
uTimerScript: Scripting Events to the MOOSDB
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139
project-pavlab/appdocs/app utscript

1 Overview 1

2 Using uTimerScript 2
2.1 Configuring the Event List . 2
2.2 Setting the Event Time or Range of Event Times . 3
2.3 Resetting the Script . 3

3 Script Flow Control 4
3.1 Pausing the Timer Script . 4
3.2 Conditional Pausing of the Timer Script and Atomic Scripts 5
3.3 Fast-Forwarding the Timer Script . 5
3.4 Quitting the Timer Script . 5

4 Macro Usage in Event Postings 6
4.1 Built-In Macros Available . 6
4.2 User Configured Macros with Random Variables . 6
4.3 Support for Simple Arithmetic Expressions with Macros . 7

5 Time Warps, Random Time Warps, and Restart Delays 7
5.1 Random Time Warping . 7
5.2 Random Initial Start and Reset Delays . 8
5.3 Status Messages Posted to the MOOSDB by uTimerScript . 8

6 Terminal and AppCast Output 9

7 Configuration Parameters for uTimerScript 10

8 Publications and Subscriptions for uTimerScript 11
8.1 Variables Published by uTimerScript . 11
8.2 Variables Subscribed for by uTimerScript . 12
8.3 An Example MOOS Configuration Block . 12

9 Examples 13
9.1 A Script for Generating 100 Random Numbers . 13
9.2 A Script Used as Proxy for an On-Board GPS Unit . 14
9.3 A Script as a Proxy for Simulating Random Wind Gusts . 16

1 Overview

The uTimerScript application allows the user to script a set of pre-configured posts to a MOOSDB. In
its most basic form, it may be used to initialize a set of variables to the MOOSDB, and immediately

1

terminate itself if a quit event is included. The following configuration block, if placed in the alpha
example mission, would mimic the posts to the MOOSDB behind the DEPLOY button, simply disabling
manual control, deploying the vehicle and quitting the script: Listing 1.1.

Listing 1.1: A Simple Timer Script.

1 ProcessConfig = uTimerScript

2 {

3 event = var=MOOS_MANUAL_OVERIDE, val=false

4 event = var=DEPLOY, val=true

5 event = quit

6 }

Additionally, uTimerScript may be used with the following advanced functions:

� Each entry in the script may be scheduled to occur after a specified amount of elapsed time.

� Event timestamps may be given as an exact point in time relative to the start of the script, or
a range in times with the exact time determined randomly at run-time.

� The execution of the script may be paused, or fast-forwarded a given amount of time, or
forwarded to the next event on the script by writing to a MOOS variable.

� The script may be conditionally paused based on user defined logic conditions over one or
more MOOS variables.

� The variable value of an event may also contain information generated randomly.

� The script may be reset or repeated any given number of times.

� The script may use its own time warp, which can be made to vary randomly between script
executions.

In short, uTimerScript may be used to effectively simulate the output of other MOOS applications
when those applications are not available. A few examples are provided, including a simulated GPS
unit and a crude simulation of wind gusts.

2 Using uTimerScript

Configuring a script minimally involves the specification of one or more events, with an event
comprising of a MOOS variable and value to be posted and an optional time at which it is to be
posted. Scripts may also be reset on a set policy, or from a trigger by an external process.

2.1 Configuring the Event List

The event list or script is configured by declaring a set of event entries with the following format:

event = var=<MOOSVar>, val=<value>, [time=<time-of-event>]

The keywords event, var, val, and time are not case sensitive, but the values <moos-variable> and
<var-value> are case sensitive. The <var-value> type is posted either as a string or double based
on the following heuristic: if the <var-value> has a numerical value it is posted as a double, and

2

otherwise posted as a string. If one wants to post a string with a numerical value, putting quotes
around the number suffices to have it posted as a string. Thus val=99 posts a double, but var="99"
posts a string. If a string is to be posted that contains a comma such as "apples, pears", one must
put the quotes around the string to ensure the comma is interpreted as part of <var-value>. The
value field may also contain one or more macros expanded at the time of posting, as described in
Section 4.

2.2 Setting the Event Time or Range of Event Times

The value of <time-of-event> is given in seconds and must be a numerical value greater or equal to
zero. The time represents the amount of elapsed time since the uTimerScript was first launched and
un-paused. The list of events provided in the configuration block need not be in order - they will
be ordered by the uTimerScript utility. The <time-of-event> may also be specified by a interval
of time, e.g., time=0:100, such that the event may occur at some point in the range with uniform
probability. The only restrictions are that the lower end of the interval is greater or equal to zero,
and less than or equal to the higher end of the interval. By default the timestamps are calculated
once from their specified interval, at the the outset of uTimerScript. The script may alternatively
be configured to recalculate the timestamps from their interval each time the script is reset, by
setting the shuffle parameter to true. This parameter, and resetting in general, are described in
the next Section 2.3.

2.3 Resetting the Script

The timer script may be reset to its initial state, resetting the stored elapsed-time to zero and
marking all events in the script as pending. This may occur either by cueing from an event outside
uTimerScript, or automatically from within uTimerScript. Outside-cued resets can be triggered by
posting UTS RESET with the value ="reset", or "true". The reset var parameter names a MOOS
variable that may be used as an alternative to UTS RESET. It has the format:

reset var = <moos-variable> // Default is UTS RESET

The script may be also be configured to auto-reset after a certain amount of time, or immediately
after all events are posted, using the reset time parameter. It has the format:

reset time = <time-or-condition> // Default is "none"

The <time-or-condition> may be set to "all-posted" which will reset after the last event is posted.
If set to a numerical value greater than zero, it will reset after that amount of elapsed time, regardless
of whether or not there are pending un-posted events. If set to "none", the default, then no automatic
resetting is performed. Regardless of the reset time setting, prompted resets via the UTS RESET

variable may take place when cued.

The script may be configured to accept a hard limit on the number of times it may be reset.
This is configured using the reset max parameter and has the following format:

reset max = <amount> // Default is "nolimit"

The <amount> specified may be any number greater or equal to zero, where the latter, in effect,
indicates that no resets are permitted. If unlimited resets are desired (the default), the case

3

insensitive argument "unlimited" or "any" may be used.

The script may be configured to recalculate all event timestamps specified with a range of values
whenever the script is reset. This is done with the following parameter:

shuffle = false // Default is "true"

The script may be configured to reset or restart each time it transitions from a situation where
its conditions are not met to a situation where its conditions are met, or in other words, when the
script is ”awoken”. The use of logic conditions is described in more detail in Section 3.1. This is
done with the following parameter:

upon awake = restart // Default is "n/a", no action

Note that this does not apply when the script transitions from being paused to un-paused as
described in Section 3.1. See the example in Section 9.2 for a case where the upon awake feature is
handy.

3 Script Flow Control

The script flow may be affected in a number of ways in addition to the simple passage of time. It
may be (a) paused by explicitly pausing it, (b) implicitly paused by conditioning the flow on one or
more logic conditions, (c) fast-forwarded directly to the next scheduled event, or fast-forwarded
some number of seconds. Each method is described in this section.

3.1 Pausing the Timer Script

The script can be paused at any time and set to be paused initially at start time. The paused param-
eter affects whether the timer script is actively unfolding at the outset of launching uTimerScript.
It has the following format:

paused = <Boolean>

The keyword paused and the string representing the Boolean are not case sensitive. The Boolean
simply must be either "true" or "false". By setting paused to true, the elapsed time calculated by
uTimerScript is paused and no variable-value pairs will be posted. When un-paused the elapsed
time begins to accumulate and the script begins or resumes unfolding. The default value of paused
is false.

The script may also be paused through the MOOS variable UTS PAUSE which may be posted by
some other MOOS application. The values recognized are "true", "false", or "toggle", all case
insensitive. The name of this variable may be substituted for a different one with the pause var

parameter in the uTimerScript configuration block. It has the format:

pause var = <MOOSVar> // Default is UTS PAUSE

If multiple scripts are being used (with multiple instances of uTimerScript connected to the MOOSDB),
setting the pause var to a unique variable may be needed to avoid unintentionally pausing or
un-pausing multiple scripts with single write to UTS PAUSE.

4

3.2 Conditional Pausing of the Timer Script and Atomic Scripts

The script may also be configured to condition the ”paused-state” to depend on one or more logic
conditions. If conditions are specified in the configuration block, the script must be both un-paused
as described above in Section 3.1, and all specified logic conditions must be met in order for the
script to begin or resume proceeding. The logic conditions are configured as follows:

condition = <logic-expression>

The <logic-expression> syntax is described in Logic Appendix, and may involve the simple
comparison of MOOS variables to specified literal values, or the comparison of MOOS variables to
one another. See the script configuration in Section 9.2 for one example usage of logic expressions.

An atomic script is one that does not check conditions once it has posted its first event, and
prior to posting its last event. Once a script has started, it is treated as unpausable with respect to
the the logic conditions. This is configured with:

script atomic = <Boolean>

It can however be paused and unpaused via the pause variable, e.g., UTS PAUSE, as described in
Section 3.1. If the logic conditions suddenly fail in an atomic script midway, the check is simply
postponed until after the script completes and is perhaps reset. If the conditions in the meanwhile
revert to being satisfied, then no interruption should be observable.

3.3 Fast-Forwarding the Timer Script

The timer script, when un-paused, moves forward in time with events executed as their event times
arrive. However, the script may be moved forwarded by writing to the MOOS variable UTS FORWARD.
If the value received is zero (or negative), the script will be forwarded directly to the point in time
at which the next scheduled event occurs. If the value received is positive, the elapsed time is
forwarded by the given amount. Alternatives to the MOOS variable UTS FORWARD may be configured
with the parameter:

forward var = <MOOSVar> // Default is UTS FORWARD

If multiple scripts are being used (with multiple instances of uTimerScript connected to the MOOSDB),
setting the forward var to a unique variable may be needed to avoid unintentionally fast forwarding
multiple scripts with single write to UTS FORWARD.

3.4 Quitting the Timer Script

The timer script may be configured with a special event, the quit event, resulting in disconnection
with the MOOSDB and a process exit. This is done with the configuration:

event = quit [time=<time-of-event>]

Before quitting, a final posting to the MOOSDB is made with the variable EXITED NORMALLY. The value is
"uTimerScript", or its alias if an alias was used. This indicates to any other watchdog process, such
as uProcessWatch, that the exiting of this script is not a reason for concern. When uTimerScript

receives its own posting in the next incoming mail, it assumes all pending posts have been made
and will then quit.

5

4 Macro Usage in Event Postings

Macros may be used to add a dynamic component to the value field of an event posting. This
substantially expands the expressive power and possible uses of the uTimerScript utility. Recall
that the components of an event are defined by:

event = var=<MOOSVar>, val=<var-value>, time=<time-of-event>

The <var-value> component may contain a macro of the form $[MACRO], where the macro is
either one of a few built-in macros available, or a user-defined macro with the ability to represent
random variables. Macros may also be combined in simple arithmetic expressions to provide further
expressive power. In each case, the macro is expanded at the time of the event posting, typically
with different values on each successive posting.

4.1 Built-In Macros Available

There are five built-in macros available: $[DBTIME], $[UTCTIME], $[COUNT], $[TCOUNT], and $[IDX].
The first macro expands to the estimated time since the MOOSDB started, similar to the value in the
MOOS variable DB UPTIME published by the MOOSDB. An example usage:

event = var=DEPLOY RECEIVED, val=$[DBTIME], time=10:20

The $[UTCTIME] macro expands to the UTC time at the time of the posting. The $[COUNT]

macro expands to the integer total of all posts thus far in the current execution of the script, and is
reset to zero when the script resets. The $[TCOUNT] macro expands to the integer total of all posts
thus far since the application began, i.e., it is a running total that is not reset when the script is
reset.

The $[DBTIME], $[UTCTIME], $[COUNT], and $[TCOUNT] macros all expand to numerical values,
which if embedded in a string, will simply become part of the string. If the value of the MOOS
variable posting is solely this macro, the variable type of the posting is instead a double, not a
string. For example val=$[DBTIME] will post a type double, whereas val="time:$[DBTIME]" will post
a type string.

The $[IDX] macro is similar to the $[COUNT] macro in that it expands to the integer value
representing an event’s count or index into the sequence of events. However, it will always post as a
string and will be padded with zeros to the left, e.g., "000", "001", ... and so on.

4.2 User Configured Macros with Random Variables

Further macros are available for use in the <var-value> component of an event, defined and configured
by the user, and based on the idea of a random variable. In short, the macro may expand to a
numerical value chosen within a user specified range, and recalculated according to a user-specified
policy. The general format is:

rand var = varname=<variable>, min=<value>, max=<value>, key=<key name>

The <variable> component defines the macro name. The <low value> and <high value> components
define the range from which the random value will be chosen uniformly. The <key name> determines
when the random value is reset. It must be set to one of the following three values: "at start",

6

"at reset", and "at post". Random variables with the key name "at start" are assigned a random
value only at the start of the uTimerScript application. Those with the "at reset" key name also
have their values re-assigned whenever the script is reset. Those with the "at post" key name also
have their values re-assigned after any event is posted.

4.3 Support for Simple Arithmetic Expressions with Macros

Macros that expand to numerical values may be combined in simple arithmetic expressions with
other macros or scalar values. The general form is:

{<value> <operator> <value>}

The <value> components may be either a scalar or a macro, and the <operator> component may be
one of ’+’, ’-’, ’*’, ’/’. Nesting is also supported. Below are some examples:

{$[FOOBAR] * 0.5}

{-2-$[FOOBAR]}

{$[APPLES] + $[PEARS]}

{35 / {$[FOOBAR]-2}}

{$[DBTIME] - {35 / {$[UTCTIME]+2}}}

If a macro should happen to expand to a string rather than a double (numerical) value, the string
evaluates to zero for the sake of the remaining evaluations.

5 Time Warps, Random Time Warps, and Restart Delays

A time warp and initial start delay may be optionally configured into the script to change the event
schedule without having to edit all the time entries for each event. They may also be configured to
take on a new random value at the outset of each script execution to allow for simulation of events
in nature or devices having a random component.

5.1 Random Time Warping

The time warp is a numerical value in the range (0,∞], with a default value of 1.0. Lower values
indicate that time is moving more slowly. As the script unfolds, a counter indicating "elapsed time"

increases in value as long as the script is not paused. The "elapsed time" is multiplied by the time
warp value. The time warp may be specified as a single value or a range of values as below:

time_warp = <value>

time_warp = <low-value>:<high-value>

When a range of values is specified, the time warp value is calculated at the outset, and re-calculated
whenever the script is reset. See the example in Section 9.3 for a use of random time warping to
simulate random wind gusts.

7

5.2 Random Initial Start and Reset Delays

A start delay may be provided with the delay start parameter, given in seconds in the range
[0,∞], with a default value of 0. The effect of having a non-zero delay of n seconds is to have
elapsed time=n at the outset of the script, on the first time through the script only. Thus a delay of
n seconds combined with a time warp of 0.5 would result in observed delay of 2 ∗ n seconds. The
start delay may be specified as a single value or a range of values as below:

delay_start = <value>

delay_start = <low-value>:<high-value>

To specify a delay applied at the beginning if the script after a reset, use the delay reset parameter
instead.

delay_reset = <value>

delay_reset = <low-value>:<high-value>

When a range of values is specified, the start ore reset delay value is calculated at the outset, and
re-calculated whenever the script is reset. See the example in Section 9.2 for a use of random start
delays to the simulate the delay in acquiring satellite fixes in a GPS unit on an UUV coming to the
surface.

5.3 Status Messages Posted to the MOOSDB by uTimerScript

The uTimerScript periodically publishes a string to the MOOS variable UTS STATUS indicating the
status of the script. This variable will be published on each iteration if one of the following conditions
is met: (a) two seconds has passed since the previous status message posted, or (b) an event has
been been posted, or (c) the paused state has changed, or (d) the script has been reset, or (e) the
state of script logic conditions has changed. A posting may look something like:

UTS_STATUS = "name=RND_TEST, elapsed_time=2.00, posted=1, pending=5, paused=false,

conditions_ok=true, time_warp=3, start_delay=0, shuffle=false,

upon_awake=restart, resets=2/5"

In this case, the script has posted one of six events (posted=1, pending=5). It is actively unfolding,
since paused=false (Section 3.1) and conditions ok=true (Section 3.2). It has been reset twice out
of a maximum of five allowed resets (resets=2/5, Section 2.3). Time warping is being deployed
time warp=3 (Section 5), there is no start delay in use start delay=0 (Section 5.2). The shuffle feature
is turned off shuffle=false (Section 2.3). The script is not configured to reset upon re-entering the
un-paused state, awake reset=false (Section 2.3).

When multiple scripts are running in the same MOOS community, one may want to take
measures to discern between the status messages generated across scripts. One way to do this is to
use a unique MOOS variable other than UTS STATUS for each script. The variable used for publishing
the status may be configured using the status var parameter. It has the following format:

status var = <MOOSVar> // Default is UTS STATUS

8

Alternatively, a unique name may be given to each to each script. All status messages from all
scripts would still be contained in postings to UTS STATUS, but the different script output could be
discerned by the name field of the status string. The script name is set with the following format.

script name = <string> // Default is "unnamed"

6 Terminal and AppCast Output

The script configuration and progress of script execution may also be monitored from an open
console window where uTimerScript is launched, or through an appcast viewer. Example output
is shown below in Listing 2. On line 2, the name of the local community or vehicle name is listed
on the left. On the right, "0/0(450) indicates there are no configuration or run warnings, and the
current iteration of uFldTimerScript is 450.

Lines 4-16: Script Configuration

Lines 4-11 show the script configuration. Line 5 shows the number of elements in the script and
in parentheses the last element to have been posted. Line 6 shows the number of times the script
has restarted. Line 7 shows the present time warp and the range of time warps possible on each
script restart in brackets (Section 5.1. Lines 8-9 show the delay applied at the start and after a
script reset (Section 5.2). Line 10 indicates the script is presently not paused (Section 3.1). Line 11
indicates the script presently meets any prevailing logic conditions (Section 3.2). Lines 13-16 show
that there are two random variables defined for this script that may be used in event definitions.
They are both uniform random variables. The first varies over possible directions, and the second
over possible speed magnitudes. Section 4.2.

Listing 6.2: Example uTimerScript console and appcast output.

1 ===

2 uTimerScript charlie 0/0(450)

3 ===

4 Current Script Information:

5 Elements: 10(8)

6 Reinits: 2

7 Time Warp: 1.09 [0.2,2]

8 Delay Start: 0

9 Delay Reset: 23.66 [10,60]

10 Paused: false

11 ConditionsOK: true

12

13 RandomVar Type Min Max Parameters

14 --------- ------- --- --- ----------

15 ANG uniform 0 359

16 MAG uniform 1.5 3.5

17

18 P/Tot P/Loc T/Total T/Local Variable/Var

19 ----- ----- -------- ------- ------------

20 19 9 196.77 72.15 DRIFT_VECTOR_ADD = 193,-0.6

21 20 0 219.42 24.08 DRIFT_VECTOR_ADD = 12,0.4

22 21 1 220.93 25.71 DRIFT_VECTOR_ADD = 12,0.4

9

23 22 2 222.95 27.91 DRIFT_VECTOR_ADD = 12,0.4

24 23 3 224.96 30.09 DRIFT_VECTOR_ADD = 12,0.4

25 24 4 226.46 31.73 DRIFT_VECTOR_ADD = 12,0.4

26 25 5 228.47 33.91 DRIFT_VECTOR_ADD = 12,-0.4

27 26 6 230.49 36.10 DRIFT_VECTOR_ADD = 12,-0.4

28

29 ===

30 Most Recent Events (3):

31 ===

32 [192.78]: Script Re-Start. Warp=0.48922, DelayStart=0.0, DelayReset=54.1

33 [44.80]: Script Re-Start. Warp=1.61692, DelayStart=0.0, DelayReset=18.9

34 [0.51]: Script Start. Warp=1, DelayStart=0.0, DelayReset=0.0

Lines 18-27: Recent Script Postings

Lines 18-27 show recent postings to the MOOSDB by the script. The first column shows the total
postings so far for the script. The second column shows the index within the script. In the above
example, there are ten elements in the script. The most recent posting on line 27, shows the script
has been reset twice and the most recent posting is of the seventh element of the script (index 6).
The third column shows the total time since script started, and the fourth column shows the time
since the script was re-started. Note the time delay between lines 20 and 21, due to the delay reset

shown on line 9. The last column shows the actual variable value pair posted.

Lines 29-34: Recent Events

Lines 29-34 show recent events (other than event postings). In this case it shows the script has been
started, and re-started twice. Notice the delay reset on line 32 is different than that on line 9. The
delay reset time of 23.66 seconds shown on line 9 is the delay reset to be applied on the next reset.

7 Configuration Parameters for uTimerScript

The following parameters are defined for uTimerScript. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated.

Listing 7.3: Configuration Parameters for uTimerScript.

block on: A comma-separated list of MOOS apps on which the script will block until
seen in the list of DB CLIENTS.

condition: A logic condition that must be met for the script to be un-paused. Section
3.2.

delay reset: Number of seconds added to each event time, on each script reset. Legal
values: any non-negative numerical value, or range of values separated by a
colon. The default is zero. Section 5.2.

delay start: Number of seconds, or range of seconds, added to each event time, on first
pass only. Legal values: any non-negative numerical value, or range of values
separated by a colon. The default is zero. Section 5.2.

event: A description of a single event in the timer script. Section 2.1.

10

forward var: A MOOS variable for taking cues to forward time. The default is
UTS FORWARD). Section 3.3.

paused: A Boolean indicating whether the script is paused upon launch. Legal values:
true, false. The default is false. Section 3.1.

pause var: A MOOS variable for receiving pause state cues (UTS PAUSE). Section 3.1.

rand var: A declaration of a random variable macro to be expanded in event values.
Section 4.2.

reset max: The maximum amount of resets allowed. Legal values: any non-negative
integer, or the string "nolimit". The default is "nolimit". NOTE: If re-
setting is desired, the reset time parameter must also be changed from its
default value of "none". Section 2.3.

reset time: The time or condition when the script is reset Legal values: Any non-negative
number, the string "none", or "all-posted", or equivalently, "end". The
default is "none". Section 2.3.

reset var: A MOOS variable for receiving reset cues. The default is UTS RESET.

script atomic: When true, a started script will complete if conditions suddenly fail. Legal
values: true, false. The default is false.

script name: Unique (hopefully) name given to this script. The default is "unnamed".

shuffle: If true, timestamps are recalculated on each reset of the script. Legal values:
true, false. The default is true. Section 2.3.

status var: A MOOS variable for posting status summary. The default is UTS STATUS.
Section 5.3

time warp: Rate at which time is accelerated in executing the script. Legal values: any
non-negative number. The default is zero. Section 5.

time zero: The base time upon which script event times are based. The default
is "script start", the time at which uTimerScript is launched. The one
alternative is "db start", the time at which the MOOSDB was launched.
The default is "script start".

upon awake: Reset or re-start the script upon conditions being met after failure ("n/a").
Section 2.3.

verbose: If true, progress output is generated to the console (true).

8 Publications and Subscriptions for uTimerScript

The interface for uTimerScript, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uTimerScript --interface or -i

8.1 Variables Published by uTimerScript

The primary output of uTimerScript to the MOOSDB is the set of configured events, but one other
variable is published on each iteration, and another upon purposeful exit with the event=quit event

11

configuration.

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 6.

� EXITED NORMALLY: A posting made when the script contains and executes a event=quit event,
to let other applications know that the disconnection of uTimerScript is not a concern for
alarm.

� UTS STATUS: A status string of script progress. Section 5.3.

8.2 Variables Subscribed for by uTimerScript

The uTimerScript application will subscribe for the following four MOOS variables to provide
optional control over the flow of the script by the user or other MOOS processes:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� EXITED NORMALLY: When uTimerScript receives its own posting, it is assumed that all outgoing
posts needed to be made before quitting have been received by the MOOSDB. Upon this receipt
uTimerScript will quit. See Section 3.4.

� UTS NEXT: When received with the value "next", the script will fast-forward in time to the next
event. See Section 3.3.

� UTS RESET: When received with the value of either "true" or "reset", the timer script will be
reset. See Section 2.3.

� UTS FORWARD: When received with a numerical value greater than zero, the script will fast-
forward by the indicated time. See Section 3.3.

� UTS PAUSE: When received with the value of "true", "false", "toggle", the script will change
its pause state correspondingly. See Section 3.1.

In addition to the above MOOS variables, uTimerScript will subscribe for any variables involved in
logic conditions, described in Section 3.2.

8.3 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uTimerScript --example

This will show the output shown in Listing 4 below.

Listing 8.4: Example configuration of the uTimerScript application.

1 ===

2 uTimerScript Example MOOS Configuration

3 ===

4 Blue lines: Default configuration

5

6 ProcessConfig = uTimerScript

12

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Logic condition that must be met for script to be unpaused

12 condition = WIND_GUSTS = true

13 // Seconds added to each event time, on each script pass

14 delay_reset = 0

15 // Seconds added to each event time, on first pass only

16 delay_start = 0

17 // Event(s) are the key components of the script

18 event = var=SBR_RANGE_REQUEST, val="name=archie", time=25:35

19 // A MOOS variable for taking cues to forward time

20 forward_var = UTS_FORWARD // or other MOOS variable

21 // If true script is paused upon launch

22 paused = false // or {true}

23 // A MOOS variable for receiving pause state cues

24 pause_var = UTS_PAUSE // or other MOOS variable

25 // Declaration of random var macro expanded in event values

26 randvar = varname=ANG, min=0, max=359, key=at_reset

27 // Maximum number of resets allowed

28 reset_max = nolimit // or in range [0,inf)

29 // A point when the script is reset

30 reset_time = none // or {all-posted} or range (0,inf)

31 // A MOOS variable for receiving reset cues

32 reset_var = UTS_RESET // or other MOOS variable

33 // If true script will complete if conditions suddenly fail

34 script_atomic = false // or {true}

35 // A hopefully unique name given to the script

36 script_name = unnamed

37 // If true timestamps are recalculated on each script reset

38 shuffle = true

39 // If true progress is generated to the console

40 verbose = true // or {false}

41 // Reset or restart script upon conditions being met after failure

42 upon_awake = n/a // or {reset,resstart}

43 // A MOOS variable for posting the status summary

44 status_var = UTS_STATUS // or other MOOS variable

45 // Rate at which time is accelerated in execuing the script

46 time_warp = 1

47 }

9 Examples

The examples in this section demonstrate the constructs thus far described for the uTimerScript

application. In each case, the use of the script obviated the need for developing and maintaining a
separate dedicated MOOS application.

9.1 A Script for Generating 100 Random Numbers

The below script will generate 100 postings with random numbers preceded by an initial ”start”
posting, and followed by an ”end” posting.

13

Listing 9.5: A uTimerScript configuration for generating 100 random numbers.

//--

ProcessConfig = uTimerScript

{

rand_var = varname=RND_VAL, min=0, max=50, key=at_post

event = var=REPORT, val="start", time=0

event = var=REPORT, val="accidents=$[RND_VAL], unique_id=$[TCOUNT]", time=0, amt=100

event = var=REPORT, val="end", time=0

}

The above may result in postings like those below (take from an alog file):

8.817 REPORT uTimerScript start

8.817 REPORT uTimerScript accidents=35.234,unique_id=1

8.817 REPORT uTimerScript accidents=32.01,unique_id=2

8.818 REPORT uTimerScript accidents=26.982,unique_id=3

...

8.856 REPORT uTimerScript accidents=32.3,unique_id=95

8.857 REPORT uTimerScript accidents=13.324,unique_id=96

8.857 REPORT uTimerScript accidents=27.624,unique_id=97

8.858 REPORT uTimerScript accidents=28.901,unique_id=98

8.858 REPORT uTimerScript accidents=18.9,unique_id=99

8.859 REPORT uTimerScript accidents=35.72,unique_id=100

8.859 REPORT uTimerScript end

To make the numerical values integers, use the snap=1 option (available in the next release after
19.8). Using snap=0.1 will round to the nearest tenth and so on. For example:

rand_var = varname=RND_VAL, min=0, max=50, key=at_post, snap=1

9.2 A Script Used as Proxy for an On-Board GPS Unit

Typical operation of an underwater vehicle includes the periodic surfacing to obtain a GPS fix to
correct navigation error accumulated while under water. A GPS unit that has been out of satellite
communication for some period normally takes some time to re-acquire enough satellites to resume
providing position information. From the perspective of the helm and configuring an autonomy
mission, it is typical to remain at the surface only long enough to obtain the GPS fix, and then
resume other aspects of the mission at-depth.

Consider a situation as shown in Figure 1, where the autonomy system is running in the
payload on a payload computer, receiving not only updated navigation positions (in the form of
NAV DEPTH, NAV X, and NAV Y), but also a ”heartbeat” signal each time a new GPS position has been
received (GPS RECEIVED). This heartbeat signal may be enough to indicate to the helm and mission
configuration that the objective of the surface excursion has been achieved.

14

Figure 1: Simulating a GPS Acknowledgment: In a physical operation of the vehicle, the navigation solution and
a GPS UPDATE RECEIVED heartbeat are received from the main vehicle (front-seat) computer via a MOOS module acting
as an interface to the front-seat computer. In simulation, the navigation solution is provided by the simulator without
any GPS UPDATE RECEIVED heartbeat. This element of simulation may be provided with uTimerScript configured
to post the heartbeat, conditioned on the NAV DEPTH information and a user-specified start delay to simulate GPS
acquisition delay.

In simulation, however, the simulator only produces a steady stream of navigation updates with no
regard to a simulated GPS unit. At this point there are three choices: (a) modify the simulator to
fake GPS heartbeats and satellite delay, (b) write a separate simple MOOS application to do the
same simulation. The drawback of the former is that one may not want to branch a new version of
the simulator, or even introduce this new complexity to the simulator. The drawback of the latter
is that, if one wants to propagate this functionality to other users, this requires distribution and
version control of a new MOOS application.

A third and perhaps preferable option (c) is to write a short script for uTimerScript simulating
the desired GPS characteristics. This achieves the objectives without modifying or introducing new
source code. The below script in Listing 6 gets the job done.

Listing 9.6: A uTimerScript configuration for simulating aspects of a GPS unit.

1 //--

2 // uTimerScript configuration block

3

4 ProcessConfig = uTimerScript

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 paused = false

10 reset_max = unlimited

11 reset_time = end

12 condition = NAV_DEPTH < 0.2

13 upon_awake = restart

14 delay_start = 20:120

15 script_name = GPS_SCRIPT

16

17 event = var=GPS_UPDATE_RECEIVED, val="RCVD_$[COUNT]", time=0:1

18 }

15

This script posts a GPS UPDATE RECEIVED heartbeat message roughly once every second, based on the
event time "time=0:1" on line 17. The value of this message will be unique on each posting due
to the $[COUNT] macro in the value component. See Section 4.1 for more on macros. The script is
configured to restart each time it awakes (line 13), defined by meeting the condition of (NAV DEPTH

< 0.2) which is a proxy for the vehicle being at the surface. The delay start simulates the time
needed for the GPS unit to reacquire satellite signals and is configured to be somewhere in the
range of 20 to 120 seconds (line 14). Once the script gets past the start delay, the script is a single
event (line 17) that repeats indefinitely since reset max is set to unlimited and reset time is set
to end in lines 10 and 11. This script is used in the IvP Helm example simulation mission labeled
"s4 delta" illustrating the PeriodicSurface helm behavior.

9.3 A Script as a Proxy for Simulating Random Wind Gusts

Simulating wind gusts, or in general, somewhat random external periodic drift effects on a vehicle,
are useful for testing the robustness of certain autonomy algorithms. Often they don’t need to be
grounded in very realistic models of the environment to be useful, and here we show how a script
can be used simulate such drift effects in conjunction with the uSimMarine application.

The uSimMarine application is a simple simulator that produces a stream of navigation information,
NAV X, NAV Y, NAV SPEED, NAV DEPTH, and NAV HEADING (Figure 2), based on the vehicle’s last known
position and trajectory, and currently observed values for actuator variables. The simulator also
stores local state variables reflecting the current external drift in the x-y plane, by default zero.
An external drift may be specified in terms of a drift vector, in absolute terms with the variable
USM DRIFT VECTOR, or in relative terms with the variables USM DRIFT VECTOR ADD.

Figure 2: Simulated Wind Gusts: The uTimerScript application may be configured to post periodic sequences of
external drift values, used by the uSimMarine application to simulate wind gust effects on its simulated vehicle.

The script in Listing 7 makes use of the uSimMarine interface by posting periodic drift vectors.
It simulates a wind gust with a sequence of five posts to increase a drift vector (lines 18-22), and
complementary sequence of five posts to decrease the drift vector (lines 24-28) for a net drift of zero
at the end of each script execution.

Listing 9.7: A uTimerScript configuration for simulating simple wind gusts.

1 //--

16

2 // uTimerScript configuration block

3

4 ProcessConfig = uTimerScript

5 {

6 AppTick = 2

7 CommsTick = 2

8

9 paused = false

10 reset_max = unlimited

11 reset_time = end

12 delay_reset = 10:60

13 time_warp = 0.25:2.0

14 script_name = WIND

15 script_atomic = true

16

17 randvar = varname=ANG, min=0, max=359, key=at_reset

18 randvar = varname=MAG, min=0.5, max=1.5, key=at_reset

19

20 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*0.2}", time=0

21 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*0.2}", time=2

22 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*0.2}", time=4

23 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*0.2}", time=6

24 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*0.2}", time=8

25

26 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*-0.2}", time=10

27 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*-0.2}", time=12

28 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*-0.2}", time=14

29 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*-0.2}", time=16

30 event = var=DRIFT_VECTOR_ADD, val="$(ANG),{$(MAG)*-0.2}", Time=18

31 }

The drift angle is chosen randomly in the range of [0, 359] by use of the random variable macro
$[ANG] defined on line 16. The peak magnitude of the drift vector is chosen randomly in the range
of [0.5, 1.5] with the random variable macro $[MAG] defined on line 17. Note that these two macros
have their random values reset each time the script begins, by using the key=at reset option, to
ensure a stream of wind gusts of varying angles and magnitudes.

The duration of each gust sequence also varies between each script execution. The default duration
is about 20 seconds, given the timestamps of 0 to 18 seconds in lines 19-29. The time warp option
on line 12 affects the duration with a random value chosen from the interval of [0.25, 2.0]. A time
warp of 0.25 results in a gust sequence lasting about 80 seconds, and 2.0 results in a gust of about
10 seconds. The time between gust sequences is chosen randomly in the interval [10, 60] by use of
the delay restart parameter on line 11. Used in conjunction with the time warp parameter, the
interval for possible observed delays between gusts is [5, 240]. The reset time parameter set to end,
on line 10 is used to ensure that the script posts all drift vectors to avoid any accumulated drifts
over time. The reset max parameter is set to "unlimited" to ensure the script runs indefinitely.

17

	Overview
	Using uTimerScript
	Configuring the Event List
	Setting the Event Time or Range of Event Times
	Resetting the Script

	Script Flow Control
	Pausing the Timer Script
	Conditional Pausing of the Timer Script and Atomic Scripts
	Fast-Forwarding the Timer Script
	Quitting the Timer Script

	Macro Usage in Event Postings
	Built-In Macros Available
	User Configured Macros with Random Variables
	Support for Simple Arithmetic Expressions with Macros

	Time Warps, Random Time Warps, and Restart Delays
	Random Time Warping
	Random Initial Start and Reset Delays
	Status Messages Posted to the MOOSDB by uTimerScript

	Terminal and AppCast Output
	Configuration Parameters for uTimerScript
	Publications and Subscriptions for uTimerScript
	Variables Published by uTimerScript
	Variables Subscribed for by uTimerScript
	An Example MOOS Configuration Block

	Examples
	A Script for Generating 100 Random Numbers
	A Script Used as Proxy for an On-Board GPS Unit
	A Script as a Proxy for Simulating Random Wind Gusts

