
uProcessWatch: Monitoring MOOS Application Health
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Overview 1

2 Typical uProcessWatch Usage Scenarios 2
2.1 Using uProcessWatch with AppCasting and pMarineViewer 2
2.2 Directly Accessing the PROC WATCH SUMMARY Output . 3

3 Using and Configuring the uProcessWatch Utility 3
3.1 The DB CLIENTS Variable for Detecting Missing Processes . 4
3.2 Defining the Watch List . 4
3.3 Reports Generated . 4
3.4 Watching and Reporting on a Single MOOS Process . 5
3.5 A Heartbeat for the Watch Dog . 5
3.6 Excusing a Process . 6
3.7 Allowing Retractions if a Process Reappears . 6

4 Configuration Parameters of uProcessWatch 7
4.1 An Example MOOS Configuration Block . 8

5 Publications and Subscriptions for uProcessWatch 8
5.1 Variables Published by uProcessWatch . 9
5.2 MOOS Variables Subscribed for by uProcessWatch . 9

1 Overview

The uProcessWatch application monitors the health of a set of MOOS application. It does two
things:

� It monitors the presence of a set of MOOS apps,

� It monitors the CPU load of a set of MOOS apps.

In the case of the former, uProcessWatch continually monitors the DB CLIENTS list for applications
it has responsibility for watching. In the case of the latter, MOOS apps are already monitoring
and reporting their own CPU load and uProcessWatch is doing nothing more than gathering that
information for display in the terminal or appcast message. An example terminal output is shown
below:

1

Figure 1: A typical terminal or appcast report for uProcessWatch.

The first line, ”Summary: All Present”, tells you that no processes are missing. This is also posted
in the variable PROC WATCH SUMMARY. The list of applications launched with pAntler is shown in the
next block. The main body shows, for each watched application, the reason why the process is on
the watch list, the status, current CPU load as reported by the process itself, and the maximum
CPU load noted so far.

The bottom section of the terminal output shows the events (similar to all appcasting output).
In the case of uProcessWatch, events note either the arrival or disappearance of a watched process.
Each event also results in the posting of the variable PROC WATCH EVENT. The user may configure
uProcessWatch to not watch certain named applications or patterns of applications, such as uXMS*,
to avoid unwarranted alerts.

2 Typical uProcessWatch Usage Scenarios

2.1 Using uProcessWatch with AppCasting and pMarineViewer

The first usage scenario is perhaps the most typical since it is viable both in simulation and in the
field where the vehicles have a network connection to a shoreside MOOS community. The idea is
shown in Figure 2 below. Multiple vehicles each run uProcessWatch locally. A network connection
from each vehicle to a shoreside MOOS community is used to share appcast messages using pShare.
The shoreside community is running pMarineViewer which supports a multi-vehicle appcast viewing

2

mode. In this way, the shoreside user may monitor the health of all vehicles’ applications with one
tool. If a process on a single vehicle goes missing, the menu item on the shoreside viewer for that
vehicle turns red.

Figure 2: Using uProcessWatch with AppCasting: uProcessWatch is run locally on each fielded vehicle, generating
appcasts posted to the local MOOSDB. Appcasts are shared to the shoreside and collected by the pMarineViewer tool
for monitoring processes across all vehicle. This scenario is relevant when there is a network connection from the
vehicles to the shoreside.

2.2 Directly Accessing the PROC WATCH SUMMARY Output

The main health indicator produced by uProcessWatch in the MOOS variable PROC WATCH SUMMRY.
This can be checked on a remote machine by simply scoping on this variable. The uMS application
distributed with MOOS will do the trick for example. To focus solely on this variable, the uXMS tool
may also be used as follows:

$ uXMS --server_host=10.25.0.72 --server_port=9000 PROC_WATCH_SUMMARY

Or one may ssh onto the vehicle and launch a scope locally on this variable.

3 Using and Configuring the uProcessWatch Utility

The primary configuration of uProcessWatch is defining the watch list, the set of other MOOS
processes to monitor. By default all processes ever noted to be connected to the MOOSDB are on
the watch list. The same with all processes name in the Antler configuration block of the mission file.
This default is used because it is simple, and a good rule of thumb is that if any process disconnects
from the MOOSDB, it’s probably a sign of trouble.

3

3.1 The DB CLIENTS Variable for Detecting Missing Processes

The MOOSDB, about once per second, posts the variable DB CLIENTS containing a comma-separated
list of clients (other MOOS apps) currently connected to the MOOSDB. When uProcessWatch is
configured to watch for all processes, it simply augments the watch list for any process that ever
appears on the incoming DB CLIENTS mail. If the process is then missing at a later reading of this
DB CLIENTS mail, is is considered AWOL.

3.2 Defining the Watch List

The watch list is a list of processes, i.e., MOOS apps. Each item on the list will be reported missing
if it does not appear in the list of clients shown by the current value of DB CLIENTS. By default, all
clients that ever appear on the DB CLIENTS list will be added to the watch list. The same is true
for all processes named in the Antler configuration block of the mission file. This default can be
overridden by the following configuration option:

watch all = false

The value of watch all may also be set to "antler" to indicate that items on the Antler list are to
be watched by default, but not those that appear in the DB CLIENTS list. Likewise it may be set
to "dbclients" to indicate that items in the DB CLIENTS list are to be watched by default, but not
those in the Antler list. Processes may be added to the watch list by explicitly naming them in
configuration block as follows:

watch = process name[*]

A process may be named explicitly, or the prefix of the process may be given, e.g., watch=uXMS*.
This will match all processes fitting this pattern, e.g., uXMS 845, uXMS 23.

Processes may be explicitly excluded from the watch list with configurations of the following:

nowatch = process name[*]

This is perhaps most appropriate when coupled with watch all=true. If a process is for some reason
both explicitly included and excluded, the inclusion takes precedent.

3.3 Reports Generated

There are three reports generated in the variables:

� PROC WATCH EVENT

� PROC WATCH SUMMARY,

� PROC WATCH FULL SUMMARY

All reports are generated only when there is a change of status in one of the watched processes.
The first type of report is generated for each event when a watched process is noted to have connected
or disconnected to the MOOSDB. The following are examples:

PROC_WATCH_EVENT = "Process [pMarinePID] is noted to be present."

PROC_WATCH_EVENT = "Process [pMarinePID] has died!!!!"}

PROC_WATCH_EVENT = "Process [pMarinePID] is resurected!!!"

4

In the first line above, a process is reported to be present that was never previously on the watch
list. In the third line a process that was previously noted to have left the watch list is reported to
have returned or been restarted.

The PROC WATCH SUMMARY variable will list the set of processes missing from the watch list or
report "All Present" if no items are missing. For example:

PROC_WATCH_SUMMARY = "All Present"

PROC_WATCH_SUMMARY = "AWOL: pMarinePID,uSimMarine"

The PROC WATCH FULL SUMMARY variable will list a more complete and historical status for all
processes on the watch list. For example:

PROC_WATCH_FULL_SUMMARY = "pHelmIvP(1/0),uSimMarine(1/1),pMarinePID(2/2)"

The numbers in parentheses indicate how many times the process has been noted to connect to the
MOOSDB over the number of times it has been noted to have disconnected. A report of "(1/0)" is
the healthiest of possible reports, meaning it has connected once and has never disconnected.

3.4 Watching and Reporting on a Single MOOS Process

If desired, uProcessWatch may be configured to generate a report dedicated a single MOOS process
with the following example configuration:

watch = pBasicContactMgr : BCM_OK

In this case a MOOS variable, BCM OK, will be set to either true or false depending on whether the
process pBasicContactMgr presently appears on the list of connected clients in listed in DB CLIENTS.

3.5 A Heartbeat for the Watch Dog

By default uProcessWatch will only post PROC WATCH SUMMARY when its value changes. A long stale
PROC WATCH SUMMARY = "All Present" likely means that everything is fine. It could also mean the
uProcWatchSummary process itself died without ever posting anything to suggest otherwise. The user
has the configuration option to post PROC WATCH SUMMARY every N seconds regardless of whether or
not the value has changed:

summary_wait = 30 // Summary posted at least every 30 seconds

This in effect creates a heartbeat for monitoring uProcessWatch. The default value for this pa-
rameter is −1. Any negative value will be interpreted as a request for postings to be made only
when the posting value changes. Regardless of the summary wait setting, the other two reports,
PROC WATCH EVENT and PROC WATCH FULL SUMMARY, will only be made when the values change.

5

3.6 Excusing a Process

An application on the watch list may be excused and disconnect from the MOOSDB if it posts to the
variable EXITED NORMALLY with the name of itself. A check is made by uProcessWatch of the source
of the posting to ensure that message was posted by the exiting process. It’s up to the developer
of an application to build in the feature declaring a normal exit. An example is the uTimerScript

application which has the ability to execute a script of postings to the MOOSDB followed by an
exit. In this case, the status of application becomes EXCUSED, as shown in Figure 3.

Figure 3: The process uTimerScript has gone missing due to its own intentional exit. Before exiting it posted
EXITED NORMALLY=uTimerScript, and therefore uTimerScript is regarded as excused.

Excusing a missing process is different than choosing to not include it on the watch list. Some
applications are, by their nature, designed to disappear at some point. Scoping tools like uXMS,
uPokeDB or uHelmScope are examples applications that regularly appear and disappear. They are
best excluded entirely from the watch list with the nowatch configuration parameter.

3.7 Allowing Retractions if a Process Reappears

With the addition of appcasting to uProcessWatch, a missing process also triggers an appcast run
warning, as shown on the top in Figure 4 below.

6

Figure 4: The process pNodeReporter has gone missing. This is noted as a runtime warning at the top, and the
MISSING status in the body of the report.

However, there are cases where a process goes missing but then returns, in which case the warning
is a distraction. These reasons include.

� The application may actually exit and then restart a short time later.

� The application my be running at a very slow apptick in which case it may be dropped from
the DB CLIENTS list momentarily.

� The application may be missing only because it hasn’t launched yet.

To address this, uProcessWatch will allow retractions on appcast run warnings. If the application
disappears and reappears, the appcast run warning will disappear. The successive posted values
of PROC WATCH SUMMARY will show that the process was at some point declared AWOL, but once the
process returns, the appcast output will no longer raise attention to the issue.

Of course there are situations where a process that disappears and then reappears is an indication
of a problem, not to be swept under the rug. In this case the default behavior of uProcessWatch
may be changed by setting allow retractions to false. Presently this setting cannot be set on a
per-process manner.

4 Configuration Parameters of uProcessWatch

The following parameters are defined for uProcessWatch. A more detailed description is provided in
other parts of this section. Parameters having default values indicate so in parentheses below.

7

Listing 4.1: Configuration Parameters for uProcessWatch.

allow retractions: If true, run warnings are retracted if a process reappears after disappearing.
Legal values: true, false. The default is true.

nowatch: A process or list of MOOS processes to not watch.

post mapping: A mapping from one posting variable name to another.

summary wait: A maximum amount of time between PROC WATCH SUMMARY postings. Nega-
tive value indicates posting occurs only when the value changes regardless
of elapsed time. Legal values: any numerical value. The default is −1.

watch: One or more comma-separated MOOS process to watch and report on.

watch all: If true, watch all processes that become known either via the DB CLIENTS

list or the Antler list. Legal values: true, false. The default is true.

4.1 An Example MOOS Configuration Block

Listing 2 shows an example MOOS configuration block produced from the following command line
invocation:

$ uProcessWatch --example or -e

Listing 4.2: Example configuration of the uProcessWatch application.

1 ProcessConfig = uProcessWatch

2 {

3 AppTick = 4

4 CommsTick = 4

5

6 watch_all = true // The default is true.

7

8 watch = pMarinePID:PID_OK

9 watch = uSimMarine:USM_OK

10

11 nowatch = uXMS*

12

13 allow_retractions = true // Always allow run-warnings to be

14 // retracted if proc re-appears

15

16 // A negative value means summary only when status changes.

17 summary_wait = 10 // Seconds. Default is -1.

18

19 post_mapping = PROC_WATCH_FULL_SUMMARY, UPW_FULL_SUMMARY

20 }

5 Publications and Subscriptions for uProcessWatch

The interface for uProcessWatch, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uProcessWatch --interface or -i

8

5.1 Variables Published by uProcessWatch

The primary output of uProcessWatch to the MOOSDB is a summary indicating whether or not
certain other processes (MOOS apps) are presently connected.

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

� PROC WATCH EVENT: A report indicating a particular process has been noted to be gone missing
or noted to have (re)joined the list of active processes.

� PROC WATCH FULL SUMMARY: A single string report for each process indicating how many times it
has connected and disconnected from the MOOSDB.

� PROC WATCH SUMMARY: A report listing all missing processes, or ”All Present” if no processes are
missing.

The user may also configure uProcessWatch to make a posting dedicated to a particular watched
process. For example, with the configuration watch=pNodeReporter:PNR OK, the status of this process
is conveyed in the MOOS variable PNR OK, set to either true or false depending on whether or not it
is present.

The variable name for any posted variable may be changed to a different name with the
post mapping configuration parameter. For example, post mapping=PROC WATCH EVENT, UPW EVENT

will result in events being posted under the UPW EVENT variable rather than PROC WATCH EVENT variable.

5.2 MOOS Variables Subscribed for by uProcessWatch

The following variable(s) will be subscribed for by uProcessWatch:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� DB CLIENTS: A comma-separated list of clients currently connected to the MOOSDB, posted
by the MOOSDB. Used for detecting missing processes. Section 3.1.

� EXITED NORMALLY: An indication made by a process, potentially on the watch list, that it has
exited normally and should be excused, and not regarded as missing. Section 3.6.

� <PROCNAME> STATUS: The status string generated for all MOOSApps, containing the current
CPU load among other things.

9

	Overview
	Typical uProcessWatch Usage Scenarios
	Using uProcessWatch with AppCasting and pMarineViewer
	Directly Accessing the PROC_WATCH_SUMMARY Output

	Using and Configuring the uProcessWatch Utility
	The DB_CLIENTS Variable for Detecting Missing Processes
	Defining the Watch List
	Reports Generated
	Watching and Reporting on a Single MOOS Process
	A Heartbeat for the Watch Dog
	Excusing a Process
	Allowing Retractions if a Process Reappears

	Configuration Parameters of uProcessWatch
	An Example MOOS Configuration Block

	Publications and Subscriptions for uProcessWatch
	Variables Published by uProcessWatch
	MOOS Variables Subscribed for by uProcessWatch

