
uFldHazardMetric: Grading a HazardSet Report
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Overview 1

2 Using uFldHazardMetric 2
2.1 Required MOOS Variables Shared between MOOSDBs . 3
2.2 The False-Alarm and Missed-Hazard Reward Structure . 4
2.3 The Max-Time and Time-Overage Reward Structure . 4
2.4 Raw and Normalized Scores . 5
2.5 The Report Evaluation Format . 5
2.6 Publishing the Mission Evaluation Parameters . 6

3 Configuration Parameters of uFldHazardMetric 6

4 Publications and Subscriptions for uFldHazardMetric 7
4.1 Variables Published by uFldHazardMetric . 7
4.2 Variables Subscribed for by uFldHazardMetric . 8

5 Terminal and AppCast Output 8

6 The Jake Kasper Example Mission Using uFldHazardMetric 10

1 Overview

The uFldHazardMetric application is a utility for quickly evaluating a hazardset report; a list
of declared hazards and their locations. Evaluating a hazardset report against ground truth
and a reward structure is fairly straight-forward, but tedious. This tool performs this operation
automatically, and as a MOOS process with the result posted both to the MOOSDB and viewable
in the appcast output of uFldHazardMetric. Operation is comprised of a few simple parts:

1. Import a ground-truth hazard field: A ground truth hazard field is a text file listing the location
of hazards and hazard-like objects, and their locations. This file also typically includes a search
region, a convex polygon containing all listed objects. A uFldHazardMetric configuration
parameter names the file.

2. Import a reward structure: A reward structure, consisting of penalties for missed hazards and
false alarms, is imported as a set of uFldHazardMetric configuration parameter.

3. Evaluate a hazardset report: A hazardset report is received by MOOS mail and evaluated
item by item against the ground truth and reward structure. The results are then posted and
rendered. This step is repeated for each received report.

1

Figure 1: The uFldHazardMetric: interacts with the on-board sensor and processes sensor information and
generates a report, upon request, regarding the identification and location of hazards. The arrows indicate the key
MOOS variables used for interacting with the sensor and generating reports.

2 Using uFldHazardMetric

Typical use of uFldHazardMetric has it situated in the shoreside community, with hazardset reports
shared from vehicles to the shoreside, and evaluation results shown via the uFldHazardMetric appcast
output running on pMarineViewer. Full evaluation reports are also logged to the shoreside log file
for later reference. This usage scenario with variations is described next. An example of this usage
is in the Jake Kasper example mission described in Section 6.

Typical Module Topology

The typical module topology is shown in Figure 2 below. The uFldHazardMetric is situated in the
shoreside MOOS community. It does not interact with the uFldHazardSensor directly, but they are
typically both configured with the same ground truth hazard file. HAZARDSET REPORT messages are
assumed to come from the vehicle. In the usage case below, they are produced by uFldHazardMgr.
But as the latter is simply a straw-man sensor processing module, that could be replaced with
something else entirely. HAZARDSET REPORT EVAL messages may be shared back to the vehicle, but
this is likely not essential, as the typical destination of an evaluation is the appcast output and the
log file.

2

Figure 2: Typical uFldHazardMetric Topology: This module runs on the shoreside, alongside the hazard sensor
typically, and receives hazazardset reports from the vehicle shared with the HAZARDSET REPORT variable. Evaluations
may be seen via the appcast output of uFldHazardMetric, or in the log file.

2.1 Required MOOS Variables Shared between MOOSDBs

Using uFldHazardMetric requires certain information flowing between the shoreside and vehicle
communities as shown in Figure 2. Sharing is done by pShare, but the pShare configuration is
handled dynamically using the uFldNodeBroker and uFldShoreBroker applications. We discuss here
the necessary configuration entries for these two applications. From the vehicle to the shoreside,
one variable needs to be shared. The below line should appear in the uFldNodeBroker configuration
block on all vehicles.

bridge = src=HAZARDSET_REPORT // in uFldNodeBroker config block

This HAZARDSET REPORT variable constitutes the report generated by uFldHazardMetric or a similar
module running in the vehicle generating a hazardset report. The line may also be found in the
vehicle configuration for the Jake Kasper example mission discussed in Section 6.

Going in the other direction, from shoreside to vehicle, the below line should appear in the
uFldShoreBroker configuration block in the shoreside MOOS community. See the documentation
for uFldShoreBroker for a discussion on the syntax.

// Bridge from Shoreside to Vehicle - in uFldShore Broker configuration

bridge = src=HAZARDSET_REPORT_EVAL_$V, alias HAZARDSET_REPORT_EVAL

3

It may not be the case that your vehicle is actually utilizing the report evaluation, so the above may
be optional. And certainly a typical mission will need to share other variables besides these, but
from the perspective of uFldHazardMetric, these are the shares to make sure are configured. The
above couple lines may also be found in the shoreside configuration for the Jake Kasper example
mission discussed in Section 6.

2.2 The False-Alarm and Missed-Hazard Reward Structure

The primary metric for evaluating a hazardset report is based on penalties assigned to missed
hazards and false alarms. The penalties are set with the parameters:

penalty_missed_hazard = <number> // The default is 100

penalty_false_alarm = <number> // The default is 10

With k1 missed hazards and k2 false alarms, the penalty is:

penalty(k1, k2) = penaltyMH (k1) + penaltyFA(k2)

2.3 The Max-Time and Time-Overage Reward Structure

An optional additional metric may be applied which penalizes the report if it is late, with additional
potential penalties the longer it is late. The time penalties are set with following parameters,
beginning with the max time parameter setting the point when a report is considered late:

max_time = <number> // seconds, default is 0

penalty_max_time_over = <number> // penalty units, default is 0

penalty_max_time_rate = <number> // penalty units, default is 0

The penalty max time over parameter indicates the immediate one-time penalty applied if the report
is late at all. The penalty max time overage penalty is applied for each second of time past the
deadline. If max time is zero, there is no mission time limit.

If t is the amount of time over the max time:

penalty(k1, k2, t) =

{
penalty

FA
(k1) + penalty

MH
(k2) t ≤ 0

penalty
FA

(k1) + penalty
MH

(k2) + penalty
TO

+ penalty
TR

(t) t > 0

The search duration clock re-starts each time uFldHazardMetric receives incoming mail on the
variable HAZARD SEARCH START, regardless of the variable’s value. Typically this variable is posted
upon vehicle deployment as is done in the Jake Kasper example mission. (Hint: see how button one

is configured for pMarineViewer in the Jake Kasper mission.)

4

2.4 Raw and Normalized Scores

Past experience has shown that people appreciate a normalized score. A goal of zero (no penalties,
perfect score) is somehow not as motivating as striving for 100% on a scale of zero to 100. A
normalized score is derived from considering the worst possible score if each object in the hazard
file were reported wrong. The score may be worse than this if the report is late and there are late
penalties, but time is not used for the purposes of normalizing.

If j1 and j2 are the actual number of hazards and benign objects taken from ground truth in
the hazard file, the worst score (without applying overtime penalties) is:

maxpenalty(j1, j2) = penaltyMH (j1) + penaltyFA(j2)

The normalized score is then:

score(k1, k2, t) =
maxpenalty(j1, j2)− penalty(k1, k2, t)

maxpenalty(j1, j2)

If penalty(k1, k2, t) is actually greater than maxpenalty(j1, j2) due to lateness, resulting in a negative
score, the normalized score is clipped to zero.

2.5 The Report Evaluation Format

The evaluation of the hazardset report has two formats, a terse and and verbose form. The terse
form, HAZARDSET EVAL, fully explains the score, the metrics, and the components of the submitted
report responsible for the score. It may looks something like the example below from the Jake
Kasper example mission:

HAZARDSET_EVAL = vname=jake, report_name=BillandJoe,

total_score=675, norm_score=37.5,

score_missed_hazards=500, score_false_alarms=175,

score_time_overage=0, total_objects=10,

total_time=1284.91, received_time=1314.05,

start_time=29.14, missed_hazards=5,

correct_hazards=5, false_alarms=5,

penalty_false_alarm=35, penalty_missed_hazard=100,

penalty_max_time_over=100, penalty_max_time_rate=0.05,

max_time=1800

The full evaluation, HAZARDSET EVAL FULL provides all the details about which hazards were declared
and missed, and which benign objects were false alarms. It may look something like the example
below from the Jake Kasper example mission:

HAZARDSET_EVAL_FULL = (Everything in the normal report),object_report={

label=01,truth=hazard,report=hazard#

label=02,truth=hazard,report=nothing,penalty=100#

label=03,truth=hazard,report=hazard#

label=04,truth=hazard,report=nothing,penalty=100#

5

...

label=15,truth=benign,report=hazard,penalty=35#

label=16,truth=benign,report=hazard,penalty=35#

label=17,truth=benign,report=nothing#

label=18,truth=benign,report=hazard,penalty=35}

The latter perhaps may be simply used for forensics, or perhaps if further clarity is needed in how a
scoring was applied.

2.6 Publishing the Mission Evaluation Parameters

Upon startup, the mission parameters are published by uFldHazardMetric on the shoreside and
sent to each of the vehicles. Presumably this is to allow designers of the behavior autonomy to
automatically adapt their mission to metrics that may not be known until mission launch time. The
format of this message may look something like:

UHZ_MISSION_PARAMS = penalty_missed_hazard=100,

penalty_false_alarm=35,

max_time=600,

penalty_max_time_over=200,

penalty_max_time_rate=0.45,

search_region = pts={-150,-75:-150,-50:40,-50:40,-75}

3 Configuration Parameters of uFldHazardMetric

The following parameters are defined for uFldHazardMetric. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated so.

Listing 3.1: Configuration Parameters for uFldHazardMetric.

penalty missed hazard: The penalty for a missed hazard. The default is 100. Section 2.2.

penalty false alarm: The penalty for a false alarm. The default is 10. Section 2.2.

penalty max time over: The penalty for submitting a report late. The default is zero. Section
2.3.

penalty max time overage: The penalty for submitting a late report, applied to every second it
is late. The default is zero. Section 2.3.

max time: The time after which a submitted report is considered late. The
default is zero, indicating there is no time limit. Section 2.2.

hazard file: The name of a hazard file naming the ground truth hazard field.

An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uFldHazardMetric --example or -e

6

This will show the output shown in Listing 2 below.

Listing 3.2: Example configuration of the uFldHazardMetric application.

1 ===

2 uFldHazardMetric Example MOOS Configuration

3 ===

4

5 ProcessConfig = uFldHazardMetric

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 penalty_missed_hazard = 100 // default

11 penalty_false_alarm = 10 // default

12 penalty_max_time_over = 0 // default

13 penalty_max_time_rate = 0 // default

14

15 max_time = 0 // default (no time limit)

16 hazard_file = hazards.txt

17 }

4 Publications and Subscriptions for uFldHazardMetric

The interface for uFldHazardMetric, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldHazardMetric --interface or -i

4.1 Variables Published by uFldHazardMetric

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 5

� HAZARDSET EVAL: The shorter version of a hazardset report evaluation. Section 2.5.

� HAZARDSET EVAL FULL: The longer version of a hazardset report evaluation. Section 2.5.

� HAZARDSET EVAL <VNAME>: The shorter version of a hazardset report evaluation. The vehicle
from which the report was received is appended to the evaluation so it may be shared only
back to that vehicle. Section 2.5.

� HAZARDSET EVAL <VNAME>: The longer version of a hazardset report evaluation. The vehicle
from which the report was received is appended to the evaluation so it may be shared only
back to that vehicle. Section 2.5.

� HAZARD SEARCH SCORE: The normalized score reported in HAZARDSET EVAL published as a single
numerical value.

� UHZ MISSION PARAMS: A list of the mission parameters used for scoring a submitted HAZARD REPORT.

� VIEW POLYGON: A polygon rendering the search area as defined in the hazard file.

7

4.2 Variables Subscribed for by uFldHazardMetric

The uFldHazardMetric application will subscribe for the following four MOOS variables:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� HAZARDSET REPORT: An incoming hazardset report. See the uFldHazardSensor documentation.

� HAZARD SEARCH START: An indication that the clock used to apply time limits and penalties is
to be restarted. Section 2.3.

Command Line Usage of uFldHazardMetric

The uFldHazardMetric application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. To see command-line options enter
the following from the command-line:

$ uFldHazardMetric --help or -h

This will show the output shown in Listing 3 below.

Listing 4.3: Command line usage for uFldHazardMetric.

1 ==

2 Usage: uFldHazardMetric file.moos [OPTIONS]

3 ==

4

5 Options:

6 --alias=<ProcessName>

7 Launch uFldHazardMetric with the given process name.

8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 --interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display release version of uFldHazardMetric.

5 Terminal and AppCast Output

The uFldHazardMetric application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 4 below. On line 2, the name of the
local community, typically the shoreside community, is listed on the left. On the right, "0/0(5429)
indicates there are no configuration or run warnings, and the current iteration of uFldHazardMetric
is 5429. Lines 4-6 show the name of the ground truth hazard file and the number of hazards and
benign objects. Lines 8-13 convey the requested and prevailing configuration settings for evaluating
incoming reports.

Listing 5.4: Example uFldHazardMetric console output.

1 ===

8

2 uFldHazardMetric shoreside 0/0(5429)

3 ===

4 Hazard File: (hazards.txt)

5 Hazard: 10

6 Benign: 8

7

8 Reward Structure:

9 Penalty Missed Hazard: 100

10 Penalty False Alarm: 35

11 Penalty Max Time Over: 100

12 Penalty Max Time Rate: 0.05

13 Max Time: 1800

14

15 ==

16 Received Reports: 6

17 Elapsed Time: 1285.76

18 ==

19 Report Total Time Time Raw Norm

20 Name Reports Received Elapsed Score Score

21 -------- ------- -------- ------- ----- -----

22 Sarah 6 1351.97 1278.28 675 37.5

23

24 ==

25 Most Recent Report: (jake/Sarah)

26 total_score: 675 (37.5)

27 score_missed_hazards: 500 (5)

28 score_false_alarms: 175 (5)

29 score_time_overage: 0 (0)

30 ---------------------

31 objects reported: 10

32 correct_hazards: 5 (of 10)

33

34 ===

35 Most Recent Events (7):

36 ===

37 [1351.97]: Received valid report from: jake

38 [1347.46]: Received valid report from: jake

39 [1181.93]: Received valid report from: jake

40 [1178.42]: Received valid report from: jake

41 [641.28]: Received valid report from: jake

42 [631.76]: Received valid report from: jake

43 [0.00]: Reading hazards.txt: Objects read: 18

Lines 15-22 provide a summary of reports received so far, perhaps from multiple vehicles. Line 16
shows the number of received reports total from all vehicles, and line 17 shows the elapsed time
since the receipt of HAZARD SEARCH START as discussed in Section 2.3. Beginning with line 19, for
each vehicle the total reports received are shown, plus information about the last received report
from that vehicle. The last four columns show (a) the time the report was received, (b) the elapsed
time for the report since the latest timer reset, (c) the raw score as discussed in Sections 2.2 and
2.3, and (d) the normalized score as discussed in Section 2.4.

Lines 24-32 dive into more detail about the latest report received from any vehicle. Line 25
shows the name of the report which may consist of both a vehicle name and additional report name.
The total raw and normalized score is shown next on line 26, with the justification for the score

9

shown next in lines 27-32. Following this block of output, events are shown starting here on line 34.
In this case most events simply report the arrival of new reports, but other events may indicate
anomalous activities such as the arrival of an empty report.

6 The Jake Kasper Example Mission Using uFldHazardMetric

The Jake Kasper mission is distributed with the MOOS-IvP source code and contains a ready
example of the uFldHazardMetric application, configured with a hazard field in an included text file.
Assuming the reader has downloaded the source code available at www.moos-ivp.org and successfully
built the code, the Jake Kasper mission may be launched by:

$ cd moos-ivp/ivp/missions-2680/lab_10_jake_kasper_baseline/

$./launch.sh 12

The argument, 12, in the line above will launch the simulation in 12x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting
the DEPLOY ALL button. Shortly thereafter, two vehicles named jake and kasper will begin simple
lawnmower patterns over half of the search region each, as shown in Figure 3 below.

Figure 3: uFldHazardMetric in the Jake Kasper example mission: The output of uFldHazardMetric is shown
in the appcast panel in the lower left after a hazardset report has been received and evaluated.

Any time after the vehicle has been deployed, the user may request the generation of a hazardset

10

report. The REQ REPORT button sends a HAZARDSET REQUEST message to the vehicles, each running
uFldHazardMgr. Repeated requests result in updated reports. The overall score of the reports tends
higher as the mission progresses and more hazards are detected.

11

	Overview
	Using uFldHazardMetric
	Required MOOS Variables Shared between MOOSDBs
	The False-Alarm and Missed-Hazard Reward Structure
	The Max-Time and Time-Overage Reward Structure
	Raw and Normalized Scores
	The Report Evaluation Format
	Publishing the Mission Evaluation Parameters

	Configuration Parameters of uFldHazardMetric
	Publications and Subscriptions for uFldHazardMetric
	Variables Published by uFldHazardMetric
	Variables Subscribed for by uFldHazardMetric

	Terminal and AppCast Output
	The Jake Kasper Example Mission Using uFldHazardMetric

