Help Topic: The Git Add and Remove Commands
Spring 2022

Oscar Viquez, oviquezr@mit.edu
Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering
MIT, Cambridge MA 02139

The Git 2dd and remove Commands

The git add command allows you add files or a directories to your locally checked out tree in
preparation for committing them to the Git server. And as you may guess, the git rm command
tags a file in your local checkout for removal on the server upon your next commit. More info on
git add and git rm can always be found by Googling ”Git book” and reading the full PDF online
free, or just typing git help add anytime on the command line.

Basic usage of the git add command

The basic syntax for the git add command is:

$ git add my_file.cpp my_file.h #(one or more files)
$ git add my_project/ #(a directory)

The git add command does not require a network connection to the server and only declares an
intention to add file(s) to the master copy on the Git server upon the next commit and push. Since
git status also doesn’t require a network connection to the server, you can confirm the results of
your add immediately:

$ git status
Your branch is up to date with ’origin/main’.

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: my_file.cpp
new file: my_file.h
new file: my_project/my_project.cpp
new file: my_project/my_project.h

Note: When adding a directory, the operation is applied recursively to all files and subdirectories.

Note (1): When adding a file, don’t be afraid to use the command line conveniences such as git
add *.pdf. All the previously unversioned PDF files will now be scheduled for addition.

Note (2): Git does not track empty directories, only files. If you need to ensure the availability of
an empty directory in your repository, you can create a .gitignore file within that directory, and



add that file to version control.

Basic usage of the Git remove command

The basic syntax for the git rm command (rm for “remove”) is:

$ git rm my_file.cpp my_file.h #(one or more files)
$ git rm -r my_project/ #(a directory; use -r for recursive)

The git rm command does not require a network connection to the server and only declares an
intention to remove the file(s) from the master copy on the Git server upon the next commit. It
will also delete the local copy.

Note (1): If removing files with staged changes (to be committed later), the git rm command will
produce an error. The message will point out the files that have been staged and inform you that
you can either:

e Unstage the file with the git rm --cached <file> command, but keep the local copy.

e Force removal of the file with the git rm -f <file> command, which will unstage the file and
remove the local copy.

Note (2): If removing files that are unversioned (not under version control), the git rm command
will produce an error. The message will point out that Git does not currently track any information
about that file and thus cannot remove it from the repository. The local file can be removed using
the (non-git) rm command.

$ touch test.txt

$ git rm test.txt

fatal: pathspec ’test.txt’ did not match any files
$ rm test.txt




