uFldShoreBroker: Brokering Shore Connections
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering
MIT, Cambridge MA 02139

1 Overview 1
2 Bridging Variables Upon Connection to Nodes 2
2.1 Inter-MOOSDB Bridging with pShare 0. 2
2.2 Handling a Valid Incoming Ping from a Remote Node 3
2.3 Vanilla Bridge Arrangements oL L e e e e e 4
2.4 Bridge Arrangements with Macros 4
2.5 A Common Configuration Shortcut - the gbridge Parameter 5
3 Usage Scenarios for the uFldShoreBroker Utility 5
4 Terminal and AppCast Output 6
5 Configuration Parameters of uFldShoreBroker 7
6 Publications and Subscriptions for uFldShoreBroker 8
6.1 Variables Published by uFldShoreBroker oo, 9
6.2 MOOS Variables Subscribed for by uFldShoreBroker 9
6.3 Command Line Usage of uFldShoreBroker 9

1 Overview

The uFldShoreBroker application is a tool for brokering connections between a shoreside community
and one or more nodes (simulated or real vehicles). A shoreside community is collection of MOOS
processes typically running a GUI providing a situational display and managing messages to and
from fielded vehicles. This is depicted in the notional rendering in Figure 1 below. The shoreside
community in practice is often situated on a ship with UUVs below, and is more aptly referred to as
the topside community. The user interacts with the GUI or perhaps other communication modules,
to send high-level messages to the vehicles.

The uFldShoreBroker application is used primarily in coordination with uFldNodeBroker, running
on the vehicles, to discover and share host IP and port information to automate the dynamic
configurations of pShare. Inter-vehicle communications over the network are handled by pShare
in both simulation with single or multiple machines as well as on fielded vehicles using Wi-Fi or
cellphone connections. The pShare application simply needs to know the IP address and port number
of connected machines. Often these aren’t known at run-time and even if they were, maintaining that
information in configuration files may be unduly cumbersome, especially for large sets of vehicles.
This tool is meant to automate the configuration by letting the nodes and shoreside community
discover each other by letting (uFldShoreBroker) respond to incoming pings, i.e., initialization
messages, from nodes on the network. The typical layout is shown in Figure 1.

[Other Apps] { pShare]

NODE_BROKER_PING
Shoreside NODE_BROKER_ACK

Vehicles
=2

uFldNodeBroker
pNeodeReporter

Other Apps

Figure 1: Typical uFldShoreBroker Topology: A vehicle (node) sends information about itself (IP address and
port number) to the shoreside, received by uFldShoreBroker. It responds by (a) acknowledging the connection to the
node, and (b) establishing user configured bridges of particular MOOS variables to the node.

MCOSDB

pNodeReporter

pHelmIvp | | | uFldNodeBroker

Other Apps

The functionality of uFldShoreBroker paraphrased:

e Discover the shoreside’s own host information (typically from pHostInfo).

e Await incoming NODE BROKER PING messages from non-local vehicles.

e Upon an incoming ping, respond to the nodes with a NODE_BROKER_ACK message to the location
specified in the ping message.

e Establish new bridges to the nodes for variables specified previously by the user in the
uFldShoreBroker configuration.

e Keep sending acknowledgments periodically to confirm to vehicles that they are still connected
to the shoreside community.

2 Bridging Variables Upon Connection to Nodes

A primary function of uFldShoreBroker is to establish bridging relationships to a remote node
community after it has received a ping from that community. These variables are specified in the
configuration block with lines like bridge = "src=DEPLOY ALL, alias=DEPLOY" as in Listing 3. This
step is described next.

2.1 Inter-MOOSDB Bridging with pShare

Static bridging with pShare is done by specifying the desired route in the pShare configuration block
with a line of the form:

output = src_name=VAR, dest_name=ALIAS, route=ROUTE

For example:

output = src_name=DEPLOY_HENRY, dest_name=DEPLOY, route=12.56.111.1:9200

The above connection may be used to send the vehicle Henry the deploy command from the shoreside
community. The problem is that the shoreside may not know the IP address of Henry (or the port
on which it’s pShare is listening) until it presents itself to the shoreside at run time.

In this case, dynamic share registration needs to be used by sending pShare a message after it
has been launched. For example, the above sharing relationship could be established by sending the
following message:

PSHARE_CMD = "cmd=output, src_name=DEPLOY_ALL, dest_name=DEPLQY,
route=2.56.111.1:9200

It is the job of uFldShoreBroker to post the above style dynamic requests once the node information
becomes known to the shoreside community.

2.2 Handling a Valid Incoming Ping from a Remote Node

The basic job of uFldShoreBroker is to await incoming pings, and use the information in a ping
message to (a) decide if the ping should be accepted, and (b) send the appropriate response back to
the sender, and (c) set up new outgoing pShare relationships if the ping is indeed accepted. The
contents of a ping may look something like:

NODE_BROKER_PING = "community=henry,host=192.168.1.22,port=9000,time_warp=10
pshare_iroutes=192.168.1.22:9200,time=1325178800.81"

There must be a match in the MOOS time warp used by the shoreside MOOS community and any
node connected to the shore. This is always 1 when operating vehicles in the field, but may be set
to a much larger number in simulation. The time warp is set with the parameter MOOSTimeWarp at
the top of the .moos configuration file.

The ping consists of three key pieces of information:

e The community name of the node,
e The IP address of the node,
e The input routes on which the node is listening for messages with its own local pShare running.

Once this information is known by the shoreside broker, new bridges can be established for variables
identified by the user. The only other information needed is (a) the name of the variable in the
local M00sDB, and (b) the name (alias) of the variable as it is to be known in the remote MOOSDB.
Once a valid ping has been received and accepted, uFldShoreBroker is ready to establish bridge
arrangements with its local pShare running.

2.3 Vanilla Bridge Arrangements

The simplest bridge arrangement specifies (a) the variable as it is known locally, and (b) the variable
name as it is to be known remotely. This is done with a uFldShoreBroker configuration line similar
to:

bridge = src=DEPLOY_ALL, alias=DEPLOY

For each unique incoming ping, a new bridge arrangement will be requested. By unique, we mean
having a distinct community (remote vehicle) name. For example, if pings are received and accepted
from henry, james, and ike, uFldShoreBroker would make three separate posts, perhaps looking like:

PSHARE_CMD = "src_name=DEPLOY_ALL, dest_name=DEPLOY, route=2.56.111.1:9200"
PSHARE_CMD = "src_name=DEPLOY_ALL, dest_name=DEPLOY, route=2.56.111.3:9200"
PSHARE_CMD = "src_name=DEPLOY_ALL, dest_name=DEPLOY, route=2.56.111.6:9200"

At this point the behavior of pshare on the shoreside would be functionally equivalent to the scenario
where the following three lines were in the pShare configuration block:

output = src_name=DEPLOY_ALL, dest_name=DEPLOY, route=12.56.111.1:9200
output = src_name=DEPLOY_ALL, dest_name=DEPLOY, route=12.56.111.3:9200
output = src_name=DEPLOY_ALL, dest_name=DEPLOY, route=12.56.111.6:9200

2.4 Bridge Arrangements with Macros

The user may configure uFldshoreBroker with bridge arrangements containing a couple types of
macros. For example, consider the configuration:

bridge = src=DEPLOY_$V, alias=DEPLOY

The $V macro will expand to the name of the vehicle when it comes time to request a new bridge. If
the newly received ping is from the node named gilda, the bridge request from the above pattern
may look like:

PSHARE_CMD = cmd=output, src_name=DEPLOY_GILDA, dest_name=DEPLOY,
route=2.56.111.1:9200

Note the vehicle name in the MOOS variable macro was expanded to be upper case, even though the
ping information referred to the vehicle as gilda. This is just to aid in the convention that MOOS
variable are typically all upper case. If one really want a literal expansion with no case altering, the
macro $v, lower-case v, may be used instead. The macro is only respected as part of src field. In
other words, if the bridge were configured with alias=DEPLOY_$V, the macro would not be expanded.

The other type of macro implemented is the $8 macro, as in:

bridge = src=LOITER_$N, alias=LOITER

The $N macro will expand to the integer value representing number of unique pings received thus far.
For example, if three pings are received and accepted from henry, james, and ike, uF1dShoreBroker
would make three separate posts, perhaps looking like:

PSHARE_CMD = "src_name=L0ITER_1, dest_name=LOITER, route=2.56.111.1:9200"
PSHARE_CMD = "src_name=L0OITER_2, dest_name=LOITER, route=2.56.111.4:9200"
PSHARE_CMD = "src_name=L0OITER_3, dest_name=LOITER, route=2.56.111.12:9200"

This may be useful when used in conjunction with another MOOS process generating output
generically for N vehicles, without having to know the vehicle names in advance.

2.5 A Common Configuration Shortcut - the qbridge Parameter

A common usage pattern is to configure uFldShoreBroker to request two types of bridges for a given
variable, for example:

bridge = src=DEPLOY_ALL, alias=DEPLOY
bridge = src=DEPLOY_$V, alias=DEPLOY
bridge = src=RETURN_ALL, alias=RETURN
bridge = src=RETURN_$V, alias=RETURN

This could be use in the shoreside community for easily commanding vehicles. When the user
wishes to deploy all vehicles, a posting of DEPLOY_ALL="true" does the trick. If the user wishes only
the vehicle james to return, a posting of RETURN_JAMES="true" may be be made. This pattern is so
common that this shortcut is supported. This is done with the gbridge, ”quick bridge”, parameter.
The above four configuration lines could be accomplished instead by:

gqbridge = DEPLOY, RETURN

3 Usage Scenarios for the uFldShoreBroker Utility

The uFldShoreBroker was designed with a canonical command-and control scenario in mind. The
idea is that the N deployed vehicles have a common autonomy protocol implemented. For example,
a message to deploy or return a vehicle is the same message for each deployed vehicle. The idea is
that two types of communication channels need to be established with pShare, (a) messages sent to
all vehicles, and (b) messages sent to a particular named vehicle. The convention proposed here
is to do this with the two types of bridging described in the discussion of the gbridge parameter,
in Section 2.5. For a variable such as DEPLOY, a posting in the shoreside community to DEPLOY_ALL
would go to all known vehicles, and a posting to DEPLOY HENRY would only go to that particular
vehicle.

DEPLOY_ JAMES
'

(Ike and Henry
become known)

DEPLOY_ALL I:> DEPLOY_ALL

DEPLOY ALL DEPLOY_ ALL

¥

DEPLOY JAMES DEPLOY_ IKE DEPLOY:HENRY

| Vehicle: jame:] | Vehicle: ike] I V:hicle: henry

Figure 2: Common uFldShoreBroker Usage Scenario: As vehicles become known to the shoreside, each vehicle
has two new bridges established. The first is the same for all vehicles to allow broadcasting, and the second bridge is

unique to the particular vehicle, for individual command and control.

4 Terminal and AppCast Output

The uFldShoreBroker application produces some useful information to the terminal on every iteration
of the application. An example is shown in Listing 1 below. This application is also appcast
enabled, meaning its reports are published to the M00SDB and viewable from any uMAC application or
plarineViewer. See the appcasting documentation for more on appcasting and viewing appcasts.
On line 1, the application iteration is shown, more as a heartbeat indicator. In lines 4-7, the
primary variables consumed and posted by uFldShoreBroker are summarized in terms of how many
posts have been made and received for each variable.

Listing 4.1: Example terminal output of the uFldShoreBroker tool.

1

2 uFldShoreBroker_PS shoreside (109)
3

4

5 Total PHI_HOST_INFO received: 11

6 Total NODE_BROKER_PING received: 180

7 Total NODE_BROKER_ACK posted: 180

8 Total PSHARE_CMD posted: 34

9

10

11

12 Shoreside Node(s) Information:

13

14

15 Community: shoreside

16 HostIP: 128.30.27.202

17 Port MOOSDB: 9000

18 Time Warp: 6

19 IRoutes: localhost:9200

20

21

22 Vehicle Node Information:

23

24

25 Node IP Elap pShare

26 Name Address Status Time Input Route(s) Skew
27 -—-——— —-———- -—= -——- -
28 henry 128.30.27.202 ok 0.0 128.30.27.202:9301 1.6542

29 gilda 128.30.27.202 ok 0.0 128.30.27.202:9302 1.7572
30

31 Recent Events (2):

32 [22.06]: New node discovered: gilda

33 [16.04]: New node discovered: henry

In lines 11-19, the key shoreside properties are listed. Typically, but not always, the shoreside
community is name "shoreside" as indicated on line 15. The shoreside IP address, determined by
pHostInfo, is shown on line 16. The time warp, and MOOSDB port are read from the shoreside .moos
file and listed on lines 17 and 18. The input routes used by pShare are listed on line 19. If lines
16 or 19 are blank, uFldShoreBroker will not make any connections and the first place to look is
whether or not pHostInfo is running and producing valid information.

In lines 21-33, the status of each of the known vehicles is shown. The first two vehicles had their
pings accepted. Their IP addresses are shown in the second column. Their status is shown in the
third column. The elapsed time in the fourth column is the time since the last ping was received by
the shoreside. The fifth column shows the input routes being used by pShare running on the vehicle
node. If multiple routes are in use, this will be shown over multiple lines. The sixth column shows
the time skew between the timestamp in the NODE BROKER_PING message compared to the time it was
received. Some of this is due to (a) latency in transmission, (b) latency due to App Ticks in brokers
on both sides, and (c) clock discrepancy between the shoreside and the node computers. It’s also
worth mentioning that the skew will be magnified for higher time warps. Currently incoming ping
connection requests are not denied due to a high clock skew, but this may be implemented in the
future.

5 Configuration Parameters of uFldShoreBroker
The following parameters are defined for uFldShoreBroker.

Listing 5.2: Configuration Parameters for uFldShoreBroker.

auto_bridge appcast: Suppress the normal automatic bridging of the APPCAST REQ variable. The
default is false.

auto_bridge mhash: Suppress the normal automatic bridging of the MISSION HASH variable. The
default is false.

auto_bridge realmcast: Suppress the normal automatic bridging of the REALMCAST REQ variable. The
default is false.

bridge: Names a MOOS variable to be bridged to a node community. Section 2.3.

keyword: Optionally set a keyword. If set, incoming NODE BROKER_PING messages must

contain this keyword or else they ping will not get a response. Section

TBD.
gbridge: Shorthand notation for a common bridging pattern. Section 2.5.
try_vnode: TBD

warning on_stale: If true, generate a warning if a previously known node has not been heard

from in more than 10 seconds.

As an example, bridge = src =DEPLOY ALL, alias=DEPLOY, will result in the bridging of variable

DEPLOY_ALL from the local MOOSDB, to the variable DEPLOY in a remote MOOS community. Further
examples are given in Section 2.

An Example MOOS Configuration Block

Listing 3 shows an example MOOS configuration block produced from the following command line
invocation:

$ uFldShoreBroker --example or -e

Listing 5.3: Example configuration of the uFldShoreBroker application.

1

2 uFldShoreBroker Example MOOS Configuration
3

4

5 ProcessConfig = uFldShoreBroker

6 {

7 AppTick =4

8 CommsTick = 4

9

10 warning_on_stale = false (default)

11 auto_bridge_realmcast = true (default)

12 auto_bridge_appcast = true (default)

13 auto_bridge_mhash = true (default)

15

15 bridge = src=DEPLOY_ALL, alias=DEPLOY

16 bridge = src=DEPLOY_$V, alias=DEPLOY

17

18 try_vnode = 192.168.4.24:9200

19 try_vnode = 192.168.4.25:9200

20

21 gbridge = RETURN

22 gbridge = NODE_REPORT, STATION_KEEP

23

24 bridge = src=UP_LOITER_$N, alias=UP_LOITER
25

26 // Note: [gbridge = FOO] is shorthand for
27/ // [bridge = src=F00_$V, alias=F00] and
28 // [bridge = src=FO0_ALL, alias=F00]
29
30 app_logging = true // false is default
31}

6 Publications and Subscriptions for uFldShoreBroker

The interface for uFldShoreBroker, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

‘ $ uFldShoreBroker --interface or -i

6.1 Variables Published by uFldShoreBroker

The primary output of uFldShoreBroker to the MOOSDB are the requests to pShare for registrations,
and the outgoing acknowledgment replies to remote node/vehicle communities.

e APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 4.

e PMB REGISTER: A message to pShare to add a new bridge for a given variable and given target
MOOS community at a specified IP address and port number.

e NODE BROKER_ACK: A message written locally but bridged to a remote vehicle MOOS community,
containing IP address and port information about the local shoreside community.

6.2 MOOS Variables Subscribed for by uFldShoreBroker

The uFldShoreBroker application subscribes to the following MOOS variables:

e APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

e PHI HOST_INFO: Information about the local host IP address, the MOOS community name, the
port on which the DB is running, and the port on which the local pShare is listening for UDP
messages.

e NODE BROKER PING: Information published presumably by uFldNodeBroker running in a remote
vehicle community. Message has information about the node host including the community
name, IP address, the port number for the M00SDB, input route(s) for the local pShare process.

6.3 Command Line Usage of uFldShoreBroker

The uFldShoreBroker application is typically launched with pAntler, along with a group of other
shoreside modules. However, it may be launched separately from the command line. The command
line options may be shown by typing:

$ uFldShoreBroker --help or -h

Listing 6.4: Command line usage for the uFldShoreBroker tool.

Usage: uFldShoreBroker file.moos [OPTIONS]

Options:
--alias=<ProcessName>
Launch uFldShoreBroker with the given
process name rather than uFldShoreBroker.
--example, -e
Display example MOOS configuration block.

O ©W 00 ~NO U WN =

[

11
12
13
14
15
16

--help, -h

Display this help message.
—--interface, -i

Display MOOS publications and subscriptions.
--version,-v

Display release version of uFldShoreBroker.

10

	Overview
	Bridging Variables Upon Connection to Nodes
	Inter-MOOSDB Bridging with pShare
	Handling a Valid Incoming Ping from a Remote Node
	Vanilla Bridge Arrangements
	Bridge Arrangements with Macros
	A Common Configuration Shortcut - the qbridge Parameter

	Usage Scenarios for the uFldShoreBroker Utility
	Terminal and AppCast Output
	Configuration Parameters of uFldShoreBroker
	Publications and Subscriptions for uFldShoreBroker
	Variables Published by uFldShoreBroker
	MOOS Variables Subscribed for by uFldShoreBroker
	Command Line Usage of uFldShoreBroker

