
Help Topic: The SVN Update Command
Spring 2021

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

The SVN update Command

The svn update command lets you refresh your locally checked out repository with any changes in
the repository HEAD on the server. It also tells you what has been changed, added, deleted. If a
change has been made to a file you have also changed locally, svn will try to merge those changes.
If unsuccessful, it will report a conflict. More on this is discussed below. More info can always be
found by Googling ”Subversion book” and reading the full PDF online free, or just typing svn help

update anytime on the command line.

Basic usage of the update update command

The basic syntax for the svn update command is:

$ svn update (invoked somewhere within previously checked out tree)

The svn update command requires a network connection to the server and perhaps a password if it
is not an anonymous read-only repository. The command may be invoked anywhere in the locally
checked out tree. If it is invoked in a subtree, updates only for that subtree are pulled from the
server. The update will work recursively for all directories within the directory it is invoked. This
latter behavior is usually what you want, but can be overridden with the --depth argument, not
covered here, but covered in the online Subversion book.

Deciphering the output of the svn update command

In the simplest case, when your locally checked out tree is up to date with the server, you will see a
two-line response like the following:

$ svn update

Updating ’.’:

At revision 2675.

The revision number output is convenient since you and co-developers can easily confirm that you’re
working with the same version from the server after you both do an update.

Beware of the common ”gotcha”. Two developers both perform an update and confirm that
they have the same revision - but their code is acting differently. This can drive people bonkers.
The thing to remember is that, even though you both have the same revision, one or both of you
may have local modifications that you have not yet checked into the server. Very likely one of these

1

local modifications is causing the difference in observed behavior. Check for local modifications
using the svn status command, discussed in a separate help topic or in the svn book.

Here’s an example output after an update:

$ svn update

Updating ’.’:

U Figure.h

A Object.h

G Items.cpp

A Object.cpp

This indicates that:

� The file Figure.h was updated with changes pulled in from the server. There were no local
modifications to this file prior to the update.

� The files Object.h and Object.cpp are newly added from the server to your local checkout.

� The file Items.cpp had changes known to the server and separate changes in the local copy of
the file successfully merged. (Note the server will not have the local changes until you commit
the changes to the server.)

The primary cases you will likely see the most frequently are below. (See svn help update for a
more complete list.)

A Added

D Deleted

U Updated

C Conflict

G Merged

The topic of a conflict (C) is discussed next.

Dealing with a conflict after an svn update

Subversion is pretty good at merging two files with separate changes. It usually gets things right,
and in my experience errs on the side of being conservative. It has never merged two files that
didn’t deserve merging. But sometimes flags as a conflict an issue that is easily resolved when it
hits human eyes. In the case above, if the file Items.cpp was not able to be merged by the svn
algorithms, you would have see this instead:

2

$ svn update

Updating ’.’:

U XWFigure.h

A XKObject.h

C XWItems.cpp

A XKObject.cpp

Updated to revision 303.

Conflict discovered in file ’Items.cpp’.

Select: (p) postpone, (df) show diff, (e) edit file, (m) merge,

(mc) my side of conflict, (tc) their side of conflict,

(s) show all options:

The choices are a fairly self-explanatory. I choose (e) most of the time unless I just happen to know
that my local change is worth discarding, in which case I choose (tc). The (m) option puts you into
an interactive tool that helps you de-conflict. The (df) option just shows you the difference between
two files. The (p) option just kicks the can down the road and leaves the file marked as conflicted.
You won’t be able to check in local changes until that conflict is resolved.

The one worth special mention is the (e) option. It’s probably best to deal with any conflicts
as they come up, and dealing with them during the update process is my own general practice.
Selecting the (e) option launches an editor in your terminal window. The editor will show a file
with the conflicts delimited as by example below.

<<<<<<< .mine

// string fruit = "apples";

=======

// string fruit = "pears";

>>>>>>> .r305

You can resolve the conflict by picking one version of a block of code and deleting the other (and
the delimiter lines), and saving the file. Once you have quit the editor, you are prompted with the
same set of options with one additional option, the (r) option:

Select: (p) postpone, (df) show diff, (e) edit file, (m) merge,

(r) mark resolved, (mc) my side of conflict,

(tc) their side of conflict, (s) show all options:

By choosing the (r) option you are acknowledging to svn that all is good from your perspective, for
that file. It will then continue with the rest of the update.

Configuring SVN with an editor of your choosing

Getting back to that issue of launching an editor to resolve conflicts as described above. ”Which
editor?” you may ask. The editor chosen is determined by how you have certain environment
variables set in your shell configuration. It will first look for the value of the SVN EDITOR variable,
and fall back to the value for the EDITOR environment variable. If these are not set, svn may not
allow you to select the (e) option.

If you’re a tcsh user, add the following lines to your .cshrc file, with the editor of your choosing:

3

setenv EDITOR ’emacs’

setenv SVN_EDITOR ’emacs’

If you’re a bash user, add the following lines to your .bashrc file, with the editor of your choosing:

export EDITOR=emacs

ecport SVN_EDITOR=emacs

To check the prevailing value of an environment variable, e.g., EDITOR, just type this on the command
line: echo $EDITOR.

(The EDITOR is also relevant when checking in (committing) code and adding a commit comment.)

4

