uFldHazardMgr: On-Board Management of a Hazard
Sensor
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering
MIT, Cambridge MA 02139

1 Overview 1
2 Using uFldHazardMgr 2
2.1 Required MOOS Variable Bridges e 3
2.2 Configuration Parameters of uFldHazardMgr 4
2.3 An Example MOOS Configuration Block0 o0 o0 4
2.4 Configuring the Swath Width o 5
2.5 Configuring the Probability of Detection Setting 5
3 Under the Hood - Interacting with the Hazard Sensor 6
4 Under the Hood - Processing Data and Generating Reports 6
5 Publications and Subscriptions for uFldHazardMgr 6
5.1 Variables Published by uFldHazardMgr 7
5.2 Variables Subscribed for by uFldHazardMgr o oo 7
6 Terminal and AppCast Output 8
7 The Jake Kasper Example Mission Using uFldHazardMgr 9

1 Overview

The uFldHazardVgr application is straw man module for interacting with an on-board hazard sensor.
It does two basic things as implied in Figure 1:

1. Interacts with the sensor: It decides a sensor configuration setting and sends this to the
hazard sensor. It may change settings during the course of the mission to its advantage. It
interacts with the sensor by sending sensor requests, and receiving sensor reports. It has some
knowledge of the sensor properties and configuration options.

2. Generates a hazardset report: It builds an internal belief state regarding the identification and
location of hazards, and reports this belief state upon request.

UHZ_SENSOR_REQUEST
UHZ_HAZ ARD_REPORT
UHZ_CONFIG_REQUESTTo l H -

4. uFieldHazardMgr

Sensor .= HAZARDSET_REQUEST
Model] +——

I —

, S8 gl e HAZ ARDSET_REPORT
Belief [S i a%e
State ALY .
i "

Figure 1: The uFldHazardMgr: interacts with the on-board sensor and processes sensor information and generates
a report, upon request, regarding the identification and location of hazards. The arrows indicate the key MOOS
variables used for interacting with the sensor and generating reports.

There are many ways to interpret sensor data and ultimately decide upon a hazardset report. For
this reason we regard uFldHazardlgr as a straw man module. It implements the key syntactic steps
to minimally configure and interact with the sensor and produce a syntactically correct hazardset
report. The intention is that users may wish to use this as a starting point.

A further aspect one may wish to include in this module would be a form of reasoning about
the vehicle’s path through the hazard field. This module, and accompanying example mission,
was written with the vehicle simply performing a lawnmower exhaustive search through the field.
This module could be used in conjunction with the helm to decided follow-up search patterns or
collaborative strategies with other vehicles. Again, this is not part of uFldHazardMgr since the
objective of this module is to provide a syntactically valid starting point for managing sensor
information.

2 Using uFldHazardMgr

Typical Simulator Topology

The typical module topology is shown in Figure 2 below. The uFldHazardlMgr is situated in
the vehicle MOOS community. It interacts with the uFldHazardSensor situated in the shoreside
MOOS community. The vehicle communicates with the shoreside community using pshare. The
shoreside knows the location of all vehicles from node reports received from each vehicle running
pNodeReporter. The uFldHazardMgr first initializes the sensor by sending a configuration request
via UHZ _CONFIG REQUEST. The hazard sensor acknowledges the configuration with a UHZ CONFIG_ACK
message. Thereafter the hazard manager may interact with the sensor by sending sensor requests
with UHZ_SENSOR_REQUEST and periodically receiving reports of detections with UHZ_DETECTION_REPORT.

uFldHazardSensor

Hazard File
“ Other Apps
pShare
UHZ_HAZARD_REPORT UHZ_CONFIG_REQUEST .
UHZ_CONFIG_ACK Net UHZ_SENSOR_REQUEST Shoreside
HAZARDSET REQUEST Work NODE_REPORT Vehicles
HAZARDSET REPORT

uFldHazardMgr —
MOOSDB —* pHelmIvP l

‘ pNodeReporter ’

Figure 2: Typical uFldHazardMgr Topology: The simulator runs in a shoreside computer MOOS community
and is configured with a hazard field containing both hazards and benign objects. Vehicles accessing the simulator
send a steady stream of messages (UHZ_SENSOR_REQUEST) and node reports to the shoreside community. The simulator
continuously checks the connected vehicle’s position against objects in the hazard field, and the sensor settings.
When/if an object comes into sensor range, the simulator rolls the dice and if a detection is made, will send a
UHZ_DETECTION REPORT message to the vehicle. The vehicle may periodically re-configure its sensor setting by posting
to UHZ_CONFIG_REQUEST. If the configuration request is acceptable, the simulator will respond with a message to
UHZ_CONFIG_ACK bridged back out to the vehicle.

The hazard manager maintains a history of reported detections and listens for requests, via the
variable HAZARDSET REQUEST, to generate a hazardset report. It will respond to the request by posting
a hazardset report in the variable HAZARDSET REPORT.

2.1 Required MOOS Variable Bridges

Using uFldHazardMgr requires certain information flowing between the shoreside and vehicles com-
munities as shown in Figure 2. The bridging is done by pShare, but the pShare configuration is
handled dynamically using the uFldNodeBroker and uFldShoreBroker applications, we discuss here
the necessary configuration entries for these two applications. From the vehicle to the shoreside, five
variables need to be bridged. The below five lines should appear in the uFldNodeBroker configuration
block on all vehicles.

// Bridges from Vehicle to Shoreside - in uFldNodeBroker configuration

bridge = src=APPCAST

bridge = src=NODE_REPORT_LOCAL, alias=NODE_REPORT
bridge = src=UHZ_SENSOR_CONFIG

bridge = src=UHZ_SENSOR_REQUEST

bridge = src=HAZARDSET_REPORT

The first two lines above would likely already be present due to their use in other applications.
The latter three variables are generated by uFldHazardlMgr with the intended recipient being
uFldHazardSensor on the shoreside. The latter variable, HAZARDSET REPORT, constitutes the haz-
ardset report generated by uFldHazardVMgr. The above five lines may also be found in the vehicle
configuration for the Jake Kasper example mission discussed in Section 7.

The below four lines should appear in the uFldShoreBroker configuration block in the shoreside
MOOS community. See uFldShoreBroker documentation for a discussion on the syntax.

// Bridges from Shoreside to Vehicle - in uFldShore Broker configuration

bridge = src=APPCAST_REQ

bridge = src=UHZ_CONFIG_ACK_$V, alias=UHZ_CONFIG_ACK
bridge = src=UHZ_DETECTION_REPORT_$V, alias=UHZ_DETECTION_REPORT
bridge = src=HAZARDSET_REQUEST_$V, alias=HAZARDSET_REQUEST

The first line deals with appcasting and would likely be present anyway due to its use in other
applications as well. The second line allows sensor configuration acknowledgments to be sent to the
vehicle (Section 2.4). The third line allows detection reports to be sent to the vehicle (Section 3).
The last line allows an app running on the shoreside to bridge requests to the vehicle for a hazardset
report. The above four lines may also be found in the shoreside configuration for the Jake Kasper
example mission discussed in Section 7.

2.2 Configuration Parameters of uFldHazardMgr

The following parameters are defined for uFldHazardlMgr. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated so.

Listing 2.1: Configuration Parameters for uFldHazardVgr.

swath_width: The desired sensor swath width. Legal values: the set of widths
available to the sensor. The default is 25. If the requested swath
width setting is not available, the result will be the closest setting
available. 2.4.
pd: The chosen probability of detection on the ROC curve determined by
the sensor swath width. Legal values: the range [0, 1]. The default is
0.9. Section 2.5.

2.3 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

‘ $ uFldHazardMgr --example or -e

This will show the output shown in Listing 2 below.

Listing 2.2: Example configuration of the uFldHazardMgr application.

1

2 uFldHazardMgr Example MOOS Configuration
3

4

5 ProcessConfig = uFldHazardMgr

6 {

7 AppTick =4

8 CommsTick = 4

9

10 swath_width = 25 // the default
11 sensor_pd = 0.9 // thd default
12}

2.4 Configuring the Swath Width

Part of the initial responsibility of the hazard manager is to select the sensor settings. There are
two primary settings, the swath width and sensor pd setting. The swath width refers to the width,
stetching outward away from the sides of the vehicle. The selected width refers to the length on one
side, so the total swath width is twice the swath width setting.

Physical sensors are usually built with no more than a few swath width settings. These choices
are known ahead of time. It is reasonable therefore to expect the configuration of uFldHazardMgr to
reflect one of those choices. In our case, the available choices are the prevailing values configured of
uFldHazardSensor. In the Jake example mission, the hazard sensor is configured to support sensor
swath widths of 10, 25, and 50 meters. A sensor configuration request is made to the sensor by the
hazard manager making a post to the UHZ_CONFIG_REQUEST variable similar to:

UHZ_CONFIG_REQUEST = "vname=archie,width=25,pd=0.85"

The request width sent by the hazard manager is set in the uFldHazardVgr configuration block: (See
also Listing 2.)

swath_width = 25

The hazard sensor, once it has received the configuration request, posts a configuration acknowl-
edgement, which is bridged back to the vehicle:

UHZ_CONFIG_ACK = "vname=archie,width=25,pd=0.85,pfa=0.53,pclass=0.91"

2.5 Configuring the Probability of Detection Setting

The second component of setting the sensor is choosing a probability of detection setting. The P,
is a number in the range of [0, 1] and is accompanied by a corresponding probability of false alarm,
P, .. The relationship between P, and P, , is determined by the ROC curve related to the chosen
sensor swath. This relationship is described in the documentation for uFldHazardSensor.

3 Under the Hood - Interacting with the Hazard Sensor

After the initial configuration, the hazard manager interacts with the hazard sensor by posting
sensor requests, and periodically receiving detection reports. These may look something like:
UHZ_SENSOR_REQUEST UHZ_DETECTION_REPORT

UHZ_SENSOR_REQUEST "vname=archie"
UHZ_DETECTION_REPORT = "x=-150.3,y=-117.5,1label=12"

The request contains only the vehicle name. The hazard sensor is already receiving reports of the
vehicle position, and has knowledge of the hazard field. So the sensor only needs to know that the
vehicle indeed wishes to be sent detection reports.

Detection reports are only sent by the sensor when a detection is made. The simulated sensor
does not send sensor images or data, but simulated results of sensor data, in the form of a declared
detection. The simulated hazard sensor makes life a bit artificially easier by posting a detection
label. This allows the user to make multiple passes over the same area and be sure that one hazard
is not showing up as several hazards each with a slightly different location.

4 Under the Hood - Processing Data and Generating Reports

Hazardset reports are generated on-demand. First a request is received, immediately followed by
the posting of a report. They may look similar to:

HAZARDSET_REQUEST = "true"

HAZARDSET_REPORT "source=archie#x=-151,y=-217.3,label=01#x=-178.8,y=-234,label=15#
x=-59.8,y=-294.1,1label=13#x=-150.3,y=-117.5, label=12#
x=-14.2,y=-293.60001, 1abel=08#x=-65.8,y=-125.2,label=10"

The content of the HAZARDSET_REQUEST does not matter to uFldHazardVgr. It will interpret this mail
as a request to generate a report regardless of the request content.

The HAZARDSET REPORT content consists of a series of packets separated by the *#’ character. The
first packet names the source of the report and the remaining packets each declare the presence
of a hazardous object and its location and label. The format of the report is embodied in the
class XYHazardSet in lib_ufld hazards. The class is populated with the hazards and the string
representation is produced by calling the getSpec() function on a class instance.

As mentioned previously, uFldHazardlgr is a strawman approach for compiling sensor results
and generating reports. The algorithm used here is dead-simple and easily improved upon: any
detection ever made will be reported as a hazard. There is no further consideration of follow-on
passes over the same area, even if the lack of detection may indicate that a prior initial detection
was likely to be a false alarm.

5 Publications and Subscriptions for uFldHazardMgr

The interface for uFldHazardMgr, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

‘ $ uFldHazardMgr --interface or -i

5.1 Variables Published by uFldHazardMgr

The primary output of uFldHazardMgr to the MOOSDB is the posting of requests for sensor
information and the generation of hazardset reports.

e APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 6

e HAZARDSET REPORT: A hazardset report summarizing the hazard manager’s present belief about
location of hazards. Section 4.

e UHZ_CONFIG_REQUEST: A message sent to the hazard simulator requesting a particular sensor
configuration. Sections 2.4 and 2.5.

e UHZ SENSOR REQUEST: A message sent to uFldHazardSensor to request sensor/detection results
be sent to the uFldHazardlgr as they become available. Section 3.

5.2 Variables Subscribed for by uFldHazardMgr

The uFldHazardlgr application will subscribe for the following four MOOS variables:

e APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

e HAZARDSET REQUEST: A request asking uF1dHazardlMgr to produce immediately a hazardset report.
Section 4.

e UHZ DETECTION REPORT: A report sent by the uFldHazardSensor indicating the detection of a
hazardous object and its location. Section 3.

e UHZ CONFIG_ACK: A message sent by uFldHazardSensor confirming the requested sensor configu-
ration information. Sections 2.4 and 2.5.

Command Line Usage of uFldHazardMgr

The uFldHazardMgr application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. To see command-line options enter
the following from the command-line:

$ uFldHazardMgr --help or -h

This will show the output shown in Listing 3 below.

Listing 5.3: Command line usage for uFldHazardlgr.

Usage: uFldHazardMgr file.moos [OPTIONS]

Options:
—-alias=<ProcessName>

OO WN -

7 Launch uFldHazardMgr with the given process name.
8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 —--interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display release version of uFldHazardMgr.

6 Terminal and AppCast Output

The uFldHazardMgr application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 4 below. On line 2, the name of the
local community or vehicle name is listed on the left. On the right, "0/0(1414) indicates there are
no configuration or run warnings, and the current iteration of uFldHazardVgr is 1414. Lines 4-13
convey the requested and prevailing sensor configuration settings.

Listing 6.4: FErample uFldHazardMgr console output.

1

2 uFldHazardMgr archie 0/0(1414)
3

4 Config Requested:

5 swath_width_desired: 38

6 pd_desired: 0.86

7 config requests sent: 118

8 acked: 1

9 —_——— —_ p—

10 Config Result:

11 config confirmed: true

12 swath_width_granted: 50

13 pd_granted: 0.86

14

15 ---- -—= -—= -

16

17 sensor requests: 2003

18 detection reports: 7

19
20 Hazardset Reports Requested: 1
21 Hazardset Reports Posted: 1
22
23
24 Most Recent Events (7):
25
26 [1046.43]: New Detection, label=08, x=-14.2, y=-293.6
27 [935.39]: New Detection, label=08, x=-14.2, y=-293.6
28 [928.03]: New Detection, label=13, x=-59.8, y=-294.1
29 [799.39]: New Detection, label=12, x=-150.3, y=-117.5
30 [700.65]: New Detection, label=13, x=-59.8, y=-294.1
31 1[525.17]: New Detection, label=15, x=-178.8, y=-234.0
32 [522.15]: New Detection, label=01, x=-151.0, y=-217.3

Lines 17 shows the number of sensor requests sent to the hazard sensor. This message is sent

continuously so it is not surprising to be high. Line 18 shows the number of detection reports
received. Lines 20-21 show the number of time a hazardset report has been requested and posted.
The events in lines 23-32 are typically only contain the arrival of a new detections from the sensor
simulator.

7 The Jake Kasper Example Mission Using uFldHazardMgr

The Jake Kasper mission is distributed with the MOOS-IvP source code and contains a ready
example of the uFldHazardVgr application, configured with hazard field in an included text file.
Assuming the reader has downloaded the source code available at www.moos-ivp.org and built the
code according to the documentation, the Jake Kasper mission may be launched by:

$ cd moos-ivp/ivp/missions-2680/1lab_10_jake_kasper_baseline
$./launch.sh 10

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY button.

	Overview
	Using uFldHazardMgr
	Required MOOS Variable Bridges
	Configuration Parameters of uFldHazardMgr
	An Example MOOS Configuration Block
	Configuring the Swath Width
	Configuring the Probability of Detection Setting

	Under the Hood - Interacting with the Hazard Sensor
	Under the Hood - Processing Data and Generating Reports
	Publications and Subscriptions for uFldHazardMgr
	Variables Published by uFldHazardMgr
	Variables Subscribed for by uFldHazardMgr

	Terminal and AppCast Output
	The Jake Kasper Example Mission Using uFldHazardMgr

