
uFldObstacleSim: Simulating Obstacles
June 2020

July 2021 - minor additions

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Overview 1

2 A Quick Start Guide to Using uFldObstacleSim 2
2.1 A Working Example Mission - the Bo Alpha Mission . 3
2.2 A Bare-Bones Example uFldObstacleSim Configuration . 4
2.3 A Simple Obstacle File . 4
2.4 Generating an Obstacle File . 5

3 Dynamic Resetting of Ground Truth Obstacles 5
3.1 Parameters for Enabling Dynamic Resetting . 6
3.2 MOOS Variable for Enabling Dynamic Resetting . 6
3.3 Enabling Dynamic Resetting in the Bo Alpha Mission . 6

4 Simulating Sensor Data from Ground Truth Obstacles 7
4.1 Enabling the Points Sensor Data Mode . 7
4.2 Generation of Simulated Sensor Points . 8

5 Obstacle Expiration 8
5.1 Case 1 - Expiration of Sensor Points . 9
5.2 Case 2 - Expiration of Ground Truth Obstacles . 10

6 Configuration Parameters of uFldObstacleSim 11
6.1 An Example MOOS Configuration Block . 12

7 Publications and Subscriptions for uFldObstacleSim 13
7.1 Variables Published by uFldObstacleSim . 13
7.2 Variables Subscribed for by uFldObstcleSim . 13

8 Terminal and AppCast Output 14

1 Overview

The uFldObstacleSim application is a tool for simulating obstacles, and obstacle sensor output.
Ground truth position and size of obstacles are read from a pre-generated obstacle file. The
simulation generates information in one of two modes, in one of two manners:

� Obstacle polygons are simply published and shared to all vehicles, or

� Simulated sensor data, similar to Lidar points on the obstacle, are published and shared to
the vehicles. Downstream apps are then left with the job of inferring the obstacle from the
sensor data.

1

When this simulator is operating in the first mode, it publishes information to the variable
GIVEN OBSTACLE. In the second mode, it publishes the information to the variable TRACKED FEATURE.

The simulator also supports two different modes of obstacle generation:

� By default, the obstacles are simply read in from the obstacle file and never change.

� A second mode is supported where the obstacles are periodically regenerated with the same
configuration parameters used for creating the original obstacle file.

A key parameter in regeneration is the obstacle region, a polygon within which all randomly
generated obstacles are guaranteed to reside within. During a simulation, we want to take care that
obstacle regeneration does not take place while any vehicles are in the obstacle region. Otherwise
an obstacle could be generated in a position currently occupied by, or just in front of a vehicle.
The ensuing unavoidable collision would skew the test results. The obstacle simulator therefore
will monitor vehicle positions and only regenerate obstacles when all vehicles are a safe distance
from the obstacle region. The vehicle locations are known to the simulator from the NODE REPORT

messages received from the vehicles.

The setup overview is depicted in Figure 1:

Figure 1: The Obstacle Simulator: The obstacle simulator resides on the shoreside and ingests and maintains
ground truth obstacle state. Information is fed to each connected vehicle. Typically the primary consumer on the
vehicle side is the obstacle manager, pObstacleMgr.

2 A Quick Start Guide to Using uFldObstacleSim

To get started, we (a) point you to an example mission using uFldObstacleSim, (b) lay out the
minimum uFldObstacleSim configuration components, i.e., those which do not have default values,
and (c) discuss the structure of a simple obstacle file representing the ground-truth set of obstacles
used by the simulator.

2

2.1 A Working Example Mission - the Bo Alpha Mission

The example mission is referred to as the Bo Alpha example mission and may be found and launched
in the moos-ivp distribution with:

$ cd moos-ivp/ivp/missions/m34_bo_alpha

$./launch.sh 10

This launches the simulation with time warp 10. The time warp may be adjusted to suit your
preference and is bounded above by your computer’s processing capability. After launching and
hitting the deploy button, you should see something similar to Figure 2.

Figure 2: The Bo Alpha Mission: The Bo Alpha example mission involves a two vehicles each traversing East-West
through an obstacle field created by the simulator. The helm on both vehicles is performing obstacle avoidance and
COLREGS based collision avoidance with the other vehicle. The true obstacle is the inner polygon. When the vehicle
is actively avoiding the obstacle, the true obstacle is rendered more opaque, and the buffer region around the obstacle
is rendered.
Video:(1:01): https://vimeo.com/424523746

There are a few notable components of this simulation that comprise the nature of the mission:

� The uFldObstacleSim: Running on the shoreside, distributes knowledge of the obstacles to
each vehicle.

� The obstacles.txt file read in by the uFldObstacleSim obstacle simulator.

� The gen obstacles command-line app that generated the obstacles.txt file, used by the
simulator. This app chooses random obstacle locations within a polygon and ensures a given
minimum spacing between obstacles.

3

https://vimeo.com/424523746

� pObstacleMgr app running on each vehicle that receives the obstacle knowledge from the
obstacle simulator and maintains a set of known obstacles. It will also generate obstacle alerts
which result in spawned obstacle avoidance behaviors in the helm.

It may also be worth considering, in Figure 2, where all the visual artifacts shown in the pMarineViewer
snapshot are coming from:

� The uFldObstacleSim app is publishing the large square rectangle, which is the region from
which the random obstacles were originally chosen from. It is also publishing all five ground-
truth obstacles. The three north-west obstacles have other things being rendered over them,
but the two south-east obstacles are the ones published by uFldObstacleSim.

� The Avoid Obstacle behavior in the helm also publishes the obstacle polygon when the behavior
is active, but it publishes a request to render the polygon with more opacity. Thus the three
north-west polygons show that at least one of the vehicles is actively avoiding it. The behavior
also published the buffer polygon around the ground truth obstacle, with less opacity. And of
course the behavior is also publishing the loiter polygon to the far east and west to which
each is transiting through the obstacle field.

� Not shown in the figure, but when the two vehicles are close to each other and also actively
engaging in collision avoidance, each vehicle’s collision avoidance behavior will render a line
between vehicles, with color varying with the behavior’s priority weight.

2.2 A Bare-Bones Example uFldObstacleSim Configuration

Listing 1 below shows a bare-bones configuration. Line 3 names a obstacle file, containing the
ground truth description of objects in the field. This format is described in Section 2.3, and an
example obstacle file is in the same directory as the Bo Alpha example mission. There are several
more configuration parameters supported by uFldObstacleSim, but they all have default values,
accepted in this simple simulation. The other parameter values are discussed later.

Listing 2.1: Example bare-bones configuration of uFldObstacleSim.

1 ProcessConfig = uFldObstacleSim

2 {

3 obstacle_file = obstacles.txt

4 }

2.3 A Simple Obstacle File

In the Bo Alpha example mission, two vehicles traverse an obstacle field comprised of five obstacles.
These obstacles were chosen randomly by the gen obstacles command line utility. The results
were stored in the obstacles.txt file read in by the obstacle simulator. This file was named in the
obstacle simulator config block in Listing 1 above. The gen obstacles utility will choose obstacles
while ensuring (a) each obstacle is within a given polygon area, and (b) a minimum configurable
separation distance between obstacles. This command-line tool is discussed in Section 2.4.

An obstacle file is comprised of:

4

� The first line, a comment, showing the exact command that generated the file,

� The command line parameters on a separate line,

� The polygon for each obstacle, with a unique label.

The obstacle file for the Bo Alpha mission is given below.

gen_obstacles --poly=30,-20:30,-140:120,-140:120,-20 --amt=5 --min_size=1 --max_size=6 \

--min_range=20 --meter

region = pts={30,-20:30,-140:120,-140:120,-20}

min_range = 20

min_size = 6

max_size = 10

poly = pts={107,-101:112,-106:112,-113:107,-118:100,-118:95,-113:95,-106:100,-101},label=ob_0

poly = pts={50,-30:53,-33:53,-38:50,-42:45,-42:41,-38:41,-33:45,-30},label=ob_1

poly = pts={82,-65:87,-70:87,-76:82,-81:76,-81:71,-76:71,-70:76,-65},label=ob_2

poly = pts={59,-101:64,-105:64,-112:59,-116:53,-116:48,-112:48,-105:53,-101},label=ob_3

poly = pts={107,-38:112,-43:112,-49:107,-54:100,-54:96,-49:96,-43:100,-38},label=ob_4

2.4 Generating an Obstacle File

The gen obstacles command line tool will generate a list of randomly generated obstacle polygons,
given a polygon region. The tool will guarantee that the obstacle will completely reside in the
region, and will guarantee a minimal separation between obstacles.

For example, the below command will generate the obstacle file shown in the above section, with
the initial five obstacles of the Bo Alpha mission. The --poly parameter indicates the obstacle
region. This region must be convex, and the utility will produces as many obstacles as possible up
to the amount specified with the --amt parameter.

$ gen_obstacles --poly=30,-20:30,-140:120,-140:120,-20 --amt=5

--min_size=1 --max_size=6 --min_range=10 --meter

Each obstacle is an octagon with a random radius no smaller than that given by the --min size

parameter, and no greater than that given by the --max size parameter. The obstacles will be
placed with a guaranteed minimum separation to the other obstacles given by the --min range

parameter. Finally, the --meter parameter, will round all obstacle vertices to the nearest meter if
desired, instead of the default value of 0.1 meters.

3 Dynamic Resetting of Ground Truth Obstacles

The obstacle manager supports an option to periodically reset the ground truth size and location of
obstacles. This allows simulations to test against a wider variety of obstacle situations without the
need to re-start the simulation. The dynamic reset capability ensures that the reset only occurs
only when all known vehicles are outside the obstacle field, to avoid generating a new obstacle too
close to (or on) a vehicle and thus creating an unavoidable collision.

5

3.1 Parameters for Enabling Dynamic Resetting

The dynamic reset occurs on a schedule. After an elapsed period of time, given by the reset interval

parameter, a reset will occur as soon as all the vehicles are outside the obstacle region. All vehicles
must be not only outside the obstacle region but also a given distance away from the obstacle
region given by the reset range parameter. Of course, if all vehicles never happen to be outside
the obstacle region simultaneously, then the reset will never occur. The mission must be otherwise
constructed, as with the Bo Alpha mission, to ensure the vehicles periodically all exit the obstacle
region simultaneously.

Here is an example setting:

reset_interval = 300

reset_range = 20

The reset interval units are in seconds, and the reset range units are in meters. The default value
for reset interval is -1, indicating that resets are disabled. The default value for reset range is 10
meters.

3.2 MOOS Variable for Enabling Dynamic Resetting

If you would like to reset the obstacle field on demand, by poking a MOOS variable, this can be
done. By publishing UFOS RESET = now, the obstacle simulator will schedule an obstacle reset to
occur as soon as possible. As discussed above, the reset will only actually occur as soon as all
vehicles have exited the obstacle region, sufficiently far away from the obstacle region given by the
reset range parameter.

3.3 Enabling Dynamic Resetting in the Bo Alpha Mission

Dynamic obstacle resetting is not enabled by default in the Bo Alpha mission. It can be enabled by
launching with the -d option on the command line:

$ cd moos-ivp/ivp/missions/m34_bo_alpha

$./launch.sh 10 -d

This additional flag is supported in the launch.sh script to add the following two lines to the
uFldObstacleSim configuration block:

reset_interval = 100

reset_range = 10

Every 100 seconds, when the two vehicles are at least 10 meters outside the obstacle region, the
obstacles will be reset. Figure 3 shows two such random obstacle configurations, and the associated
video link shows the dynamic mission in action.

6

Figure 3: The Dynamic Bo Alpha Mission: The Bo Alpha is launched with dynamic obstacle reset enabled.
Roughly each time the vehicles reach their east west loiter positions, the obstacle simulator reset the obstacles. This
produces a different challenge each time the vehicles traverse through the obstacle field.
Video:(0:54): https://vimeo.com/425156397

4 Simulating Sensor Data from Ground Truth Obstacles

The obstacle simulator supports a second mode of distributing obstacle information to vehicles. In
the default mode discussed so far, the ground truth obstacle position and location are sent directly
to the vehicles in the GIVEN OBSTACLE MOOS variable. For the vehicle there is no guesswork, and
obstacle avoidance is conducted with perfect knowledge of the obstacles.

In the second mode, the points mode, the obstacle simulator generates a steady stream of random
points inside the ground truth obstacles. It then sends these points to the vehicle in the MOOS
variable TRACKED FEATURE. Here is an example publication:

TRACKED FEATURE = x=100,y=-49,key=ob 4

The message contains both the point location, and a unique ID associated with the ground truth
obstacle. So this simulatad sensor data is still pretty artificially simplistic - there are no false points
because all points generated by the simulator do reside within the ground truth obstacle polygon.
And by including a key, clustering of points is already done and perfect.

4.1 Enabling the Points Sensor Data Mode

The points mode is disabled by default. It is enabled by setting the post points configuration
parameter to true:

post points = true

rate points = 5

The rate points parameter sets the number of points generated, per obstacle, per iteration of the

7

https://vimeo.com/425156397

simulator. The default value is 5. When the points mode is enabled, the obstacle simulator does
not post the ground truth obstacle information to GIVEN OBSTACLE. However, it is still posted to
KNOWN OBSTACLE. Typically uField sharing is configured to not share KNOWN OBSTACLE to the vehicles.
However it may still be useful for other apps in the shoreside community to have access to ground
truth obstacle information. For example the uFldCollObDetect app runs in the shoreside and monitors
vehicles for collisions with obstacles, so it needs access to ground truth obstacle information.

4.2 Generation of Simulated Sensor Points

Simulated sensor points are generated by calculating random line-of-sight points on the edge of
the obstacle polygon from the direction of the vehicle. Sensor points are generated per vehicle and
shared only with the relevant vehicle as in Figure 4.

Figure 4: Vehicle-centered line-of-site sensor: Sensor points are based on line of site, with different sensor points
generated for each vehicle depending on the bearing of the obstacle to the vehicle. This is not currently implemented
in the uFldObstacleSim app.

Recall that each point corresponds to two publications. One publication, to the variable TRACKED FEATURE ABE,
is generated and shared only to the vehicle abe. The other publication is to the variable VIEW POINT

which published locally on the shoreside for the benefit of rendering in a GUI app such as
pMarineViewer. The color of the points is based on the color of the vehicle, derived from NODE REPORT

messsages received on the shoreside from each vehicle.

In the event that uFldObstacleSim is run in a headless simulation, i.e., no need for visuals, the
publication of VIEW POINT can be disabled with the configuration post visuals=false.

5 Obstacle Expiration

There are three notions or reasons why we may want to consider the expiration of obstacles.

� The robot or vehicle has moved far away from the obstacle and we no longer care about it, or

� The obstacle never existed to begin with, but perhaps briefly it appeared to exist due to sensor
noise, or

� The obstacle is still close and is real, but perhaps a new identifier was mistakenly created for
the same obstacle.

8

Each of these things happen in practice, and the downstream apps that manage and reason about
obstacles need to deal with these issues. So the obstacle simulator has the capability to replicate
the expiration of an obstacle to enable testing of the downstream apps.

The expiration policy of the two primary obstacle modes of the simulator are discussed here:

� The pointsmode, where the simulator publishes sensor points in the form of the TRACKED FEATURE

variable, and

� The ground-truth mode where the simulator publishes the ground truth obstacles in the form
of the GIVEN OBSTACLE variable.

5.1 Case 1 - Expiration of Sensor Points

The simplest of the two modes is the points mode, perhaps because elements in a sensor data stream
are usually considered to be ephemeral - as things change, so does the data. In the points mode,
data is published to the TRACKED FEATURE variable. These postings are regarded as similar to LIDAR
points. Although the simulator generates them randomly on or in the obstacle, they at some point
will either cease, or evolve position, due to:

� The obstacle goes out of range from the vehicle

� The obstacle moves or drifts, and thus so do the points

� The obstacle stops producing points because the simulator deletes the obstacle

� The obstacle stops producing points because in the real world the obstacle actually didn’t
exist but was perhaps produced by a wave or some other noise

Figure 5 conveys the lifespan of sensor points on an obstacle as a vehicle approaches, passes and
leaves behind an obstacle.

9

Figure 5: Expiration of Sensor Points: Sensor points are generated on the edge of the obstacle as the vehicle
comes in range (left). As long as the vehicle remains in range, regardless of the relative bearing from the vehicle to
the obstacle, sensor points on the line of site to the obstacle will continue to be generated (middle). As the vehicle
open range to the obstacle the sensor points will cease to be generated (right).

5.2 Case 2 - Expiration of Ground Truth Obstacles

In ground-truth mode, where the simulator is publishing the actual obstacle polygon rather than
simulated sensor points, the simulator publishes the polygon information in the form of:

� VIEW POLYGON: for consumption by a GUI app like pMarineViewer.

� KNOWN OBSTACLE: for consumption by other shoreside apps that need access to ground truth
obstacles such as uFldCollObDetect.

� GIVEN OBSTACLE: for sharing to the vehicles and consumption by the obstacle manager pObstacleMgr.

In each of these cases, there is a need to ”forget” about an obstacle after time. So each obstacle
message contains a duration field, in seconds. While the obstacle is relevant, the obstacle simulator
will periodically publish to these variables, each time with same duration. The consumers presumably
reset their duration clocks each time a new message is received. The obstacle simulator will publish
only periodically, but often enough such that the obstacle will endure indefinitely if the periodic
refresh publications continue.

The refresh interval determines how often uFldObstacleSim re-publishes the current ground-truth
obstacles. A duration is associated with each obstacle, so typically the refresh should occur before an
obstacle expires (if the goal is persistence). The duration is set with two parameters, min duration

and max duration. A random duration will be chosen between these two values.

The default settings for refresh interval, min duration, and max duration are all -1. When
refresh interval is not set, the obstacle simulator will never refresh (republish) the obstacle

10

postings unless one or more vertices change. When the obstacle duration is not set, they we never
expire in any of the consumer apps unless they are cleared or erased via other methods.

6 Configuration Parameters of uFldObstacleSim

The following parameters are defined for uFldObstacleSim. For some parameters, more detailed
description are provided in other sections. Parameters having default values are indicated so.

Listing 6.2: Configuration Parameters for uFldObstacleSim.

obstacle file: A file with obstacle position and size location. Sections 2.3 and 2.4.

poly vert color: Color of obstacle polygon vertices. The default is "gray50".

poly edge color: Color of obstacle polygon edges. The default is "gray50".

poly fill color: Color of obstacle polygon interior. The default is "white".

poly label color: Color of obstacle polygon labels. The default is "invisible".

poly vert size: Size of rendered obstacle polygon vertices. The default is 1.

poly edge size: Size of obstacle polygon edges. The default is 1.

poly transparency: Transparency of rendered obstacle polygons. The default is 0.15.

draw region: If true, draw the obstacle region. The default is true.

region edge color: Color of obstacle polygon edges. The default is "gray50".

region edge color: Color of obstacle region edges. The default is "white".

post points: If true, sensor points are generated rather than ground truth obstacle
polygons. The value false. Section 4.1.

rate points: When post points is true, this parameter sets the rate of point
generation. The default is 5 points, per obstacle, per iteration.
Section 4.1.

min duration: If non-negative, set a random duration for each obstacle no lower
than this value. The default is -1. Section 5.2.

post visuals: If true, visual posts to VIEW POINT and VIEW POLYGON are generated.
The default is true. Section 4.2.

refresh interval: If non-negative, publications to GIVEN OBSTACLE will be reposted evern
N seconds where N is the value of this parameter. The default is -1.
Section 5.2.

reset interval: Time, in seconds, between automatic reseting of obstacle locations.
The default is -1, indicating disabled resetting. Section 3.1.

reset range: Distance, in meters, that all vehicles need to be outside the obstacle
region in order for an obstacle reset to be allowed. The default is 10
meters. Section 3.1.

reuse ids: If false, each time the obstacle field is reset, a unique set of obstacle
IDs, i.e., labels, will be generated for the newly generated obstacles.
The default is true. Section 3.1.

sensor range: The range to an obstacle at which simulated LIDAR point will be
generated. The default is 50. Section 4.2.

11

6.1 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uFldObstacleSim --example or -e

This will show the output shown in Listing 3 below.

Listing 6.3: Example configuration for uFldObstacleSim.

1 ===

2 uFldObstacleSim Example MOOS Configuration

3 ==

4

5 ProcessConfig = uFldObstacleSim

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 obstacle_file = obstacles.txt

11 poly_vert_color = color (default is gray50)

12 poly_edge_color = color (default is gray50)

13 poly_fill_color = color (default is white)

14 poly_label_color = color (default is invisible)

15

16 poly_vert_size = 1 (default is 1)

17 poly_edge_size = 1 (default is 1)

18 poly_transparency = 0.15 (default is 0.15)

19

20 region_edge_color = color (default is gray50)

21 region_vert_color = color (default is white)

22

23 draw_region = true (default is true)

24 region_edge_color = color (default is gray50)

25 region_vert_color = color (default is white)

26

27 post_points = true (default is false)

28 rate_points = 5 (default is 5)

29 point_size = 5 (default is 2)

30

31 min_duration = 10 (default is -1)

32 max_duration = 15 (default is -1)

33 refresh_interval = 8 (default is -1)

34

35 reset_interval = -1 (default is -1)

36 reset_range = 10 (default is 10)

37

38 reuse_ids = true (default is true)

39 sensor_range = 50 (default is 50)

40

41 app_logging = true // {true or file} By default disabled

42

43 post_visuals = true // {true or false} By default true

44 }

12

7 Publications and Subscriptions for uFldObstacleSim

The interface for uFldObstacleSim, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldObstacleSim --interface or -i

7.1 Variables Published by uFldObstacleSim

The primary output of uFldObstcleSim to the MOOSDB is posting of sensor reports, visual cues for
the sensor reports, and visual cues for the hazard objects themselves.

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 8

� GIVEN OBSTACLE: A ground truth obstacle, same as, KNOWN OBSTACLE, but published separately.
Typically this variable will be shared to the the vehicles.

� KNOWN OBSTACLE: A ground truth obstacle, same as, GIVEN OBSTACLE, but published separately.
Typically shoreside apps will register for this variable for knowledge of ground truth obstacles.

� TRACKED FEATURE: A single point related to a sensor measurement related to a ground truth
obstacle, and key associated with that obstacle.

� VIEW POLYGON: A visual artifact for rendering a a ground truth obstacle polygon.

Example postings:

KNOWN_OBSTACLE = pts={48,-77:52,-80:52,-86:48,-89:43,-89:39,-86:39,-80:43,-77}, \

label=ob_4,duration=5

GIVEN_OBSTACLE = pts={48,-77:52,-80:52,-86:48,-89:43,-89:39,-86:39,-80:43,-77}, \

label=ob_4,duration=5

TRACKED_FEATURE = x=100,y=-49,key=ob_4

VIEW_POLYGON = pts={48,-77:52,-80:52,-86:48,-89:43,-89:39,-86:39,-80:43,-77}, \

label=ob_4,label_color=invisible,edge_color=gray50,vertex_color=gray50, \

fill_color=white,vertex_size=1,edge_size=1,fill_transparency=0.15

7.2 Variables Subscribed for by uFldObstcleSim

The uFldObstcleSim application will subscribe for the following MOOS variables:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� VEHICLE CONNECT: A message from the vehicle indicating its presence in the simulation. This
will prompt a (re)publication and sharing of ground truth obstacles to the vehicle.

� UFOS RESET: A request to the simulator to reset the obstacle field immediately, or as soon as
all vehicles have safely cleared the obstacle field. 3.2.

� NODE REPORT: A report on a vehicle location and status.

13

Example postings:

UFOS_RESET = true

VEHICLE_CONNECT = true

Command Line Usage of uFldObstcleSim

The uFldObstcleSim application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. To see command-line options enter
the following from the command-line:

$ uFldObstacleSim --help or -h

This will show the output shown in Listing 4 below.

Listing 7.4: Command line usage for the UFldObstacleSim tool.

1 ==

2 Usage: uFldObstcleSim file.moos [OPTIONS]

3 ==

4

5 Options:

6 --alias=<ProcessName>

7 Launch uFldObstcleSim with the given process

8 name rather than uFldObstcleSim.

9 --example, -e

10 Display example MOOS configuration block.

11 --help, -h

12 Display this help message.

13 --interface, -i

14 Display MOOS publications and subscriptions.

15 --version,-v

16 Display release version of uFldObstcleSim.

17 --verbose=<setting>

18 Set verbosity. true or false (default)

19

20 Note: If argv[2] does not otherwise match a known option,

21 then it will be interpreted as a run alias. This is

22 to support pAntler launching conventions.

8 Terminal and AppCast Output

The UFldObstacleSim application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 5 below. On line 2, the name of the
local community, typically the shoreside community, is listed on the left. On the right, "0/0(204)
indicates there are no configuration or run warnings, and the current iteration of UFldObstacleSim
is 204. Lines 5-9 show the obstacle file configuration. Lines 10-12 indicate whether ground truth
obstacles or simulate sensor points will be generated. Lines 13-15 indicate the range of random
durations associated with each obstacle. Lines 16-18 indicate whether the simulator will periodically
reset the obstacle locations and if so, how often.

14

Lines 20-28 reveal the current state of the simulator. Lines 21-22 show how many times the polygon
obstacles have been posted as viewable polygons and how many times as given polygons respectively.
Lines 23-28 show the state with respect to possibly resetting the obstacles. Line 24 shows the
distance between the obstacle region to the closest vehicle. The zero in this case indicates that one
or more vehicles are inside the obstacle region. Lines 25-28 show the progress toward potentially
resetting the obstacles.

Lines 31-38 show key information related to each obstacle. Column 3 will show total simulated
sensor points published per obstacle, if in the points mode. Column 4 will be used when given
obstacles are published, and incremented each time they are published.

Listing 8.5: Example UFldObstacleSim console output.

1 ===

2 uFldObstacleSim shoreside 0/0(204)

3 ===

4 ================================

5 Config (Obstacles)

6 Obstacles: 5

7 MinRange: 20

8 MinSize: 6

9 MaxSize: 10

10 Config (Points)

11 Post Points: false

12 Rate Points: 5

13 Config (Duration)

14 Min Duration: 400.0

15 Max Duration: 500.0

16 Config (Reset)

17 Reset Range: 10

18 Reset_Interv: -1

19 ================================

20 State

21 Viewables Posted: 1

22 Obstacles Posted: 2

23 State (resetting)

24 Min Poly Range: 0

25 Reset Pending: false

26 Newly Exited : false

27 Reset Tstamp : 23867167818

28 Reset Total : 0

29

30

31 Obs Obs Points Given

32 Key Duration Published Published

33 ---- -------- --------- ---------

34 ob_0 468.1 0 2

35 ob_1 470.1 0 2

36 ob_2 478.2 0 2

37 ob_3 451.7 0 2

38 ob_4 445.3 0 2

15

	Overview
	A Quick Start Guide to Using uFldObstacleSim
	A Working Example Mission - the Bo Alpha Mission
	A Bare-Bones Example uFldObstacleSim Configuration
	A Simple Obstacle File
	Generating an Obstacle File

	Dynamic Resetting of Ground Truth Obstacles
	Parameters for Enabling Dynamic Resetting
	MOOS Variable for Enabling Dynamic Resetting
	Enabling Dynamic Resetting in the Bo Alpha Mission

	Simulating Sensor Data from Ground Truth Obstacles
	Enabling the Points Sensor Data Mode
	Generation of Simulated Sensor Points

	Obstacle Expiration
	Case 1 - Expiration of Sensor Points
	Case 2 - Expiration of Ground Truth Obstacles

	Configuration Parameters of uFldObstacleSim
	An Example MOOS Configuration Block

	Publications and Subscriptions for uFldObstacleSim
	Variables Published by uFldObstacleSim
	Variables Subscribed for by uFldObstcleSim

	Terminal and AppCast Output

