Help Topic: MOOS-IvP String Parsing Utilities

Spring 2020

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering
MIT, Cambridge MA 02139

MOOS-IvP String Parsing Utilities

The below describe a set of string utilities in the MBUtils library distributed with MOOS-IvP. To
use them, add #include "MBUtils.h" in your source code, and add the mbutil library to the list of
libraries your code links to, likely in your local CMakeLists.txt file.

The function

The function takes a string and returns everything to the left of the given character.
The original string is modified and is everything to the right of the character.

string biteString(string, char);

For example:

string orig = "temperature = 98";

string left = biteString(orig, ’=’);

cout << "left: [" << left << "]" << endl;
cout << "orig: [" << orig << "]" << endl;

Produces:

left: [temperature]
orgi: [98];

Notice that the white space to the left and the right of the '=

If your desire is to have these removed, you can invoke

The function

The function does the same thing as the
step of removing blanks from the ends of the results.

" character are preserved in the result.

instead, described below.

function but takes the additional

string biteStringX(string, char);

For example:

string orig = "temperature = 98";

string left = biteStringX(orig, ’=’);
cout << "left: [" << left << "]" << endl;
cout << "orig: [" << orig << "]" << endl;

Produces:

left: [temperaturel

orgi: [98];
The function
The function takes a string, and a character. It returns a vector of strings where

each string is component of the original string separated by the given character.

vector<string> parseString(string, char);

For example:

string orig = "temperature=98, height=72, weight=150";
vector<string> str_vector = parseString(orig, ’,’);
for(unsigned int i=0; i<str_vector.size(); i++)

cout << "component: [" << str_vector[i] << "]" << endl;

Produces:

component = [temperature=98]
component = [height=72]
component = [weight=150]

Notice that the white space to the left and the right of the ’,’ character are preserved in the result.

The function

The works like except that the character separated is ignored if it is
enounctered between double-quotes.

vector<string> parseStringQ(string, char);

For example:

string orig = "children="john,bob,mary", height=72, weight=150";
vector<string> str_vector = parseStringQ(orig, ’,’);
for (unsigned int i=0; i<str_vector.size(); i++)

cout << "component: [" << str_vector[i] << "]" << endl;

Produces:

component = [children=john,bob,mary]
component = [height=72]
component = [weight=150]

Notice that the white space to the left and the right of the ’,” character are preserved in the result.

The function

The works on a comma-separated list of parameter=value pairs and pulls out the
value for a given parameter. The first character argument is the ”global” separator, and the second
argument is the ”local” separator.

string tokStringParse(string, string, char, char);

For example:

string orig = "temperature=98.1, height=72, weight=150";

string a = tokStringParse(orig, "temperature", ’,’, ’=’);
string b = tokStringParse(orig, "height", ’,’, ’=’);
string c = tokStringParse(orig, "weight", ’,’, ’=’);

string d = tokStringParse(orig, "age", ’,’, ’=’);

cout << "a: [" << a << "]" << endl;
cout << "b: [" << b << "]" << endl;
cout << "c: [" << ¢ << "]" << endl;
cout << "d: [" << d << "]" << endl;

Produces:
a: [98.1]
b: [72]
a: [150]
a: []

This function will also strip leading and trailing white space on its return value.

