
uXMS: Scoping the MOOSDB from the Console
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139
project-pavlab/appdocs/app uxms

1 Overview 1

2 The uXMS Refresh Modes 2
2.1 The Streaming Refresh Mode . 3
2.2 The Events Refresh Mode . 3

2.2.1 The Paused Refresh Mode . 3

3 The uXMS Content Modes 4
3.1 The Scoping Content Mode . 4
3.2 The History Content Mode . 5
3.3 The Processes Content Mode . 6

4 Configuration File Parameters for uXMS 8
4.1 The colormap Configuration Parameter . 10
4.2 The content mode Configuration Parameter . 10
4.3 The display* Configuration Parameters . 10
4.4 The history var Configuration Parameter . 11
4.5 The refresh mode Configuration Parameter . 11
4.6 The source Configuration Parameter . 12
4.7 The term report interval Configuration Parameter . 12
4.8 The trunc data Configuration Parameter . 12
4.9 The var Configuration Parameter . 13

5 Command Line Usage of uXMS 13

6 Console Interaction with uXMS at Run Time 15

7 Running uXMS Locally or Remotely 15

8 Connecting multiple uXMS processes to a single MOOSDB 16

9 Using uXMS with Appcasting 16

10 Publications and Subscriptions for uXMS 17
10.1 Variables Published by uXMS . 17
10.2 Variables Subscribed for by uXMS . 17

1 Overview

uXMS is a terminal based MOOS app for scoping the MOOSDB. It has no graphics library build
dependencies and is easily launched from the command line to scope on just what the user wants,

1

from everything to just one important variable. For example, typing the following on the command
line after say the alpha example mission is launched, will result in Figure 1.

$ uXMS alpha.moos NAV_X NAV_Y DEPLOY RETURN IVPHELM_STATE

Figure 1: A simple scope on five variables with uXMS: A line is used for each variable showing the variable
name, the time of the most recent posting, the source, and the current value.

Scoping on the MOOSDB is a very important tool in the process of development and debugging.
The uXMS tool has a substantial set of configuration choices for making this job easier by bringing
just the right data to the user’s attention. The default usage, as shown above, is fairly simple, but
there are other options discussed in this section that are worth exploiting by the more experienced
user.

� Use with appcasting: uXMS is appcast enabled meaning its terminal reports may be viewed
with tools other than the terminal window. It is possible to configure multilple uXMS scopes to
automatically launch with a mission and viewer each of them in remote appcast viewing tools.
More on this topic in Section 9.

� Scoping on history: uXMS may be configured to scope on the history of a variable to view not
just its current state but recent values.

� Remote low-bandwidth scoping: uXMS can be launched and connected to a remote MOOSDB
over a low-bandwidth link, with refresh requests made only on the user’s request. uXMS can
also be on a remote vehicle via an ssh session.

� Dynamic changes to the scope list: The set of scoped variables may be altered dynamically by
selecting MOOS apps to include or exclude from the scope list.

At any time the user may hit the ’h’ key to see a list of help commands.

2 The uXMS Refresh Modes

Reports such as the one shown in Figure 1 are generated either automatically or specifically when
the user asks for it. The latter is important in situations where bandwidth is low. This feature was
the original motivation for developing uXMS. When a new report is sent to the terminal is determined

2

by the refresh mode. The three refresh modes are shown in Figure 2 along with the key strokes for
switching between modes.

Figure 2: Refresh Modes: The uXMS refresh mode determines when a new report is written to the screen. The user
may switch between modes with the shown keystrokes.

The refresh mode may be changed by the user as uXMS is running, or it may be given an initial mode
value on startup from the command line with --mode=paused, --mode=streaming, or --mode=events.
The latter is the default. It may also be set in the uXMS configuration block in the mission file with
the refresh mode parameter. The current refresh mode is shown in parentheses in the report header
as shown in Figure 1 where it is in the events refresh mode.

2.1 The Streaming Refresh Mode

In the streaming refresh mode, a new report is generated and written to stdout on every iteration
of the uXMS application. The frequency is limited from above by the apptick setting in the MOOS
configuration block. It is also limited from above by the parameter term report interval, which is
by default 0.6 seconds. Each report written to the terminal will show an incremented counter at the
end of the first line, in parentheses. This counter represents the uXMS iteration counter. This mode
may be entered by hitting the ’r’ key, or chosen as the initial refresh mode at startup from the
command line with the --mode=streaming option.

2.2 The Events Refresh Mode

In the events refresh mode, the default refresh mode, a new report is generated only when new mail
is received for one of the scoped variables. Note this does not necessarily mean that the value of the
variable has changed, only that it has been written to again by some process. As with the streaming
mode, the report frequency is limited by the apptick and the term report interval setting. This
mode is useful in low-bandwidth situations where a user cannot afford the streaming refresh mode,
but may be monitoring changes to one or two variables. This mode may be entered by hitting the ’e’
key, or chosen as the initial refresh mode at startup from the command line with the --mode=events

option.

2.2.1 The Paused Refresh Mode

In the paused refresh mode, the report will not be updated until the user specifically requests a new
update by hitting the spacebar key. This mode is the preferred mode in low bandwidth situations,

3

and simply as a way of stabilzing the rapid refreshing output of the other modes so one can actually
read the output. This mode is entered by the spacebar key and subsequent hits refresh the output
once. To launch uXMS in the paused mode, use the --mode=paused command line switch.

3 The uXMS Content Modes

The contents of the uXMS report vary between one of a few modes. In the scoping mode, a snapshot
of a subset of MOOS variables is generated, similar to what is shown in Figure 1. In the history
mode the recent history of changes to a single MOOS variable is reported.

Figure 3: Content Modes: The uXMS content mode determines what data is included in each new report. The
two major modes are the scoping and history modes. In the former, snapshots of one or more MOOS variables are
reported. In the latter, the recent history of a single variable is reported.

3.1 The Scoping Content Mode

The scoping mode has two sub-modes as shown in Figure 3. In the first sub-mode, the SelectVars
sub-mode, the only variables shown are the ones the user requested. They are requested on the
command-line upon start-up (Section 5), or in the uXMS configuration block in the .moos file provided
on startup, or both. One may also select variables for viewing by specifying one or MOOS processes
with the command line option --src=<process>,<process>,.... All variables from these processes
will then be included in the scope list.

In the AllVars sub-mode, all MOOS variables in the MOOSDB are displayed, unless explicitly
filtered out. The most common way of filtering out variables in the AllVars sub-mode is to provide
a filter string interactively by typing the ’/’ key and entering a filter. Only lines that contain this
string as a substring in the variable name will then be shown. The filter may also be provided on
startup with the --filter=pattern command line option.

In both sub-modes, variables that would otherwise be included in the report may be masked
out with two further options. Variables that have never been written to by any MOOS process
are referred to as virgin variables, and by default are shown with the string "n/a" in their value
column. These may be shut off from the command line with --mask=virgin, or in the MOOS
configuration block by including the line display virgins=false. Similarly, variables with an empty
string value may be masked out from the command line with --mask=empty, or with the line
display empty strings=false in the MOOS configuration block of the .moos file.

4

3.2 The History Content Mode

In the history content mode, the recent values for a single MOOS variable are reported. Contrast
this with the scoping mode where a snapshot of a variable value is displayed, and that value may
have changed several times between successive reports. The output generated in this mode may
look like that in Figure 4 which shows the desired heading of a vehicle going into the first turn of
the alpha mission. This uXMS session can by launched from the command line with:

$ uXMS alpha.moos --history=DESIRED_HEADING

Figure 4: A uXMS scope on a single variable history: A vehicle’s desired heading is monitored as it goes into
the first turn of the alpha mission. Values in parentheses indicate the number of successive postings without a change
of value.

The output structure in the history mode is the same as in the scoping mode in terms of what
data is in the columns and header lines. Each line however is dedicated to the same variable and
shows the progression of values through time. To save screen real estate, successive mail received
for with identical source and value will consolidated on one line, and the number in parentheses is
merely incremented for each such identical mail. For example, the last line shown in Figure 4, the
value of DESIRED HEADING has remained the same for 57 consecutives posts to the MOOSDB.

5

The output in the history mode may be adjusted in a few ways:

� Modifying the number of history lines: The number of lines of history may be increased or
descreased by hitting the ’>’ or ’<’ keys respectively. A maximum of 100 and minimum of 5
lines is allowed. The default is 40.

� Setting the history variable: The history variable may be set on the command line with
--history=VAR, or set in the the mission file with history var=<MOOSVar>. If set in both, the
command line setting takes precedent.

� Hiding the history variable: To increase the available real estate on each line, the variable name
column may be supressed or restored by toggling the ’j’ key. The history variable is shown by
default but may be configured to be off upon startup by setting display history var=false

in the mission file.

Presently there is no way to dynamically change the history variable, or scope on more than one
variable’s history. (But you can open more than one uXMS session to scope on more than one
variable’s history.)

3.3 The Processes Content Mode

In the processes content mode running processes may be monitored and selected for either including
or excluding variables from the selected processes. This mode may be toggled with the ’p’ key. For
example, launching the alpha mission and then uXMS from the command line:

$ uXMS alpha.moos DESIRED_HEADING

After uXMS is launched, toggle into the procesess content mode with the ’p’. This should present
something similar to Figure 5.

Figure 5: A uXMS processes content mode: All processes known to the scope (via the DB CLIENTS variable) are
shown. The Mail column shows the time since mail has been received from the client. The Client column shows the
time since the client has shown up on the DB CLIENTS list.

The first two columns show the processes known to uXMS and a process ID randomly assigned to
each process. These IDs may be used select a process as explaine shortly. The last two columns

6

show the time since mail was last received and the time since the process last appeared on the
DB CLIENTS list. Try killing one of the processes and see what happens.

By default uXMS tries to make use of information produced by uProcessWatch. The first line
in the body of the report in Figure 5 shows the contents of the PROC WATCH SUMMARY variable. In
this example, mail has only been received from pHelmIvP and uProcessWatch. The former because
uXMS was launched from the command line scoping on DESIRED HEADING, and the latter because
uXMS is automatically configured to received the PROC WATCH SUMMARY mail from uProcessWatch. If
uProcessWatch is not running the report will simply state so.

Perhaps the most useful feature of the processes content mode is the ability to select a process to
either include or exclude variables published by that process on the watch list. To include variables
from a process, type the ’+’ key, and a menu and prompt like that shown in Figure 6

Figure 6: Adding watch-list variables based process inclusion: All processes known to the scope (via the
DB CLIENTS variable) are shown. Each process has a single-character ID which may be entered at the prompt to select
the process for inclusion.

Once a process has been selected, uXMS will subscribe for all variables published by the selected
process. Note this is different from subscribing for mail solely produced by the selected MOOS app
since the same variable(s) may be also published by other MOOS applications. The example in
Figure 6 is also from the alpha mission. If the pMarineViewer application were selected, a scoping
report something like that below in Figure 7 would result.

7

Figure 7: Augmented scoping report: The variables published by pMarineViewer are now included in the scoping
report after this process was selected for inclusion.

Once a process has been added or excluded, its status will be indicated next time the processes
mode is entered, with either a ’+’ or ’-’ next to the process ID. For example, the report shown in
Figure 8 below is generated after hitting the ’-’ key to select a process for exclusion. The plus sign
next to the pMarineViewer indicates that it has been selected for inclusion previously.

Figure 8: Excluding watch-list variables based on process origin: The process list includes an indicator
to the left of the ID showing whether the process is presently included (’+’) or excluded (’-’). In this case the
pMarineViewer application has been included but no action has been taken regarding any other processes.

When a process or application has been selected for exclusion, this is handled in the following way.
When a scoping report is being generated, if a particular variable has most recently been set by an
excluded process, it is not include in the scoping report. Note, it may have also been published by
another application not on the exclusion list.

4 Configuration File Parameters for uXMS

Configuraton of uXMS may be done from a configuration file (.moos file), from the command line, or
both. Generally the parameter settings given on the command line override the settings from the
.moos file, but using the configuration file is a convenient way of ensuring certain settings are in
effect on repeated command line invocations. The following is short description of the parameters:

8

Listing 4.1: Configuration Parameters for uXMS.

colormap: Associates a color for the line of text reporting the given variable.

content mode: Set content mode to either scoping, history, procs, or help.

display all: If true, all variables are reported in the scoping content mode.

display aux source: If true, non-null auxilliary source is shown in place of source.

display community: If true, the Community column is rendered.

display history var: If false, history var not shown in history mode.

display source: If true, the Source column is rendered.

display time: If true, the Time column is rendered.

display virgins: If false, variables never written to the MOOSDB are not reported.

history var: Names the MOOS variable reported in the history mode.

refresh mode: Determines when new reports are written to the screen.

source: Names a MOOS app for which all variables will be scoped.

term report interval: Time (secs) between report updates (default 0.6).

trunc data: If true, variable string values are truncated.

var: A comma-separated list of variables to scope on in the scoping mode.

An Example uXMS Configuration Block

An example configuration is given in Listing 2. This may also be elicited from the command line:

$ uXMS --example or -e

Listing 4.2: An example uXMS configuration block.

1 ProcessConfig = uXMS

2 {

3 AppTick = 4

4 CommsTick = 4

5

6 var = NAV_X, NAV_Y, NAV_SPEED, NAV_HEADING

7 var = PROC_WATCH_SUMMARY

8 var = PROC_WATCH_EVENT

9 source = pHelmIvP, pMarineViewer

10

11 history_var = DB_CLIENTS

12

13 display_virgins = true // default

14 display_source = false // default

15 display_aux_source = false // default

16 display_time = false // default

17 display_community = false // default

18 display_all = false // default

19 trunc_data = 40 // default is no trucation.

20

21 term_report_interval = 0.6 // default (seconds)

9

22

23 color_map = pHelmIvP, red // All postings by pHelmIvP red

24 color_map = NAV_SPEED, blue // Only var NAV_SPEED is blue

25

26 refresh_mode = events // default (or streaming/paused)

27 content_mode = scoping // default (or history,procs)

28 }

4.1 The colormap Configuration Parameter

Most of the the configurable options deal with content and layout of the information in the terminal
window, but color can also be used to faciliate monitoring one or more variables. The parameter

colormap = <variable/app>, <color>

is used to request that a line the report containing the given variable or produced by the given
MOOS application (source) is rendered in the given color. The choices for color are limited to red,
green, blue, cyan, and magenta.

4.2 The content mode Configuration Parameter

The content mode determines what information is generated in each report to the terminal output
(Section 3). This mode is set with the following parameter:

content_mode = <mode-type> // Default is "scoping"

The default setting is "scoping" to select the scoping content mode described in Section 3.1. It may
also be set to "history" to select the history mode described in Section 3.2, or set to "procs" to
select the processes mode described in Section 3.3.

4.3 The display* Configuration Parameters

In the scoping and history content modes, the uXMS report has columns of data that may be optionally
turned off to conserve real estate, the Time, Source and Community columns as shown in Figures 1,
4, and 7. By default they are turned off, and they may be toggled on and off by the user at run
time. Their initial state may also be configured with the following three parameters:

display_community = <Boolean> // Default is false

display_source = <Boolean> // Default is false

display_time = <Boolean> // Default is false

display_aux_source = <Boolean> // Default is false

The display aux source parameter, when true, not only activates this column, but also indicates
that the auxilliary source is to be shown instead of the source. Not all MOOS variable postings have
the auxilliary source field filled in. In the case of variables posted by the helm, however, this field
contains the both the helm iteration and name of the behavior. If the auxilliary source is empty
for a particular variable, the primary source is shown instead. To be clear what is being shown,

10

the auxilliary source is always contained in brackets. For example, [241:waypoint return], may
indicate the variable was posted by the helm on iteration 241 by the waypoint return behavior.

The display all parameter determines whether the scope list contains only those variables
specified by the user, or all MOOS variables pubished by any MOOS process. The latter is useful
at times when you can’t quite remember the variable name you’re looking for or who publishes it.
When displaying all variables, certain variables may be masked out by selecting a process (MOOS
app) to exclude, as described in Section 3.3. It may also be enabled with the ’A’ key, and disabled
with the ’a’ key at the terminal at run time. It may also be enabled from the command line with
the --all or -a switches.

display_all = <Boolean> // Default is false

Using the dipplay virgins parameter, the report content may be further modified to mask out lines
containing variables that have never been written to, and variables with an empty-string value. This
is done with the below configuration line. It may also be toggled with the ’v’ key at the terminal at
run time, and it may also be specified from the command line with the --novirgins or -g switches.

display_virgins = <Boolean> // Default is true

In the history mode, the name of the variable is the same on each line. This makes it clear what
variable is being shown, but takes up screen real estate and is redundant. It may be suppressed by
setting display history var to false in the mission file. It may also be toggled with the ’j’ key at
the terminal at run time.

display_history_var = <Boolean> // Default is true

4.4 The history var Configuration Parameter

The variable reported in the history mode is set with the below configuration line:

history_var = <MOOSVar>

The history report only allows for one variable, and multiple instances of the above line will simply
honor the last line provided. The history variable is also automatically added to the watch list
used in the scoping mode. The history variable may also be set on the command line when uXMS is
launched from the terminal, with --history=<MOOS-variable>. If set in both places, the command
line choice overrides the choice in the mission file.

4.5 The refresh mode Configuration Parameter

The refresh mode determines when new reports are generated to the screen, as discussed in Section
2. It is set with the below configuration line:

refresh_mode = <mode> // Valid modes are "paused", "streaming", "events"

11

The initial refresh mode is set to "events" by default. The refresh mode set in the configuration
file may be overridden from the command line with --mode=paused|events|streaming, or chosen
interactively at run time with the ’e’ key for events, the spacebar key for paused, or the ’r’ key for
streaming.

4.6 The source Configuration Parameter

The variable scope list may be set or augmented by naming a particular MOOS app source with the
below parameter:

source = <MOOSApp>, <MOOSApp>, ...

With this, uXMS will subscribe for any MOOS variable published by the named application(s). Since
variables may be published by multiple applications, don’t be surprised to see postings made by
other applications. This is not a request to receive mail only from the named source(s). Sources
may also be chosen from the command line with the --src=<MOOSApp>,<MOOSApp>,..K command line
switch. Sources may also be included or excluded dynamically in the processes content mode as
described in Section 3.3, with the ’+’ and ’-’ keys.

4.7 The term report interval Configuration Parameter

The term report interval is a parameter defined for all AppCasting MOOS applications. It specifies
the amount of time between success updates to the terminal. Report updates are not based on the
application’s apptick since this may be considerably faster than the human may absorb and wastes
CPU resources. The default refresh rate is 0.6 seconds between refreshes. This may be overridden
with:

term_report_interval = <Non-Zero Value> // Default is 0.6 seconds

The interval may also be specified on the command line with the --termint=<Non-Zero Value>

switch. The accepted range, in seconds, is [0, 10]. Keep in mind that report frequency cannot be
any faster than the actual apptick set for uXMS.

4.8 The trunc data Configuration Parameter

The current value of a MOOS variable is shown in the VarValue column in both the scoping and
history content modes. This value may be quite long and overwrap several lines and make things
hard to read. The user can choose to truncate the content by setting trunc data parameter:

trunc_data = <unsigned int> // Default is zero (no truncating)

Values are accepted in the range [10, 1000]. Truncated string output will be further indicated by
adding a trailing "..." to the end of the output. Truncation may be toggled on/off at run time
by hitting the ’‘’ (back-tick) key. The default truncation length is 40 characters. The length of
truncated output may also be adjusted at run time with the ’{’ and ‘}’ keys.

12

4.9 The var Configuration Parameter

The variables reported on in the scoping mode, the scope list, are declared with configuration lines
of the form:

var = <MOOSVar>, <MOOSVar>, ...

Multiple such lines, each perhaps with multiple variables, are accommodated. The scope list may
be augmented on the command line by simply naming variables as command line arguments. The
scope list provided on the command line may replace the list given in the configuration file if the
--clean command line option is also invoked.

5 Command Line Usage of uXMS

Many of the parameters available for setting the .moos file configuration block can also be affected
from the command line. The command line configurations always trump any configurations in the
.moos file. As with the uPokeDB application, the server host and server port information can be
specified from the command line too to make it easy to open a uXMS window from anywhere within
the directory tree without needing to know where the .moos file resides. A uXMS session can be
launched to connect to the MOOSDB of a remote vehicle on the network, if the IP address and
port number are known, with:

$ uXMS --serverhost=10.25.0.191 --serverport=9000 --src=pHelmIvP

The basic command line usage for the uXMS application is the following:

$ uXMS --help or -h

Listing 5.3: Command line usage for the uXMS tool.

1 Usage: uXMS [file.moos] [OPTIONS]

2 Options:

3 --alias=<ProcessName>

4 Launch uXMS with the given process name rather than uXMS.

5 --all,-a

6 Show ALL MOOS variables in the MOOSDB

7 --clean,-c

8 Ignore scope variables in file.moos

9 --colormap=<MOOSVar>,<color>

10 Display all entries where the variable, source, or community

11 has VAR as substring. Allowable olors: blue, red, magenta,

12 cyan, or green.

13 --colorany=<MOOSVar>,<MOOSVar>,...

14 Display all entries where the variable, community, or source

15 has VAR as substring. Color auto-chosen from unused colors.

16 --example, -e

17 Display example MOOS configuration block.

18 --help,-h

13

19 Display this help message.

20 --history=<MOOSVar>

21 Allow history-scoping on variable

22 --interface,-i

23 Display MOOS publications and subscriptions.

24 --novirgins,-g

25 Don’t display virgin variables

26 --mode=[paused,EVENTS,streaming]

27 Determine display mode. Paused: scope updated only on user

28 request. Events: data updated only on change to a scoped

29 variable. Streaming: updates continuously on each app-tick.

30 --serverhost=<IPAddress>

31 --mooshost=<IPAddress>

32 Connect to MOOSDB at IP=value, not from the .moos file.

33 --serverport=<PortNumber>

34 --moosport=<PortNumber>

35 Connect to MOOSDB at port=value, not from the .moos file.

36 --show=[source,time,community,aux]

37 Turn on data display in the named column, source, time, or

38 community. All off by default enabling aux shows the

39 auxilliary source in the souce column.

40 --src=<MOOSApp>,<MOOSApp>, ...

41 Scope only on vars posted by the given MOOS processes

42 --trunc=value [10,1000]

43 Truncate the output in the data column.

44 --termint=value [0,10] (default is 0.6)

45 Minimum real-time seconds between terminal reports.

46 --version,-v

47 Display the release version of uXMS.

48

49 Shortcuts

50

51 -t Short for --trunc=25

52 -p Short for --mode=paused

53 -s Short for --show=source

55 -st Short for --show=source,time

Using the --clean switch will cause uXMS to ignore the variables or sources specified in the .moos

file configuration block and only scope on the variables specified on the command line (otherwise
the union of the two sets of variables is used). Typically this is done when a user wants to quickly
scope on a couple variables and doesn’t want to be distracted with the longer list specified in the
.moos file. Arguments on the command line other than the ones described above are treated as
variable requests.

If the serverhost or the serverport arguments are not provided on the command line, and
a MOOS file is also not provided, the user will be prompted for the two values. Since the most
common scenario is when the MOOSDB is running on the local machine (”localhost”) with port
9000, these are the default values and the user can simply hit the return key.

$ uXMS

$ Enter Server: [localhost] <return>

The server is set to "localhost"

$ Enter Port: [9000] <return>

$ The port is set to "9000"

14

6 Console Interaction with uXMS at Run Time

Many of the launch-time configuration parameters may be altered at run time through interaction
with the console window. For example, the displaying of the Source column is configured to be false
by default, may be configured in the mission file with display source=true, and may be configured
on the command line with --show=source. It may also be toggled at run time by typing the ’s’

character at the console window. A list of run-time key mappings may be shown at any time by
typing the ’h’ key for help. Re-hitting this key resumes prior scoping. Listing 4 shows the contents
of the help menu.

Listing 6.4: The help-menu on the uXMS console.

1 KeyStroke Function (HELP)

2 --------- ---------------------------

3 s Toggle show source of variables

4 t Toggle show time of variables

5 c Toggle show community of variables

6 v Toggle show virgin variables

7 x Toggle show Auxilliary Src if non-empty

8 d Content Mode: Scoping Normal

9 h Content Mode: Help. Hit ’R’ to resume

10 p Content Mode: Processes Info

11 z Content Mode: Variable History

12 > or < Show More or Less Variable History

13 } or { Show More or Less Truncated VarValue

14 / Begin entering a filter string

15 ‘ Toggle Data Field truncation

16 ? Clear current filter

17 a Revert to variables shown at startup

18 A Display all variables in the database

19 u/SPC Refresh Mode: Update then Pause

20 r Refresh Mode: Streaming

21 e Refresh Mode: Event-driven refresh

7 Running uXMS Locally or Remotely

The choice of uXMS as a scoping tool was designed in part to support situations where the target
MOOSDB is running on a vehicle with low bandwidth communications, such as an AUV sitting on
the surface with only a weak RF link back to the ship. There are two distinct ways one can run
uXMS in this situation and its worth noting the difference. One way is to run uXMS locally on one’s
own machine, and connect remotely to the MOOSDB on the vehicle. The other way is to log onto
the vehicle through a terminal, run uXMS remotely, but in effect connecting locally to the MOOSDB
also running on the vehicle.

The difference is seen when considering that uXMS is running three separate threads. One accepts
mail delivered by the MOOSDB, one executes the iterate loop of uXMS where reports are written
to the terminal, and one monitors the keyboard for user input. If running uXMS locally, connected
remotely, even though the user may be in paused mode with no keyboard interaction or reports
written to the terminal, the first thread still may have a communication requirement perhaps larger
than the bandwidth will support. If running remotely, connected locally, the first thread is easily
supported since the mail is communicated locally. Bandwidth is consumed in the second two threads,

15

but the user controls this by being in paused mode and requesting new reports judiciously.

8 Connecting multiple uXMS processes to a single MOOSDB

Multiple versions of uXMS may be connected to a single MOOSDB. This is to simultaneously allow
several people a scope onto a vehicle. Although MOOS disallows two processes of the same name to
connect to MOOSDB, uXMS generates a random number between 0-999 and adds it as a suffix to the
uXMS name when connected. Thus it may show up as something like uXMS 871 if you scope on the
variable DB CLIENTS. In the unlikely event of a name collision, the user can just try again.

9 Using uXMS with Appcasting

Appcasting allows a really useful way of using uXMS, especially in the case of multiple deployed
vehicles. Prior to appcasting, the only way to use uXMS is through a terminal window. With
appcasting the uXMS report may also be published to the MOOSDB for remote viewing via a uMAC

utility or with pMarineViewer.

For example, consider a case where some number of vehicles are deployed, each with an interface
to their batteries, compass and GPS. The interfaces may be named iBatteryMonitor, iCompass, and
iGPS. Each interface publishes several MOOS variables including health status messages. A mission
could be configurd with three uXMS processes launched at mission startup with something similar to:

Listing 9.5: Launching several uXMS processes with appcasting.

1 ProcessConfig = ANTLER

2 {

3 MSBetweenLaunches = 200

4

5 Run = MOOSDB @ NewConsole = false

6 // Other MOOS Apps

7 Run = iGPS @ NewConsole = false

8 Run = iBatteryMonitor @ NewConsole = false

9 Run = iCompas @ NewConsole = false

10 Run = uXMS @ NewConsole = false ~ uXMS_GPS

11 Run = uXMS @ NewConsole = false ~ uXMS_BATTERY_MONITOR

12 Run = uXMS @ NewConsole = false ~ uXMS_COMPASS

13 }

14

15 ProcessConfig = uXMS_GPS

16 {

17 SOURCE = iGPS

18 }

19 ProcessConfig = uXMS_BATTERY_MONITOR

20 {

21 SOURCE = iBatteryMonitor

22 }

23 ProcessConfig = uXMS_COMPASS

24 {

25 SOURCE = iCompass

26 }

16

With this configuration the three uXMS processes will launch, each without a terminal window open,
and each with a different descriptive name. The uXMS reports are accessible with any of the appcast
viewing tools, uMAC, uMACView, and pMarineViewer. In the latter two tools for example, the uXMS

reports may appear in a menu selection like that shown in Figure 9.

Figure 9: Appcasting and uXMS: Multiple vehicles are each configured with three dedicated uXMS processes to
scope on variables particular to a given device or sensor. The uMAC viewer interface allows the user to select any
vehicle and select a uXMS report to see the desired information for that vehicle and device.

In this way the user may monitor the health of these three instruments across all fielded vehicles
with a single GUI without having to write any special code for these devices.

10 Publications and Subscriptions for uXMS

The interface for uXMS, in terms of publications and subscriptions, is described below. This same
information may also be obtained from the terminal with:

$ uXMS --interface or -i

10.1 Variables Published by uXMS

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 9.

10.2 Variables Subscribed for by uXMS

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 9.

17

� DB CLIENTS: To handle requests to scope on all variables.

� DB UPTIME: To determine the MOOSDB start time. All uXMS times reported are times since
MOOSDB started.

� PROC WATCH SUMMARY: As a convenience this summary is displayed in the processes content mode.
It is posted by uProcessWatch.

� USER-DEFINED: The variables subscribed for are those on the scope list, augmented with the
var and source parameters described in Sections 4.6 and 4.9.

18

	Overview
	The uXMS Refresh Modes
	The Streaming Refresh Mode
	The Events Refresh Mode
	The Paused Refresh Mode

	The uXMS Content Modes
	The Scoping Content Mode
	The History Content Mode
	The Processes Content Mode

	Configuration File Parameters for uXMS
	The colormap Configuration Parameter
	The content_mode Configuration Parameter
	The display* Configuration Parameters
	The history_var Configuration Parameter
	The refresh_mode Configuration Parameter
	The source Configuration Parameter
	The term_report_interval Configuration Parameter
	The trunc_data Configuration Parameter
	The var Configuration Parameter

	Command Line Usage of uXMS
	Console Interaction with uXMS at Run Time
	Running uXMS Locally or Remotely
	Connecting multiple uXMS processes to a single MOOSDB
	Using uXMS with Appcasting
	Publications and Subscriptions for uXMS
	Variables Published by uXMS
	Variables Subscribed for by uXMS

