
Help Topic: Launching a Mission with pAntler
Spring 2020

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

Launching a Mission with pAntler

In theory a set of N MOOS applications may be launched from N terminal windows, but this is
cumbersome in practice. The pAntler tool allows this to be done from a single mission file. In this
file, a block of lines declares all the apps to be launched with one invocation of pAntler.

Where to get more information:

� pAntler: http://oceanai.mit.edu/ivpman/apps/pAntler

Basic pAntler Usage

The Antler block is typically the first configuration block in a .moos file, declared with ProcessConfig

= ANTLER as below. The MSBetweenLaunches parameter specifies the number of milliseconds between
launching processes. Each line thereafter specifies an app to be launched and whether a dedicated
console window should be opened for the application.

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = true/false

Run = AnotherApp @ NewConsole = true/false

...

Run = AnotherApp @ NewConsole = true/false

}

Further options exist beyond the vanilla launch configuration described above, including (a) the
ability to launch a given app under an aliased name, (b) specifying command-line arguments to an
app at launch time and more. See the documentation.

An Example: Launching the MOOSDB along with uXMS

In the example below we use pAntler to launch the MOOSDB and the uXMS scope from a single mission
file. The user preferences for uXMS are provided in its configuration block. Type uXMS --example on
the command line for further options if you’re curious.

Note: in this example, the launch process should result in a new xterm window opening. If you are
running on GNU/Linux, the xterm should be available by default. If you are running MacOS, you

1

http://oceanai.mit.edu/ivpman/apps/pAntler


may need to install xterm. If you type xterm on the MacOS Terminal command line and you receive
a "command not found" error, then you may need to install xterm.

https://www.xquartz.org

You may need to log out and log back in for this to take effect.

Your goals in this part are:

1. Create a copy of the example mission file shown in Listing 1 below and save it locally as
db and uxms.moos. (hint: the easiest way to do this is to just invoke the wget expression on the
top line of this file. This will pull the file down from the server into your current directory.)
The mission may be launched from the command-line with:

$ pAntler db_and_uxms.moos

This should open a new console window for uXMS displaying the variables posted by the DB,
with the (S)ource and (T)ime columns expanded, but not the (C)ommunity column.

2. Modify the uXMS configuration block in the .moos file to configure uXMS to keep a history of
the DB UPTIME variable. To see configuration options for uXMS, type:

$ uXMS --example

Once you have launched uXMS with the new configuration, type ’z’ to toggle in and out of
history mode.

3. Modify the db and uxms.moos file to launch a new terminal window for the MOOSDB in addition
to the uXMS application.

Listing 0.1: A simple mission file.

2

https://www.xquartz.org


// (wget http://oceanai.mit.edu/2.680/examples/db_and_uxms.moos)

ServerHost = localhost

ServerPort = 9000

Community = alpha

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = false

Run = uXMS @ NewConsole = true

}

ProcessConfig = uXMS

{

AppTick = 4

CommsTick = 4

VAR = DB_CLIENTS, DB_UPTIME, DB_TIME

DISPLAY_SOURCE = true

DISPLAY_TIME = true

COLOR_MAP = DB_CLIENTS, red

}

3


