
uFldBeaconRangeSensor: Simulating Vehicle to Beacon
Ranges
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Overview 1

2 The uFldBeaconRangeSensor Interface and Configuration Options 3
2.1 Configuration Parameters of uFldBeaconRangeSensor . 3

3 Publications and Subscriptions for uFldBeaconRangeSensor 5
3.1 Variables Published by uFldBeaconRangeSensor . 5
3.2 Variables Subscribed for by uFldBeaconRangeSensor . 6

4 Using and Configuring uFldBeaconRangeSensor 6
4.1 Configuring the Beacon Locations and Properties . 8
4.2 Unsolicited Beacon Range Reports . 9
4.3 Solicited Beacon Range Reports . 10
4.4 Limiting the Frequency of Vehicle Range Requests . 10
4.5 Producing Range Measurements with Noise . 11

5 Terminal and AppCast Output 11

6 Interaction between uFldBeaconRangeSensor and pMarineViewer 13
6.1 The VIEW MARKER Data Structure . 13
6.2 The VIEW RANGE PULSE Data Structure . 14

7 The Indigo Example Mission Using uFldBeaconRangeSensor 14
7.1 Examining the Log Data from the Indigo Mission . 15
7.2 Generating Range Report Data for Matlab . 16

1 Overview

The uFldBeaconRangeSensor application is a tool for simulating an on-board sensor that provides a
range measurement to a beacon where either (a) the vehicle knows its own position but is trying to
determine the position of the beacon via a series of range measurements, or (b) the vehicle knows
where the beacon(s) are but is trying to determine its own position based on the range measurements
from one or more beacons at known locations.

The range-only sensor may be one that responds to a query, e.g., an acoustic ping, with an
immediate reply, e.g. another acoustic ping or echo, from which the range from the the source to
the beacon is determined by the time-of-flight of the message through the medium, e.g., the approxe
speed ound through water. This idea is shown below on the left. Alternatively, if the beacon emits
its message on a precise schedule with a clock precisely synchronized with the vehicle clock, the

1

range measurement may be derived without requiring a separate query from the vehicle. This is the
idea behind long baseline acoustic navigation, [?,?,?,?]. This idea is shown below on the right.

Figure 1: Beacon Range Sensors: A vehicle determines its range to a beacon by either (a) emitting a query and
waiting for a reply, or (b) waiting for a message to be emitted on fixed schedule. In each case, the time-of-flight of the
message through the medium is used to calculate the range.

In the uFldBeaconRangeSensor application, the beacon and vehicle locations are known to the
simulator, and a tidy BRS RANGE REPORT message is sent to the vehicle(s) as a proxy to the actual
range sensor and calculations that would otherwise reside on the vehicle. The MOOS app may be
configured to have beacons provide a range report either (a) solicited with a range request, or (b)
unsolicited. One may also configure the range at which a range request will be heard, and the range
at which a range report will be heard. The app may be further configured to either (1) include the
beacon location and ID, or (2) not include the beacon location or ID.

Typical Simulator Topology

The typical module topology is shown in Figure 2 below. Multiple vehicles may be deployed in the
field, each periodically communicating with a shoreside MOOS community running a single instance
of uFldBeaconRangeSensor. Each vehicle regularly sends a node report noted by the simulator to
keep an updated calculation of each vehicle to each simulated beacon. When a beacon wants to
simulate a ping, or range request, it generates the BRS RANGE REQUEST message send to the shore.
After the simulator calculates the range, a reply message, BRS RANGE REPORT is sent to the vehicle.

2

Figure 2: Typical uFldBeaconRangeSensor Topology: The simulator runs in a shoreside computer MOOS
communicty and is configured with the beacon locations. Vehicles accessing the simulator periodically send node
reports to the shoreside community. The simulator maintains a running estimate of the range between vehicles and
beacons, modulo latency. A vehicle simulates a ping by sending a range request to shore and receiving a range report
in return from the simulator.

If running a pure simulation (no deployed vehicles), both MOOS communities may simply be running
on the same machine configured with distinct ports. The pShare application is shown here for
communication between MOOS communities, but there are other alternatives for inter-community
communication and the operation of uFldBeaconRangeSensor is not dependent on the manner of
inter-communication communications.

2 The uFldBeaconRangeSensor Interface and Configuration Op-
tions

The uFldBeaconRangeSensor application may be configured with a configuration block within a .moos

file. Its interface is defined by its publications and subscriptions for MOOS variables consumed
and generated by other MOOS applications. An overview of the set of configuration options and
interface is provided in this section.

2.1 Configuration Parameters of uFldBeaconRangeSensor

The following parameters are defined for uFldBeaconRangeSensor. A more detailed description is
provided in other parts of this section. Parameters having default values are indicated so.

3

Listing 2.1: Configuration Parameters for uFldBeaconRangeSensor.

beacon: Description of beacon location and properties. Section 4.1.

default beacon freq: Frequency of unsolicited beacon broadcasts (”never”). Section 4.2.

default beacon push dist: Range at which ... Section 4.1.

default beacon pull dist: Range at which ... Section 4.1.

default beacon width: Width of beacons (meters) when rendered (4). Section 4.1.

default beacon color: Color of beacons when rendered (”red”). Section 4.1.

default beacon shape: Shape of beacons when rendered (”circle”). Section 4.1.

ground truth: If true, ground truth is also reported when noise is added. Section
4.5.

node pull dist: TBW Section 4.1.

node push dist: TBW Section 4.1.

ping payments: How pings treated w.r.t. ping wait time (”upon response”). Section
4.4.

ping wait: Mandatory number of seconds between successive vehicle pings.
Section 4.4.

report vars: Determines variable name(s) used for range report (”short”).

rn algorithm: Algorithm for adding random noise to range measurements.

verbose: If true, verbose status message terminal output (false).

An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command line:

$ uFldBeaconRangeSensor --example or -e

This will show the output shown in Listing 2 below.

Listing 2.2: Example configuration of the uFldBeaconRangeSensor application.

1 ===

2 uFldBeaconRangeSensor Example MOOS Configuration

3 ===

4 Blue lines: Default configuration

5 Magenta lines: Non-default configuration

6

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Configuring aspects of vehicles in the sim

12 reach_distance = default = 200 // or {nolimit}

13 reach_distance = henry = 40 // meters

14 ping_wait = default = 30 // seconds

15 ping_wait = henry = 120

16 ping_payments = upon_response // or {upon_receipt, upon_request}

17

18 // Configuring manner of reporting

4

19 report_vars = short // or {long, both}

20 ground_truth = true // or {false}

21 verbose = true // or {false}

22

23 // Configuring default beacon properties

24 default_beacon_shape = circle // or {square, diamond, etc.}

25 default beacon_color = orange // or {red, green, etc.}

26 default_beacon_width = 4

27 default_beacon_report_range = 100

28 default_beacon_freq = never // or [0,inf]

29

30 // Configuring Beacon properties

31 beacon = x=200, y=435, label=01, report_range=45

32 beacon = x=690, y=205, label=02, freq=90

33 beacon = x=350, y=705, label=03, width=8, color=blue

34

35 // Configuring Artificial Noise

36 rn_algorithm = uniform,pct=0 // pct may be in [0,1]

37 }

3 Publications and Subscriptions for uFldBeaconRangeSensor

The interface for uFldBeaconRangeSensor, in terms of publications and subscriptions, is described
below. This same information may also be obtained from the terminal with:

$ uFldBeaconRangeSensor --interface or -i

3.1 Variables Published by uFldBeaconRangeSensor

The primary output of uFldBeaconRangeSensor to the MOOSDB is posting of range reports, visual
cues for the range reports, and visual cues for the beacons themselves.

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 5.

� BRS RANGE REPORT: A report on the range from a particular beacon to a particular vehicle.

� BRS RANGE REPORT NAMEJ: A report on the range from a particular beacon to vehicle NAMEJ.

� VIEW MARKER: A description for visualizing the beacon in the field. (Section 6)

� VIEW RANGE PULSE: A description for visualizing the beacon range report. (Section 6)

The range report format may vary depending on user configuration. Some examples:

BRS_RANGE_REPORT = "name=alpha,range=129.2,time=19473362764.169"

BRS_RANGE_REPORT = "name=alpha,range=129.2,id=23,x=54,y=90,time=19473362987.428"

BRS_RANGE_REPORT_ALPHA = "range=129.2,time=19473362999.761"

The vehicle name may be embedded in the MOOS variable name to facilitate distribution of report
messages to the appropriate vehicle with pShare.

5

3.2 Variables Subscribed for by uFldBeaconRangeSensor

The uFldBeaconRangeSensor application will subscribe for the following four MOOS variables:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� BRS RANGE REQUEST: A request to generate range reports for all beacons to all vehicles within
range of the beacon.

� NODE REPORT: A report on a vehicle location and status.

� NODE REPORT LOCAL: A report on a vehicle location and status.

Command Line Usage of uFldBeaconRangeSensor

The uFldBeaconRangeSensor application is typically launched as a part of a batch of processes by
pAntler, but may also be launched from the command line by the user. To see command-line options
enter the following from the command-line:

$ uFldBeaconRangeSensor --help or -h

Listing 3.3: Command line usage for the uFldBeaconRangeSensor tool.

1 Options:

2 --alias=<ProcessName>

3 Launch uFldBeaconRangeSensor with the given process

4 name rather than uFldBeaconRangeSensor.

5 --example, -e

6 Display example MOOS configuration block.

7 --help, -h

8 Display this help message.

9 --interface, -i

10 Display MOOS publications and subscriptions.

11 --version,-v

12 Display release version of uFldBeaconRangeSensor.

13 --verbose=<setting>

14 Set verbosity. true or false (default)

15

16 Note: If argv[2] does not otherwise match a known option,

17 then it will be interpreted as a run alias. This is

18 to support pAntler launching conventions.

4 Using and Configuring uFldBeaconRangeSensor

The uFldBeaconRangeSensor application is configured primarily with a set of beacons, and a policy
for generating range reports to one or more simulated vehicles. The reports may be sent to the
vehicles upon a query (solicited) or may be sent unsolicited based on a configured broadcast schedule
for each beacon. The possible simulator configuration arrangements are explored by first considering
a simple case shown in Figure 3 below, representing a vehicle navigating with three beacons.

6

Figure 3: Simulated LBL Beacons: Three beacons are simulated, labelled 01, 02, and 03. The vehicle periodically
issues a query to which the beacons immediately reply. The uFldBeaconRangeSensor application handles the queries
and generates the range reports sent to each vehicle. The growing circles rendered around the vehicle and beacons
represent the generation of the range query and range reports respectively.

The configuration for the uFldBeaconRangeSensor is shown in Listing 4 below. The three beacons
are configured in lines 19-21. The configuration on line 7 indicates that a beacon query will be
heard regardless of the range between the vehicle and the beacon. In the other direction, the range
report from the beacon will only be heard if the vehicle is within 100 meters. Line 8 indicates that
ping or range request will be honored by the simulator at most once every 30 seconds, and this
clock is reset each time a range request is honored by the simulator with the configuration on line 9.

Listing 4.4: Example configuration of the uFldBeaconRangeSensor application.

1 ProcessConfig = uFldBeaconRangeSensor

2 {

3 AppTick = 4 // Standard MOOSApp configurations

4 CommsTick = 4

5

6 // Configuring aspects of the vehicles

7 reach_distance = default = nolimit

8 ping_wait = 30

9 ping_payments = upon_accept

10

11 report_vars = short

12

13 default_beacon_freq = never // Only on request (ping)

14 default_beacon_shape = circle

15 default_beacon_color = orange

16 default_beacon_width = 5

17 default_beacon_report_range = 100

18

19 beacon = label=01, x=200, y=0

7

20 beacon = label=02, x=400, y=-200

21 beacon = label=03, x=0, y=-200, color=red, shape=triangle, report_range=80

22 }

The three beacons in this example are configured on lines 19-21 with unique labels and locations.
Each beacon has additional properties, such as its shape, color and width when rendered. Default
values for these properties are given in lines 14-16, but may be overridded for a particular beacon as
on line 22.

The key configuration line in this example is on line 13 which indicates the beacons by default
never generate an unsolicited range report. Reports are only generated upon request. In this
example, the simulated vehicle would receive successive groups of BRS RANGE REPORT postings from all
three simulated beacons, each time the vehicle posts a BRS RANGE REQUEST message to the MOOSDB.
This example is runnable in the indigo example mission distributed with the MOOS-IvP source
code and described a bit later in Section 7.

4.1 Configuring the Beacon Locations and Properties

One or more beacons may be configured by the beacon configuration parameter provided in the
uFldBeaconRangeSensor configuration block of the .moos file. Each beacon is configured with a line:

beacon = <configuration>

The <configuration> component is a comma-separated list of parameter=value pairs, with the
following possible parameters: x, y, label, freq, shape, width, color, and query range. The
following are typical examples:

beacon = x=200, y=260, label=03, freq=10

beacon = x=-40, y=150, label=04, freq=5:15, color=red, shape=circle, width=4, report_range=200

The x and y parameters specify the beacon locations in local coordinates. Like several other MOOS
applications, the uFldBeaconRangeSensor app looks for a global parameter in the .moos configuration
file naming the position of the datum, or 0,0 position in latitude, longitude coordinates. The
label parameter provides a unique identifier for the beacon. If a beacon entry is provided using a
previously used label, the new beacon will overwrite the prior beacon in the simulator. If no label is
provided, an automatic label will be generated equivalent to the index of the new beacon. The freq

parameter specifies, in seconds, how often unsolicited range reports are generated for each beacon.
A simple numerical value may be given, or a colon-separated pair of values as shown above may be
used to specify a uniformly random interval of possible durations. The duration between posts will
be reset after each post. The report range parameter specifies the distance, in meters, that a vehicle
must be to hear a range report generated by a beacon. The shape parameter indicates the shape
used by applications like pMarineViewer when rendering the beacon. The uFldBeaconRangeSensor

application generates a VIEW MARKER post to the MOOSDB for each beacon, once upon startup of
the simulator. The VIEW MARKER structure and possible shapes are described in the pMarineViewer

documentation. The color parameter specifies the color to be used when rendering the beacon.
Legal color strings are described in the Color Appendix. The width parameter is used to indicate
the width, in meters, when rendering the beacon.

8

For convenience, default values for several of the above properties may be provided with the
following five supported configuration parameters:

default_beacon_report_range = 100

default_beacon_shape = circle

default_beacon_color = orange

default_beacon_width = 4

default_beacon_freq = never

The above configuration values also represent all the default values. A beacon configuration that
includes any of the above five parameters explicitly, will override any default values.

4.2 Unsolicited Beacon Range Reports

The simulator may be configured to have all its beacons periodically generate a range report to all
vehicles within range. The schedule of reporting may be uniform across all beacons, or individually
set for each beacon. The interval of time between reports may also be set to vary according to a
uniformly random time interval. By default, beacons are configured to never generate unsolicited
range reports unless their frequency parameter is set to something else besides the default value of
"never". The default value for all beacons may be configured with the following parameter in the
uFldBeaconRangeSensor configuration block with the following:

default_beacon_freq = 120

The parameter value is given in seconds. To configure an interval to vary randomly on each post
within a given range, e.g., somewhere between one and two minutes, the following may be used
instead:

default_beacon_freq = 60:120

To configure the simulator to never generate an unsolicited range report, i.e., only solicited reports,
use the following:

default_beacon_freq = never

Upon each range report post to the MOOSDB, the interval until the next post is recalculated. The
beacon schedule may also be configured to be unique to a given beacon. The beacon configuration
line accepts the freq parameter as described earlier in Section 4.1. The configuration provided for
an individual beacon overrides the default frequency configuration.

Once a beacon has generated a report, it will not generate another unsolicited report until after
the prevailing time interval has passed. However, if the simulator detects that the beacon has been
solicited for a range report via an explicit range request from a nearby vehicle, a range report may
be generated immediately. In this case the clock counting down to the beacon’s next unsolicited
report is reset.

9

4.3 Solicited Beacon Range Reports

The uFldBeaconRangeSensor application accepts requests from vehicles, and may or may not generate
one or more range reports for beacons within range of the vehicle making the request. In short,
things operate like this: (a) a range request is received by uFldBeaconRangeSensor through its
mailbox on the variable RANGE REQUEST, (b) a determination is made as to whether the request is
within range of the beacon and whether the request is allowed based on limits on the frequency of
range requests, (c) a range report is generated and posted to the variable BRS RANGE REPORT. The
following is an example of the range request format:

BRS_RANGE_REQUEST = "name=charlie"

Note that if a vehicle generates a range request triggering a range report from a beacon, the range
report is sent to all vehicles within range of the beacon. Presumably the simulator has also received,
at some point in the past, a node report, typically generated from the pNodeReporter application
running on the vehicle. So the simulator not only knows which vehicle is making the range request,
but also where that vehicle is located. It needs the vehicle location to determine the range between
the vehicle and beacon, to generate the requested range report. The simulator also uses this range
information to decide if it wants regard the beacon as being close enough to hear the request, and
whether the vehicle is close enough to the beacon to hear the report.

4.4 Limiting the Frequency of Vehicle Range Requests

From the perspective of operating a vehicle, one may ask: why not request a range report from
all beacons as often as possible? There may be reasons why this is not feasible outside simulation.
Limits may exist due to power budgets of the vehicle and/or beacons, and there may be prevailing
communications protocols that make it at least impolite to be pushing range requests through a
shared communications medium.

To reflect this limitation, the uFldBeaconRangeSensor application may be configured to limit the
frequency in which a vehicle’s range request (or ping) will be honored with a range report reply. By
default this frequency is set to once every 30 seconds for all vehicles. The default for all vehicles
may be changed with the following configuration in the .moos file:

ping_wait = default = 60

If the time interval as above is set to 60 seconds, what happens if a vehicle requests a range report
40 seconds after its previous request? Is it simply ignored, needing to wait another 20 seconds? Or
is the clock reset to zero forcing the vehicle to wait 60 seconds before a ping is honored? By default,
the former is the case, but the simulator may be configured to the more draconian option with:

ping_payments = upon_request

Suppose the minimum time interval has elapsed, but the querying/pinging vehicle is too far out of
range from any beacon to hear even a single range report. Will the result be that the clock is reset
to zero, forcing the vehicle to wait another 60 seconds before a query is honored? By default this is

10

the case, but the simulator may be configured to not reset the clock unless the querying vehicle has
received at least one range report for its query:

ping_payments = upon_response

In short, the simulator configuration parameter, ping payments, may be configured with one of three
options, "upon request", "upon response", or "upon accept", with the default being the latter.

4.5 Producing Range Measurements with Noise

In the default configuration of uFldBeaconRangeSensor, range reports are generated with the most
precise range estimate as possible, with the only error being due to the latency of the communications
generating the range request and range report. Additional noise/error may be added in the simulator
for each range report with the following configuration parameter:

rn_algorithm = uniform,pct=0.12 // Values in the range [0,1]

Currently the only noise algorithm supported is the generation of uniformly random noise on the
range measurement. The noise level, θ, set with the parameter rn uniform pct, will generate a noisy
range from an otherwise exact range measurement r, by choosing a value in the range [θr, r + θr].
The range without noise, i.e., the ground truth, may also be reported by the simulator if desired by
setting the configuration parameter:

ground_truth = true

This will result in an additional MOOS variables posted, BRS RANGE REPORT GT, with the same format
as BRS RANGE REPORT, except the reported range will be given without noise.

5 Terminal and AppCast Output

The uFldBeaconRangeSensor application produces some useful information to the terminal and
identical content through appcasting. An example is shown in Listing 5 below. On line 2, the name
of the local community or vehicle name is listed on the left. On the right, "0/0(1478) indicates there
are no configuration or run warnings, and the current iteration of uFldBeaconRangeSensor is 1478.

Lines 4-12: Beacon Configuration

Lines 4-12 convey the prevailing beacon configuration settings. They may reflect the default values
or values read from the configuration block like the one shown previously in Listing 2. Each beacon
has an ID (first column), and the location in local coordinates in the next two columns. The fourth
column indicates whether reports are generated in response to a poll, i.e., range request, or on a
regular timed cycle as in beacon #03. If the latter type, the fifth column indicates the number of
unsolicited pings generated. The Pings Recvd and Pings Gen’d columns show the number of range
requests received and generated. Noise column indicates if there is any noise applied to the reports.
The last two columns show the push and pull distances.

11

Listing 5.5: Example uFldBeaconRangeSensor console or appcast output.

1 ===

2 uFldBeaconRangeSensor hotel 0/0(1478)

3 ===

4 Beacons(5):

5 Pings Pings Pings Push Pull

6 ID X Y Freq Unsol Recvd Gen’d Noise Dist Dist

7 -- ---- ---- ---- ----- ----- ----- ----- ---- ----

8 05 115 -150 poll 0 0 0 0 33 95

9 04 -65 -345 poll 0 16 16 0 85 75

10 03 0 -200 15.0 46 16 16 0 85 75

11 02 -100 -100 poll 0 14 14 0 85 75

12 01 200 0 poll 0 0 0 0 85 75

13

14 Vehicles(1):

15 Push Pull Unsol Pings Pings Too Too

16 VName Dist Dist Rec’d Gen’d Rep’d Freq Far

17 ----- ---- ---- ----- ----- ----- ---- ---

18 hotel 100 100 22 24 46 0 74

19

20 ===

21 Most Recent Events (8):

22 ===

23 [864.51]: Beacon[03]))--> Range Broadcast to HOTEL

24 [849.27]: Beacon[03] --> Range Reply to HOTEL

25 [849.27]: Beacon[03] <---- Ping from HOTEL

26 [849.27]: Beacon[04] --> Range Reply to HOTEL

27 [849.27]: Beacon[04] <---- Ping from HOTEL

28 [849.27]: Range Request resets the clock for vehicle HOTEL

29 [849.27]: Valid Range Request from HOTEL. Checking beacon ranges...

30 [836.27]: Beacon[03]))--> Range Broadcast to HOTEL

Unless the verbose setting is turned on, the output ending on line 37 above should be the last output
written to the console for the duration of the simuator.

In the verbose mode, the simulator will produce event-based output as shown in the example
above beginning on line 38. The asterisks in lines 39, 46, and 50 are not merely visual separators.
An asterisk represents a single receipt of a NODE REPORT message. Receiving node reports is essential
for the operation of the simulator and this provides a bit of visual verification that this is occurring.
Presumably node reports are being received much more often than range requests and range reports
are handled, as is the case in the above example. The first time a node report is received for a
particular vehicle, an announcement is made as shown on line 38.

In addition to handling incoming node reports, on any given iteration, the simulator may also
handle an incoming range request, or may generate an unsolicited range report based on a beacon
schedule. Console output for incoming range requests may look like that shown in lines 40-45 above.
First the range request and the requesting vehicle is announced as online 40. The elapsed time
since the vehicle last made a range request is shown as on line 41. If the request is honored by the
simulator, this is indicated as shown on line 42. Otherwise a reason for denial may be shown. If the
query is accepted, range reports may be generated for one or more vehicles. For each such vehicle, a
line announcing the new report is generated, as in lines 43-45. On an iteration where unsolicited

12

range reports are generated, output similar to that shown in lines 47-49 will generated. For each
report, the beacon and receiving vehicle are named.

6 Interaction between uFldBeaconRangeSensor and pMarineViewer

The uFldBeaconRangeSensor application will post certain messages to the MOOSDB that may
be subscribed for by GUI based applications like pMarineViewer for visualizing the posting of
BRS RANGE REPORT and BRS RANGE REQUEST messages, as well as visualizing the beacon locations. A
snapshot of the pMarineViewer window is shown below, with one vehicle and several beacons.

Figure 4: Beacons in the pMarineViewer: The VIEW RANGE PULSE message is passed to pMarineViewer to render
unsolicited range reports (here in green), range requests from a vehicle (here in white), and solicited range reports
in response to a range requeste (here in pink). The viewer alse renders the beacons and their labels upon receiving
VIEW MARKER messages posted by the uFldBeaconRangeSensor application. The pulses are only momemtarily visible
until another VIEW RANGE PULSE message is received.

6.1 The VIEW MARKER Data Structure

The uFldBeaconRangeSensor application, upon startup, posts the beacon locations in the form of the
VIEW MARKER data structure. This MOOS variable is one of the default variables registered for by
the pMarineViewer application. The types of supported markers are described in the pMarineViewer

documentation. The marker type, size and color are configurable in the uFldBeaconRangeSensor

configuration block. The user may use the variation in marker rendering to correspond to variation
in beacon reporting or querying characteristics.

13

6.2 The VIEW RANGE PULSE Data Structure

A range pulse message is used by the uFldBeaconRangeSensor application to convey visually the
generation of a range report, or the receipt of a range request. The pulse is rendered as a ring with
a growing radius having either the beacon or the vehicle at the center. A pulse eminating from a
beacon indicates a range report, and a pulse eminating from a vehicle indicates a range request.
By default different colors may be used for solicited and unsolicited range reports. In Figure 4 for
example, the green rings represent unsolicited reports, the white ring represents a range request
made by the vehicle, and the pink ring represents a response to the range request made by the one
beacon within range to the vehicle.

The VIEW RANGE PULSE message is a data structure implemented in the XYRangePulse class, with
the following format by example:

VIEW_RANGE_PULSE = x=-40,y=-150,radius=40,duration=15,fill=0.25,fill_color=green,

label=04,edge_color=green,time=3892830128.5,edge_size=1

The x and y parameters convey the center of the pulse. The radius parameter indicates the radius
of the circle at its maximum. The duration parameter is the number of seconds the pulse will
be rendered. The pulse will grow its radius linearly from zero meters at zero seconds to radius

meters at duration seconds. The fill parameter is in the range [0, 1], where 0 is full transparency
(clear) and 1 is fully opaque. The pulse transparency increases linearly as the range ring is rendered.
The starting transparency at radius = 0 is given by the fill parameter. The transparency at the
maximum radius is zero. The fill color parameter specifies the color rendered to the internal part
of the range pulse. The choice of legal colors is described in the Colore Appendix. The label is a
string that uniquely identifies the range instance to consumers like pMarineViewer. As with other
objects in pMarineViewer, if it receives an object the same label and type as one previously received,
it will replace the old object with the new one in its memory. The edge color parameter describes
the color of the ring rendered in the range pulse. The edge size likewise describes the line width of
the rendered ring. The time parameter indicates the UTC time at which the range pulse object was
generated.

7 The Indigo Example Mission Using uFldBeaconRangeSensor

The indigo mission is distributed with the MOOS-IvP source code and contains a ready example of
the uFldBeaconRangeSensor application, configured with three beacons acting as long baseline (LBL)
beacons as described at the beginning of Section 4. Assuming the reader has downloaded the source
code available at www.moos-ivp.org and built the code according to the documentation, the indigo
mission may be launched by:

$ cd moos-ivp/ivp/missions/s9_indigo/

$./launch.sh 10

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the

14

DEPLOY button. The vehicle will traverse a survey pattern over the rectangular operation region
shown in Figure 3, periodically generating a range request to the three beacons. With each range
request, a white range pulse should be visible around the vehicle. Almost immediately afterwards, a
range report for each beacon is generated and a red range pulse around each beacon is rendered. The
snapshot in Figure 3 depicts a moment in time where the range report visual pulses are beginning
to grow around the beacons and the range request visual pulse is still visible around the one vehicle.

How does the simulated vehicle generate a range request? In practice a user may implement an
intelligent module to reason about when to generate requests, but in this case the uTimerScript

application is used by creating a script that repeats endlessly, generating a range request once
every 25-35 seconds. The script is also conditioned on (NAV SPEED > 0), so the pinging doesn’t
start until the vehicle is deployed. The configuration for the script can be seen in the uTimerScript

configuration block in the indigo.moos file. More can be found in the uTimerScript documentation.

7.1 Examining the Log Data from the Indigo Mission

After the launch script above has launched the simulation, the script should leave the console
user with the option to ”Exit and Kill Simulation” by hitting the ’2’ key. Once the vehicle has
been deployed and traversed to one’s satisfaction, exit the script. A log directory should have
been created by the pLogger application in the directory where the simulation was launched. The
directory name should be begin with MOOSLog with the remainder of the directory name composed
from the timestamp of the launch.

Let’s take a look at some of the data related to the simulation and uFldBeaconRangeSensor in
particular. A dump of the entire file reveals a deluge of information. To look at the information
relevant to the uFldBeaconRangeSensor application, the file is pruned with the aloggrep tool:

$ aloggrep MOOSLog_1_2_2011_____2_32_48.alog uFldBeaconRangeSensor uTimerScript

This produces a subset of the alog file similar to that shown in Listing 6, showing only log entries
made by either the uFldBeaconRangeSensor application, or the uTimerScript application which
generated all the range requests as described above. The first three posts made to the MOOSDB by
uFldBeaconRangeSensor are the VIEW MARKER posts representing a visual cue for the pMarineViewer

application to render the three beacons.

Listing 7.6: A subset of the data logged from the Indigo example mission’s alog file.

%%%

%% LOG FILE: ./MOOSLog_22_2_2011_____17_27_06/MOOSLog_22_2_2011_____17_27_06.alog

%% FILE OPENED ON Tue Feb 22 17:27:06 2011

%% LOGSTART 23371445284.8

%%%

55.697 VIEW_MARKER uFldBeaconRangeSensor x=0,y=-200,label=03,color=orange,type=circle,width=4

55.698 VIEW_MARKER uFldBeaconRangeSensor x=400,y=-200,label=02,color=orange,type=circle,width=4

55.698 VIEW_MARKER uFldBeaconRangeSensor x=200,y=0,label=01,color=orange,type=circle,width=4

100.663 BRS_RANGE_REQUEST uTimerScript name=indigo

100.846 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=-97.65,y=-64.84,radius=50,duration=6,...

100.846 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=166.7446,id=03,time=23371445385.6

100.846 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=0,y=-200,radius=40,duration=15,...

100.846 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=515.6779,id=02,time=23371445385.6

15

100.846 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=400,y=-200,radius=40,duration=15,...

100.847 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=304.6305,id=01,time=23371445385.6

100.847 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=200,y=0,radius=40,duration=15,...

160.419 BRS_RANGE_REQUEST uTimerScript name=indigo

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=-197.96,y=-129.16,radius=50,duration=6,...

160.597 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=210.2533,id=03,time=23371445445.3

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=0,y=-200,radius=40,duration=15,...

160.597 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=602.1416,id=02,time=23371445445.3

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=400,y=-200,radius=40,duration=15,...

160.597 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=418.3951,id=01,time=23371445445.3

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=200,y=0,radius=40,duration=15,...

The first range request is generated at time 100.663 by the uTimerScript. The uFldBeaconRangeSensor
application receives this mail and posts a range pulse at time 100.846 conveying the range request
from the vehicle, e.g., the white circle in Figure 3. The range request is met immediately and two
posts are generated for each beacon. The VIEW RANGE PULSE message indicates the simulator has
generated a range report for the beacon (the red circle in Figure 3. The BRS RANGE REPORT message
is the actual range report to be used by the vehicle as it sees fit.

7.2 Generating Range Report Data for Matlab

The log files generated as in Listing 6 above may processed to form a table of values suitable for
Matlab processing. The alog2rng tool may be run on an alog file from the command line:

$ alog2rng MOOSLog_21_2_2011_____22_32_48.alog

This will generate a table of data like that below. The left column is the timestamp from the log file.
The next N columns are the range measurements from each beacon. And the last three columns
are the ”ground truth” vehicle position and heading. The last three columns may be excluded with
the --nav=false switch on the command line.

Time 03 02 01 NAV_X NAV_Y NAV_HDG

100.846 166.7446 515.6779 304.6305 -99.371 -65.917 238.000

160.597 210.2533 602.1416 418.3951 -198.538 -130.397 197.456

224.844 163.4205 558.5143 433.6937 -155.744 -248.991 159.000

The alog2rng tool is part of the Alog-Toolbox along with other tools for examining and modifying
alog files generated by pLogger.

16

	Overview
	The uFldBeaconRangeSensor Interface and Configuration Options
	Configuration Parameters of uFldBeaconRangeSensor

	Publications and Subscriptions for uFldBeaconRangeSensor
	Variables Published by uFldBeaconRangeSensor
	Variables Subscribed for by uFldBeaconRangeSensor

	Using and Configuring uFldBeaconRangeSensor
	Configuring the Beacon Locations and Properties
	Unsolicited Beacon Range Reports
	Solicited Beacon Range Reports
	Limiting the Frequency of Vehicle Range Requests
	Producing Range Measurements with Noise

	Terminal and AppCast Output
	Interaction between uFldBeaconRangeSensor and pMarineViewer
	The VIEW_MARKER Data Structure
	The VIEW_RANGE_PULSE Data Structure

	The Indigo Example Mission Using uFldBeaconRangeSensor
	Examining the Log Data from the Indigo Mission
	Generating Range Report Data for Matlab

