680-03-intro_to_moos_2018.pdf
http://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?n=Helm.MOOSOverview
http://themoos.org


Figure 2: The MOOS Architecture: MOOS is a publish-subscribe architecture. The MOOSDB serves a number of
clients, handling mail for each client as new information is posted. A MOOSDB with connected clients constitutes a
MOOS community. There may be multiple MOOS communities on a single machine, and a single MOOS community
may be distributed over more than one machine.

For typical autonomous vehicle implementations, there is a MOOS community on board each
vehicle. When simulating multiple vehicles on a single machine, there is also a single community
associated with each vehicle. A MOOS community consists of a single MOOSDB with one or more
connected clients. The communications discussed in today’s lab concern how a single app communi-
cates with another app via the MOOSDB in the publish-subscribe architecture. Later labs will address
how vehicles communicate with each other, essentially bridging two or more MOOS communities
with one another.

For today, the focus is on the MOOSDB and connected applications. The MOOSDB, unlike an actual
database, does not contain a full history of information that has passed through it. At most, it
stores the latest value for any given MOOS variable published to the MOOSDB. When a new app
connects to the MOOSDB it must register for the mail it needs. On startup, an app can expect to get
a mail message containing the latest value for any variable it registers for, even if that mail reflects
a posting to the MOOSDB long ago. Anything happening prior to that will be unknown to the newly
connected app.

5



1.5 Launching the MOOSDB

Here we describe how to launch the MOOSDB from the perspective of the first-time user. The MOOSDB

application is a server that runs on the robot or unmanned vehicle computer, or simply on your
laptop during simulation. It may be launched from the command line, assuming it is in your path.
Two minimalist methods are described here, starting with the most bare-bones.

1.5.1 A Bare-Bones Launching of the MOOSDB

In a bare-bones manner, the MOOSDB may be launched from the command line without any arguments.
Normally the MOOSDB needs to know at least two pieces of configuration information, (a) the machine
(IP address) on which to run, and (b) the port number on which to serve clients. It will default to
running on the localhost and port 9000:

$ MOOSDB

------------------- MOOSDB V10 -------------------

Hosting community "#1"

Name look up is off

Asynchronous support is on

Connect to this server on port 9000

--------------------------------------------------

network performance data published on localhost:9020

listen with "nc -u -lk 9020"

At this point the MOOSDB is running on the local machine, serving clients on port 9000. A few
variables are already being published, by the MOOSDB itself. You can open a scope with uXMS in
another terminal window:

$ uXMS DB_CLIENTS DB_TIME DB_UPTIME --serverhost=localhost --serverport=9000

==============================================================

uXMS_581 0/0(154)

==============================================================

VarName (S)ource (T)ime (C) VarValue (SCOPING:EVENTS)

---------- --------- ------ --- -------------------------

DB_CLIENTS MOOSDB_#1 38.14 "uXMS_581,"

DB_TIME MOOSDB_#1 38.14 1387380731.414707

DB_UPTIME MOOSDB_#1 38.14 39.00859

The Source and Time columns may be expanded by hitting the "s" and "t" keys respectively after
it launches, or you can add --show=source,time as a command line argument to uXMS, to launch
with these two columns expanded.

Alternatively you can scope with the umm tool:

$ umm --spy

6



1.5.2 A More Civilized Launching of the MOOSDB

Virtually all MOOS applications are launched with a ”mission configuration” file, a.k.a. a ”dot-moos”
file. The below mission file, moosdb alpha.moos, provides the minimal configuration parameters the
MOOSDB likes to see upon starting.

// (wget http://oceanai.mit.edu/2.680/examples/moosdb_alpha.moos)

ServerHost = localhost

ServerPort = 9000

Community = alpha

Passing the moosdb alpha.moos file as a command line argument produces the below output.

$ MOOSDB moosdb_alpha.moos

------------------- MOOSDB V10 -------------------

Hosting community "alpha"

Name look up is off

Asynchronous support is on

Connect to this server on port 9000

--------------------------------------------------

network performance data published on localhost:9020

listen with "nc -u -lk 9020"

Try this. Either copy and paste the above .moos file, or use wget as shown on the first line above in
the example file. If you haven’t installed wget or similar (e.g., curl), you should pause here and do
that.

7



1.6 Scoping the MOOSDB

A MOOS scope is a tool for examining the state of the MOOSDB. The MOOSDB does not keep a history
of prior values for a given variable, but rather just the most recent value posted. This means that
the state of the MOOSDB may be regarded as the set of current MOOS variables, their values, and
who made the last posting to the variable and when. Scoping allows a view into the current state
(or even recent history) of the MOOSDB. There are multiple tools for scoping the DB, each providing
conveniences of one kind or another. Here we describe the uXMS and uMS tools, the two favorites of
our own lab.

More info on these two tools can be found at:

• uXMS: http://oceanai.mit.edu/ivpman/apps/uXMS
• uMS: http://www.themoos.org

1.6.1 Scoping the MOOSDB with uXMS

Your goals in this part are:

1. Open a terminal window and launch the MOOSDB as done at the end of the previous exercise:

$ MOOSDB

------------------- MOOSDB V10 -------------------

Hosting community "#1"

Name look up is off

Asynchronous support is on

Connect to this server on port 9000

--------------------------------------------------

network performance data published on localhost:9020

listen with "nc -u -lk 9020"

The MOOSDB is normally launched with a mission file specifying the ServerHost and ServerPort

parameters. When launched from the command line as above with no command line arguments,
these two parameters default to localhost and 9000.

2. Open a second terminal window and launch uXMS, passing it the --all command line switch.
Just hit ENTER when prompted for the IP address and Port number, accepting the defaults of
localhost and 9000. It should look something like:

$ uXMS --all

Enter IP address: [localhost]

Enter Port number: [9000]

***************************************************

* uXMS_632 starting ...

***************************************************

uXMS_632 is Running:

|-Baseline AppTick @ 5.0 Hz

|--Comms is Full Duplex and Asynchronous

-Iterate Mode 0 :

|-Regular iterate and message delivery at 5 Hz

8

http://oceanai.mit.edu/ivpman/apps/uXMS
http://www.themoos.org


After the above initial standard MOOSApp output, you should see a sequence of uXMS reports
similar to:

==============================================================

uXMS_443 0/0(31)

==============================================================

VarName (S) (T) (C) VarValue (SCOPING:EVENTS)

----------------- --- --- --- -------------------------

DB_CLIENTS "uXMS_443,"

DB_EVENT "connected=uXMS_443"

DB_QOS "uXMS_443=0.448942:0.573874:0.364065:0.490189,"

DB_TIME 1424028179.877422

DB_UPTIME 16.741557

UXMS_443_ITER_GAP 1.019045

UXMS_443_ITER_LEN 0.00024

-- displaying all variables --

Notice the number in parentheses on the second line is incrementing. This indicates that the
report has been refreshed to your terminal. If you launched as above, the scope should come
up in a mode that refreshes the report any time a scoped variable changes values. In this case,
the MOOSDB is updating DB TIME and DB UPTIME about once per second. By default, uXMS only
scopes on the variables named on the command line. In the above case, the --all option was
used to tell uXMS to scope on all variables known to the MOOSDB.

The three variables shown beginning with DB are all published by the MOOSDB. The user may choose
whether or not to show the variable (S)ource, (T)ime of post, or (C)ommunity from where the post
was made. A key feature of uXMS vs. uMS is the ability to specify on the command-line exactly which
subset of variables to scope, possibly with color-coding. This is helpful when there are hundreds of
variables in the DB.

1.6.2 More Suggested Tinkering with uXMS

Try a few other things:

1. Hit the ’h’ key to see some keyboard interaction options that are available anytime the scope
is running. Hit ’h’ again any time to return to the previous mode.

2. Hit the space-bar to pause the stream of reports. This is useful if numbers are changing
rapidly and you just need to take a close look at something. Return to the previous mode by
hitting ’e’.

3. Hit the ’s’ key to expand the (S)ource column. This column tells you which app made the
last posting. Try the same for the (T)ime and (C)ommunity columns.

4. The whole purpose of a scope is to give you the key information you’re looking for, without
needing to sift through a lot of unwanted information, with as little effort as possible. In this
step we’ll pretend to be interested in focusing our attention on the DB UPTIME variable. Try
launching uXMS with an additional command line argument:

$ uXMS --all --colormap=DB_UPTIME,blue

This may seem unnecessary when there are only three variables, but in real applications there

9



may be hundreds of variables. In fact, the variable you’re looking for may have scrolled of the
window!

5. A similar way to focus on a single variable is to only scope on the one variable we’re looking
for:

$ uXMS DB_UPTIME

6. uXMS only shows you the current snapshot of the variables in the MOOSDB. What if you would
like to see how a variable is changing? In our case, we know how the DB UPTIME variable is
changing, but for the sake of showing this feature, try:

$ uXMS --history=DB_UPTIME

1.6.3 Scoping with uMS

The uMS scope is a graphical MOOS scope, often preferred by those inclined to like GUIs vs.
command line tools. It has some other advantages over uXMS as well.

Your goals in this part are:

1. If you don’t still have a MOOSDB running, open a terminal window and launch the MOOSDB as
done previously:

$ MOOSDB

2. Open a second terminal window and launch uMS, passing it the same mission file as an
argument:

$ uMS

You should see a window open and, after clicking on the Connect button, you should see
something similar to:

10



Figure 3: The uMS MOOS Scope

1.6.4 Pros/Cons of uXMS vs uMS

The choice of uXMS vs uMS is often just a matter of taste. A couple of differences are noteworthy
however.

• uMS allows for connections to multiple MOOSDBs, on perhaps multiple vehicles, simultaneously.
The user may select the vehicle with the tab at the top of the screen.

• uXMS allows the user to scope on as few as one single variable, or to name the variable scope
list explicitly. uMS scopes on all variables all the time, with a few mechanisms for reducing the
scope list based on process name.

• uXMS may be a better choice if one is scoping on a remote MOOSDB, perhaps on a robot with
a poor connection. It is a low-bandwidth client compared to uMS. If running on a remote
terminal, its bandwidth back to the user is zero in the paused mode.

• uXMS has provisions for at least limited scoping on a variable history.

• uXMS will display a variable’s ”auxiliary source” information. This is a secondary field associated
with each posting describing the source of the posting. This is key when using the IvPHelm.
Variables posted by helm behaviors will have a source of pHelmIvP and an auxiliary source
showing the behavior responsible for the posting.

11



1.7 Poking the MOOSDB

Poking refers to the idea of publishing a variable-value pair to the MOOSDB. Many apps publish to
the MOOSDB during the course of normal operation. Poking implies a publication that perhaps was
not planned, or outside the normal mode of business. It is often very useful for debugging. Here we
describe the uPokeDB tool.

Where to get more information:

• uPokeDB: http://oceanai.mit.edu/ivpman/apps/uPokeDB

1.7.1 Poking the MOOSDB with uPokeDB

uPokeDB is a command-line tool for poking the MOOSDB with one or more variable-value pairs. Poking
the MOOSDB requires knowing where the MOOSDB is running in terms of its IP address, ServerHost,
and port number, ServerPort. These may be specified on the command line to uPokeDB, but for our
purposes here we assume the existence of a mission file, alpha.moos with this information:

// A simple mission file, alpha.moos

ServerHost = localhost

ServerPort = 9000

Community = alpha

Your goals in this part are:

1. Open two terminal windows and launch the MOOSDB and uXMS as done previously:

$ MOOSDB alpha.moos

$ uXMS alpha.moos --all

Now open a third terminal window for poking the MOOSDB as follows:

$ uPokeDB DEPLOY=true SPEED=2 alpha.moos

Note the two new variables, DEPLOY and SPEED, appearing in the uXMS window. It should look
something like:

==============================================================

uXMS_655 0/0(204)

==============================================================

VarName (S) (T) (C) VarValue (SCOPING:EVENTS)

---------- --- --- --- -------------------------

DB_CLIENTS "uXMS_655,"

DB_TIME 1386249435.276804

DB_UPTIME 46.213629

DEPLOY "true"

SPEED 2

2. Note the variable values in uXMS. DEPLOY has the value "true" with double quotes, indicating
that it is a string. The variable SPEED is of type double, indicated by the lack of quotes. The

12

http://oceanai.mit.edu/ivpman/apps/uPokeDB


types were inferred by uPokeDB by heuristically checking whether the arguments are numerical
or not. But sometimes you do want to publish a string with a numerical value. Try posting
the variable HEIGHT with the string value of "192", noting the colon-equals instead of equals:

$ uPokeDB HEIGHT:=192 alpha.moos

Note the new variable, HEIGHT, appearing in the uXMS window. It should look something like
the below output, where in this case, the (S)ource column is expanded to show the source of
the postings.

==============================================================

uXMS_655 0/0(347)

==============================================================

VarName (S)ource (T) (C) VarValue (SCOPING:EVENTS)

---------- --------- --- --- -------------------------

DB_CLIENTS MOOSDB_alpha "uXMS_655,"

DB_TIME MOOSDB_alpha 1386250092.847527

DB_UPTIME MOOSDB_alpha 703.784353

DEPLOY uPokeDB "true"

HEIGHT uPokeDB "192"

SPEED uPokeDB 2

1.7.2 Further things to try Using uPokeDB

Here’s some other things to consider and try:

1. Trying poking the DEPLOY variable to the MOOSDB a second time, this time with:

$ uPokeDB DEPLOY=100 alpha.moos

Does the value of DEPLOY change? If not, why not?

2. Create a simple script of pokes on the command line as follows:

$ uPokeDB APPLES=1 alpha.moos; sleep 5; uPokeDB APPLES=2 alpha.moos;

If you’re new to the command line environment, the semicolon above separates successful
command line invocations. The sleep command is a common shell utilitity that will simply
pause a given number of seconds before completing.

3. Another way to execute the same simple script as above is to store the above three commands
in a file named, for example, myscript:

uPokeDB APPLES=1 alpha.moos

sleep 5

uPokeDB APPLES=2 alpha.moos

With the above file you can make the two successive pokes to the MOOSDB, with five seconds in
between, with:

$ source myscript

13



There are many other ways of poking the MOOSDB. All MOOS apps that publish anything are examples.
Of course many MOOS applications publish a fixed set of variables that are not easily changeable
without re-coding. But certain apps like uTimerScript and pMarineViewer have built-in configuration
file parameters for poking the MOOSDB in user configurable ways.

14



1.8 Launching a Mission with pAntler

In theory a set of N MOOS applications may be launched from N terminal windows, but this is
cumbersome in practice. The pAntler tool allows this to be done from a single mission file. In this
file, a block of lines declares all the apps to be launched with one invocation of pAntler.

Where to get more information:

• pAntler: http://oceanai.mit.edu/ivpman/apps/pAntler

1.8.1 Basic pAntler Usage

The Antler block is typically the first configuration block in a .moos file, declared with ProcessConfig

= ANTLER as below. The MSBetweenLaunches parameter specifies the number of milliseconds between
launching processes. Each line thereafter specifies an app to be launched and whether a dedicated
console window should be opened for the application.

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = true/false

Run = AnotherApp @ NewConsole = true/false

...

Run = AnotherApp @ NewConsole = true/false

}

Further options exist beyond the vanilla launch configuration described above, including (a) the
ability to launch a given app under an aliased name, (b) specifying command-line arguments to an
app at launch time and more. See the documentation.

1.8.2 An Example: Launching the MOOSDB along with uXMS

In the example below we use pAntler to launch the MOOSDB and the uXMS scope from a single mission
file. The user preferences for uXMS are provided in its configuration block. Type uXMS --example on
the command line for further options.

Your goals in this part are:

1. Create a copy of the example mission file shown in Listing 1 below and save it locally as
db and uxms.moos. (hint: the easiest way to do this is to just invoke the wget expression on the
top line of this file. This will pull the file down from the server into your current directory.)
The mission may be launched from the command-line with:

$ pAntler db_and_uxms.moos

This should open a new console window for uXMS displaying the variables posted by the DB,
with the (S)ource and (T)ime columns expanded, but not the (C)ommunity column.

15

http://oceanai.mit.edu/ivpman/apps/pAntler


2. Modify the uXMS configuration block in the .moos file to configure uXMS to keep a history of
the DB UPTIME variable. To see configuration options for uXMS, type:

$ uXMS --example

Once you have launched uXMS with the new configuration, type ’z’ to toggle in and out of
history mode.

3. Modify the db and uxms.moos file to launch a new terminal window for the MOOSDB in addition
to the uXMS application.

Listing 1.1: A simple mission file.

// (wget http://oceanai.mit.edu/2.680/examples/db_and_uxms.moos)

ServerHost = localhost

ServerPort = 9000

Community = alpha

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = false

Run = uXMS @ NewConsole = true

}

ProcessConfig = uXMS

{

AppTick = 4

CommsTick = 4

VAR = DB_CLIENTS, DB_UPTIME, DB_TIME

DISPLAY_SOURCE = true

DISPLAY_TIME = true

COLOR_MAP = DB_CLIENTS, red

}

16



1.9 Scripted Pokes to the MOOSDB

Here we cover how to have a script of pre-arranged pokes to the MOOSDB. This may be useful for a
number of reasons besides debugging. The primary tool described here is the uTimerScript MOOS
application. It is capable of (a) scripted pokes at a pre-defined times after launch, (b) pokes having
a poke-time specified to fall randomly within an specified interval, (c) pokes having numerical values
falling with a uniformly random interval, and several other features including conditioning the
running of the script based on other MOOS variables.

Where to get more information:

• uTimerScript: http://oceanai.mit.edu/ivpman/apps/uTimerScript

1.9.1 Basic uTimerScript Usage

uTimerScript is configured with its own block in the MOOS configuration file. The general format
is below. The primary entries are the events themselves, defined by a MOOS variable, value, and
time or time-range when the event is to occur. There are many options for configuring the script.
These options are described in the documentation, but a quick look at the options can be seen by
typing uTimerScript --example on the command line.

ProcessConfig = uTimerScript

{

event = var=<MOOSVar>, val=<value>, time=<value>

event = var=<MOOSVar>, val=<value>, time=<value>

...

event = var=<MOOSVar>, val=<value>, time=<value>

[OPTIONS]

}

17

http://oceanai.mit.edu/ivpman/apps/uTimerScript


1.9.2 A Simple Example with uTimerScript

The below mission file contains a uTimerScript script for repeatedly posting the variable COUNTER A

with values 1-10 in ascending order roughly once every half second. The last event in the script is
posted at time chosen from a random five second interval.

Listing 1.2: A simple counter example with uTimerScript.

// (wget http://oceanai.mit.edu/2.680/examples/utscript.moos)

ServerHost = localhost

ServerPort = 9000

Community = alpha

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = false

Run = uXMS @ NewConsole = true

Run = uTimerScript @ NewConsole = false

}

ProcessConfig = uXMS

{

VAR = COUNTER_A, DB_CLIENTS, DB_UPTIME

COLOR_MAP = COUNTER_A, red

HISTORY_VAR = COUNTER_A

}

ProcessConfig = uTimerScript

{

paused = false

event = var=COUNTER_A, val=1, time=0.5

event = var=COUNTER_A, val=2, time=1.0

event = var=COUNTER_A, val=3, time=1.5

event = var=COUNTER_A, val=4, time=2.0

event = var=COUNTER_A, val=5, time=2.5

event = var=COUNTER_A, val=6, time=3.0

event = var=COUNTER_A, val=7, time=3.5

event = var=COUNTER_A, val=8, time=4.0

event = var=COUNTER_A, val=9, time=4.5

event = var=COUNTER_A, val=10, time=5:10

reset_max = nolimit

reset_time = all-posted

}

The mission may be launched from the command-line with:

$ pAntler utscript.moos

This should open a new console window for uXMS displaying the variables COUNTER A variable repeatedly

18



incrementing from 1 to 10. Note that reaching 10 happens somewhere between 0.5 and 5.5 seconds
after reaching 9.

1.9.3 Exercises

Your goals in this part are:

1. Create a copy of the example mission file in Listing 2 above and save it locally.

2. Launch the mission. It should open a uXMS window. Follow the progress of the counter script.

$ pAntler utscript.moos

3. Take a look at the uTimerScript documentation linked from the web page. In particular,
Section 3 Script Flow Control. Configure the script such that is paused when uTimerScript is
launched. Launch the same mission and confirm that the script is initially not running. Then
use uPokeDB to un-pause the script, and confirm it is running. Hint: to un-pause the script
with uPokeDB, you’ll need to know which variable to poke, and this also can be found in the
uTimerScript documentation or by typing uTimerScript -i on the command line.

4. This is a bit of a pAntler exercise. Configure your mission to launch two versions of the script,
the second version publishing to COUNTER B. Note you will need two configuration blocks, each
with a unique name. And you will need to launch uTimerScript twice within the Antler block,
each with an alias. Hint: see the pXRelay at the end of Lab 3.

5. Confirm your new mission launches and executes the two separate scripts and both counters
are incrementing.

6. Configure the second script with a condition parameter. See Section 10.3.2 of the uTimerScript

documentation. Use a condition such as "condition = COUNTER A > 5". Re-launch your mission.
Confirm that the second script is paused periodically based on the state of the first script.

7. Add the pLogger application to your mission. You will need to add a pLogger entry to your
ANTLER configuration block, and add the following pLogger configuration block at the end
of your file.

ProcessConfig = pLogger

{

AsyncLog = true

WildCardLogging = true

WildCardOmitPattern = *_STATUS

}

Re-run the mission. Confirm that you see the pLogger application listed in the DB CLIENTS

variable in the uXMS scope.

8. Verify that a log file has been created. Since we didn’t specify a name for the log file, by
default it should be in a subdirectory of where you launched the mission, looking something
like MOOSLog 11 23 2016 11 31 13/. Enter the directory and confirm that you see an .alog

file.

9. Take a look a the file by typing more filename.alog. Then take at look at the COUNTER variables
using aloggrep (substituting of course the name of your .alog file:

19



$ aloggrep COUNTER_A COUNTER_B MOOSLog_11_23_2016_____11_31_13.alog

20



2 A Simple Example with pXRelay

pXRelay is a simple MOOS app designed solely to illustrate basic functions of a MOOS app. It
registers for a single variable, and upon receiving mail for that variable, it publishes another variable
incremented by 1. It provides a framework for illustrating a few other introductory topics.

2.1 Basic pXRelay Usage

pXRelay is configured with its own block in the MOOS configuration file. It is configured with (a)
an incoming variable, the variable it will register for incoming mail, and (b) an outgoing variable, a
variable it will post an incremented integer each time it receives mail on the incoming variable. The
basic form is:

ProcessConfig = pXRelay

{

outgoing_var = <MOOSVar>

incoming_var = <MOOSVar>

}

2.2 A Simple Example with pXRelay

The below mission file contains a configuration for two instances of the pXRelay application. All
MOOS apps must have a unique name to connect to the MOOSDB, so we launch them with an
alias with pAntler using the pXRelay PEARS alias for example. The two apps each register for what
the other produces, and each produces what the other registers for.

Listing 2.3: Example Code.

0 // (wget http://oceanai.mit.edu/2.680/examples/xrelay.moos)

1 ServerHost = localhost

2 ServerPort = 9000

3 Community = alpha

4

5 ProcessConfig = ANTLER

6 {

7 MSBetweenLaunches = 200

8

9 Run = MOOSDB @ NewConsole = false

10 Run = pXRelay @ NewConsole = false ~pXRelay_PEARS

11 Run = pXRelay @ NewConsole = false ~pXRelay_APPLES

12 }

13

14 ProcessConfig = pXRelay_APPLES

15 {

16 AppTick = 10

17 CommsTick = 10

18 incoming_var = APPLES

19 outgoing_var = PEARS

20 }

21

22 ProcessConfig = pXRelay_PEARS

21



23 {

24 AppTick = 10

25 CommsTick = 10

26 incoming_var = PEARS

27 outgoing_var = APPLES

28 }

Upon launch, the two pXRelay apps are in a stalemate, each waiting for the other to make the first
posting. We can break this stalemate with uPokeDB:

$ uPokeDB xrelay.moos PEARS=1

This should get things going. Now it would be good to see it all running by launching a scope:

$ uXMS xrelay.moos --all --show=time

Your goals in this part are:

1. Create a copy of the example mission file shown in Listing 3 above and save it locally as
pxrelay.moos. (hint: use wget!)

2. Launch the mission. Open up uXMS in another Terminal window with the parameters of your
choosing. I recommend

$ uXMS pxrelay.moos --colorany=APPLES,PEARS --all

3. Kick off the activity by poking one of the APPLES or PEARS variables with an initial value.
Confirm that things are working as they should.

4. Add uTimerScript to your mission file, with a simple script to kick off the pXRelay handshaking
at some point after launch (say 10 secs), as an alternative way to kicking off the active instead
of uPokeDB. You’ll need to add uTimerScript to your ANTLER configuration block, and add a
simple script (a uTimerScript configuration block) to your .moos file.

5. Change your uTimerScript script to be the ascending counter script from Section 1.9, incre-
menting COUNTER A 1 to 10. Configure it with paused=false, but add a condition to your script
(condition = APPLES == $(PEARS). Re-launch the revised mission. Since APPLES is equal to
PEARS periodically, the condition will periodically be met.

6. Try changing the AppTick in one of the pXRelay configurations to 0.1. You should note that
the script is now mostly in the state where its conditions are not met. Can you explain why?

22



3 Augmenting the Control Options in the Aquaticus Alpha Mis-
sion

In this section, we will work with the Aqauticus Alpha mission, and add a couple commands to the
control interface, and also add another MOOS App to the MOOS community.

You will experience:

• How to create your own mission folder (by copying an existing mission)

• How to add command buttons and command pull-down menu options to the pMarineViewer

interface.

• How to add an additional MOOS App to a mission configuration file.

• How to use the iSay MOOS App to add audio confirmation when issuing commands.

The first step is to make a copy of the alpha mission, naming it alpha mod1. In the steps below,
after copying the folder, run the mission from within the alpha mod1 folder and verify that it runs
exactly as in the alpha folder.

$ cd moos-ivp-aquaticus/missions_minicourse

$ cp -rp alpha alpha_mod1

$ cd aphpa_mod1

$ ./launch.sh 10

3.1 Adding Button Commands to the Control Interface

In the next step, the goal is to add two command buttons to the pMarineViewer interface. You will
notice that the Alpha mission has four buttons to start with:

• DEPLOY: Begins the mission

• RETURN: Sends the vehicle home

• SLOWER: Changes the speed to a slower speed (1.5m/sec)

• FASTER: Changes the speed to a faster speed (3.5m/sec)

These buttons are configured in pMarineViewer configuration block of the alpha.moos file. If
you open an editor of this file and search for the expression button, the buttons for the above
four configurations can be found. To read more on button configuration in pMarineViewer, see the
documentation:

https://oceanai.mit.edu/ivpman/apps/pMarineViewer

Section 2.3 discusses button configuration. The documentation does not yet convey that up to 20
buttons (not 4) may be used. Your goal is to add two additional buttons:

• One button, labeled REVERSE which will send the vehicle around the waypoints in a counter-
clockwise direction, instead of the initially configured clockwise directions.

• Another button, labeled TOGGLE which will send the vehicle around the waypoints in the
direction opposite of what it is currently traversing.

23

https://oceanai.mit.edu/ivpman/apps/pMarineViewer


Each button is configured with a label and one or more MOOS pokes. Use the two label suggestions
above. As for the MOOS poke, for now take it on faith that they will be:

• WPT UPDATE=order=reverse, and

• WPT UPDATE=order=toggle

The meaning will be discussed later, but a quick explanation is that WPT UPDATE is the variable that
the Waypoint behavior is listening for parameter updates, and order=reverse and order=toggle are
two parameter options for the Waypoint behavior that we’re setting up to be changed dynamically
on button pushes.

Figure 4: The Aquaticus Alpha mission is modified to add two additional command buttons, REVERSE, and TOGGLE,
for changing the direction of the vehicle traversal.

video:(0:17): https://vimeo.com/484934380

3.2 Adding the iSay Application for Audio Feedback of Commands

In this section, the iSay application is added to the Alpha mission. This app will convert posted
phrases like ”returning home” to computer generated audio. Any English utterance is fair game. It
will also post sounds, like bells or buzzers, to indicate that a certain event has occurred. This app is
described on its own page:

https://oceanai.mit.edu/ivpman/apps/iSay

The iSay app uses the native system commands found on the Mac (say), and Linux (espeak). You
can try this separately now by just opening a terminal window and typing:

24

https://vimeo.com/484934380
https://oceanai.mit.edu/ivpman/apps/iSay


$ say "Hello, how are you?" (on the Mac), or

$ espeak "Hello, how are you?" (in Linux)

The first step is to add iSay to the Antler configuration block at the top of the alpha.moos file:

Run = iSay @ NewConsole = false

Then add iSay configuration block to the end of the alpha.moos file. (Actually any order in the
file is fine.) To get an example of the iSay configuration parameters and an example configuration
block, type iSay -e on the command line, and you will be presented with an example configuration
block. Most MOOS-IvP apps are implemented to support the -e command line argument to provide
this information. Once you have copied this block into the alpha.moos file, re-launch the mission, to
confirm that iSay is seen in the list of processes in the upper blue panel of pMarineViewer, as in the
figure below.

Figure 5: The iSay app is running and appears in the list of processes.

The iSay registers for the MOOS mail messgage SAY MOOS. Try things out by configuring a seventh
button, with the label "TESTING", and have it poke SAY MOOS=testing. Re-launch the mission and
click this button any time to see if you hear something. Make sure you set the linux/mac configuration
parameter properly to suit your system.

3.3 Adding Audio Feedback to Reverse and Toggle Commands

As a final exercise, re-configure the REVERSE and TOGGLE buttons to make two pokes with each button
click. Keep what you have already and add a posting to SAY MOOS to say ”reversing” or ”toggling”
when the button is clicked. Re-run your mission and see if the single button clicks have the intended
effect: both a change in traversal and an audio confirmation.

25


	Overview and Objectives
	Preliminaries
	MOOS vs. MOOS-IvP
	More MOOS / MOOS-IvP Resources
	The MOOS Architecture
	Launching the MOOSDB
	Scoping the MOOSDB
	Poking the MOOSDB
	Launching a Mission with pAntler
	Scripted Pokes to the MOOSDB

	A Simple Example with pXRelay
	Basic pXRelay Usage
	A Simple Example with pXRelay

	Augmenting the Control Options in the Aquaticus Alpha Mission
	Adding Button Commands to the Control Interface
	Adding the iSay Application for Audio Feedback of Commands
	Adding Audio Feedback to Reverse and Toggle Commands


