
pRealm: Integrated Scoping of the MOOSDB
December 2020

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139
project-pavlab/appdocs/app prealm

1 Overview 1

2 Configuration Parameters for pRealm 2

3 Publications and Subscriptions for pRealm 4
3.1 Variables Published by pRealm . 4
3.2 Variables Subscribed for by pRealm . 4
3.3 Command Line Usage of pRealm . 4

4 Structure of RealmCast Reports 5
4.1 The RealmCast Structure . 5
4.2 Serialization of the RealmCast Structure . 6
4.3 When RealmCast Reports are Generated . 7

5 Altering the RealmCast Format to Suit the User 8
5.1 Modifying the Column Output Based on Source and Community 8
5.2 Modifying the Row Output By Masking and Dropping Subscriptions 9
5.3 Modifying the Content of Very Large String Publications . 10
5.4 Modifying the Time Format to UTC . 11
5.5 How Does the User Actually Modify Output? . 12

6 WatchCasting: A Special Type of RealmCast 12

7 How pRealm Informs Potential Clients 14

8 Terminal and AppCast Output 15

9 A Preview of Using pRealm Information within pMarineViewer 17

10 Additional Notes 18

1 Overview

The pRealm application is a tool to enable a shoreside multi-vehicle scope of the MOOSDB for
all connected vehicles, as well as the shoreside MOOSDB. An instance of pRealm in each MOOS
community, one per MOOSDB. It creates a shadow copy of the MOOSDB by registering for all
known variables, i.e., those listed in the DB RWSUMMARY published by the MOOSDB. The pRealm

app only listens and keeps a copy of all the mail processed by the MOOSDB. Occasionally pRealm

will receive and process a request to produce a report, a REALMCAST, showing the current values of
a subset of known MOOS variables. Typically this subset is correlated to the subscriptions and

1

publications of a particular app connected to the local MOOSDB. The typical usage scenario for
pRealm is shown in Figure 1.

Figure 1: Typical pRealm Topology: A shoreside or topside community is receiving information from several
deployed vehicles, in the form of node reports. The node reports contain time-stamped updated vehicle positions,
from which the speed and distance measurements are derived and posted to the shoreside MOOSDB.

The goal of this application is to enable the user, situated at a shoreside console, to select any
deployed vehicle and scope the MOOSDB from a variety of vantage points. Initially this means
selecting a vehicle and process and seeing the publications and subscriptions of that process. This is
especially powerful for confirming the flow of information between vehicles or between vehicles and
the shoreside. The pMarineViewer app has been substantially augmented to capitalize on a set of
MOOS communities that realm enabled. If pRealm is not enabled, pMarineViewer and all other apps
will be unaffected.

The implementation of pRealm is similar to and based on appcasting which precedes pRealm by
roughly seven years. It is similar to appcasting in that a realmcast is only generated when there is
a client, e.g. pMarineViewer, with an open realmcast window, pointed to a particular vehicle and
particular channel. In this case, pRealm on the chosen vehicle will only respond with a generated
report solely for the selected channel. Like appcasting, the realmcast rate generation is immune
time the MOOS Time Warp and will be generated roughly once per second. This regime, like with
appcasting, minimizes bandwidth which may be limited in field operations.

Unlike appcasting, pRealm requires no augmentation to the participating apps. The only requirement
is that an instance of pRealm is launched alongside all the apps otherwise launched in each MOOS
community. No configuration is required. Although there are configuration parameters the user
may adjust, the default parameters are fine in most cases.

2 Configuration Parameters for pRealm

The pRealm application may be configured with a configuration block within a MOOS mission file,
typically with a .moos file suffix. Unlike most other MOOS apps, there will no warning generated if

2

a configuration block is not provided. This is partly because the default values of parameters rarely
need changing, and partly because not requiring a configuration block makes it even easier to add
pRealm to existing missions. The following parameters are defined for pRealm.

Listing 2.1: Configuration Parameters for pRealm.

relcast interval: Time duration, in seconds, that must occur between the previously generated
realmcast and a new one. The allowable range is [0.4, 15]. Values outside
this range will be clipped to the range. The default value is 0.8 seconds.

summary interval: Time duration, in seconds, between auto-generated postings of
REALMCAST CHANNELS. The allowable range is [1, 10]. Values outside this
range will be clipped to the range. The default value is 2 seconds.

wrap length: The number of characters, per line, when the user has opted to have the
variable value field wrapped. Legal values are any integer value greater than
zero. The default is 90.

trunc length: The number of characters that the value field of an output line will be
truncated to, when the user has opted to enable truncated output. Legal
values are any integer value greater than zero. It is recommended to choose
a number that is a multiple of the wrap length. The default is 270.

msg max hist: The number of MOOS mail messages held per variable. Currently multiple
messages are only held for string messages. Legal values are any integer
value greater than zero. The default is 10.

An Example MOOS Configuration Block

An example MOOS configuration block may be obtained from the command line with the following:

$ pRealm --example or -e

Listing 2.2: Example configuration of the pRealm application.

1 ===

2 pHostInfo Example MOOS Configuration

3 ===

4

5 ProcessConfig = pRealm

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 relcast_interval = 0.8 // [0.4, 15] Default is 0.8

11 summary_interval = 2.0 // [1, 10] Default is 2

12 wrap_length = 90 // [1,inf] Default is 90

13 trunc_length = 270 // [1,inf] Default is 270

14 msg_max_history = 10 // [1,inf] Default is 10

15 }

3

3 Publications and Subscriptions for pRealm

The interface for pRealm, in terms of publications and subscriptions, is described below. This same
information may also be obtained from the terminal with:

$ pHostInfo --interface or -i

3.1 Variables Published by pRealm

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

� REALMCAST: Contains a realmcast report, showing the current values of a set of MOOS variables.
Typically the set of variables is related to a particular MOOS app running in the same
community as pRealm. This is a multi-line text report that has been serialized into a single
string. It will be unpacked as a multi-line text report by the receiving client.

� REALMCAST CHANNELS: A list channels associated with this instance of pRealm. Typically this
list contains the names of MOOS apps running in this MOOS community, but may contain
other user-configured channels.

� WATCHCAST: Contains a watchcast report, containing the the information on the most recent
post for a particular single MOOS variable.

3.2 Variables Subscribed for by pRealm

The pRealm application subscribes to the following MOOS variables:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� REALMCAST REQ: A request to generate publications to REALMCAST for a specified channel, for
specified duration.

� DB RWSUMMARY: A report generated by the MOOSDB listing, for each app connected to the
MOOSDB, the set of variables subscribed for by each app, and the set of variables observed
to be published by each app.

Node that pRealm will also subscribe for all variables discovered from the contents of DB RWSUMMARY

publications.

3.3 Command Line Usage of pRealm

The pRealm application is typically launched with pAntler, along with a group of other modules.
However, it may be launched separately from the command line. The command line options may be
shown by typing:

$ pRealm --help or -h

Listing 3.3: Command line usage for the pRealm tool.

4

1 Usage: pRealm file.moos [OPTIONS]

2

3 Options:

4 --alias=<ProcessName>

5 Launch pRealm with the given process

6 name rather than pRealm.

7 --example, -e

8 Display example MOOS configuration block

9 --help, -h

10 Display this help message.

11 --HOSTIP=<HostIP>

12 Force the use of the given IP address as the reported IP

13 address ignoring any other auto-discovered IP address.

14 --interface, -i

15 Display MOOS publications and subscriptions.

16 --version,-v

17 Display the release version of pRealm.

18

19 Note: If argv[2] is not of one of the above formats

20 this will be interpreted as a run alias. This

21 is to support pAntler launching conventions.

4 Structure of RealmCast Reports

The primary output of pRealm is a realmcast, a posting to the MOOS variable REALMCAST. If pRealm
is running in a vehicle MOOS community, then the realmcast is typically shared to the shoreside
community. A realmcast is only generated on demand, to ensure minimal bandwidth, keeping in
mind scenarios with large numbers of vehicles and limited physical communications bandwidth. In
this section the structure of the realmcast message is described, how this message is serialized, and
how the content of the realmcast message may be customized at run time to suit user preferences.

4.1 The RealmCast Structure

The structure of realmcast is simply a list of strings. While there is a distinct formatting of the
report, the end result is the list of strings with inserted white space. The assumption is that whatever
app is rendering the report will be using a fixed-width character output, which will preserve the
columns and spacing of the report. An example is shown below.

5

=======================================

pProxonoi ben (33)

=======================================

Subscriptions

=======================================

Variable Source Time Comm Variable

-------------- ------------- ------ --------- ---

APPCAST_REQ uMAC_5533 111.44 shoreside node=all,app=all,duration=3.0,key=uMAC_5533:app,thresh=

NAV_X uSimMarineX 111.69 ben 5408

NAV_Y uSimMarineX 111.69 ben -1725

NODE_REPORT uFldNodeComms 39.22 shoreside NAME=abe,X=5327,Y=-1769,SPD=0,HDG=287,TYPE=kayak,COLOR=

PROX_CLEAR - never - -

PROX_POLY_VIEW - never - -

=======================================

Publications

=======================================

Variable Source Time Comm Variable

------------------ -------------- ------ ---- ---

APPCAST uFldNodeBroker 26.28 ben formatted report

PPROXONOI_ITER_GAP pProxonoi 111.43 ben 1.011477

PPROXONOI_ITER_LEN pProxonoi 111.43 ben 0.000436

PPROXONOI_STATUS pProxonoi 110.93 ben AppErrorFlag=false,Uptime=112.009,cpuload=0.1298,memory

PROXONOI_PID pProxonoi -0.42 ben 63498

PROXONOI_POLY pProxonoi 111.43 ben active=false,label=vpoly_ben

PROXONOI_REGION pProxonoi 110.43 ben pts={-500,2300:-3500,-1000:-3500,-4600:3100,-4600:8400,

The above example output is typical of the default format used when pRealm is generating a report
for a particular application, the pProxonoi app in this case. On the top line, the app name is listed
on the left, with the vehicle name on the right. The number in the parentheses is a counter showning
how many reports for this app have been generated.

The body of the report shows the set of variables subscribed for by this application, followed by the
variables published by this application. For each variable, the variable name, source, time of the
publication, community and variable contents are shown, similar to other scoping utilities like uXMS.

4.2 Serialization of the RealmCast Structure

As mentioned above in Section 4.1, a realmcast message is comprised primarily of a list of strings.
The entire message is serialized into a single string for posting to the MOOSDB. The structure of
this message is:

node=<nodename>!Q!proc=<procname>!Q!count=<num>!Q!line!Z!line!Z!line!Z!....

It is comprised of four main components, each separated by "!Q!":

� The node is typically the name of the vehicle, or "shoreside" if this instance of pRealm is
running in the shoreside community.

� The proc is typically the name of the application related to this report. A realmcast may be
custom configured to contain information not strictly correlated with an app. In such a case
the proc name is the name used for this custom configuration.

� The count represents the number of realmcast reports generated for this particular node and
proc combination.

� The line components represent each line in the report, separated by the "!Z!" separator.

6

The serialization methods are defined on the C++ class RealmCast. There is a function defined to
convert from the RealmCast class to a string:

RealmCast relcast;

... structure populated

string realmcast_report = relcast.get_spec();

And a function convert from a string to a RealmCast class instance.

string realmcast_report;

... string otherwise populated

RealmCast relcast = string2Realmast(realmcast_report);

Serialization is handled internally by pRealm and deserialization is handled internally by the client
application, e.g., pMarineViewer.

4.3 When RealmCast Reports are Generated

The default state of pRealm is to be not generating any realmcast messages. Messages are only
generated if there is a client requesting this information. A request comes in the form of the MOOS
variable REALMCAST REQ. Minimally this message specifies the pRealm channel of interest and the
duration of time into the future during which it hopes to receive responding realmcast messages.
The basic idea is shown in Figure 2.

Figure 2: RealmCast Request: A request is generated by a client, specifying a proc (i.e., channel or app), and a
duration. For the next period in time specified by the duration, pRealm will produce realmcast reports at a fixed
interval.

Note that if the client suddenly quits, or turns its attention elsewhere, after the short duration,
pRealm, resumes being quiet. Note also that the rate of publications to REALMCAST by pRealm is
determined by the pRealm configuration parameter relcast interval. This interval by default is
0.8 seconds. So, in the above example, a single request with a duration of five seconds should
result in six realmcast publications. A typical client, if interested in receiving a steady stream of
realmcast reports over a period longer than five seconds, would simply send requests at a steady
rate somewhat faster than the duration specified in each request. Each newly received request will

7

reset the duration.

5 Altering the RealmCast Format to Suit the User

The default format for a typical realmcast report is shown in Section 4.1. There are seven simple
ways to modify the output to further accommodate the preferences of a user. Each modification is a
simple on/off state that can be toggled by the client application. As pMarineViewer is such a client,
it has seven on-screen buttons for toggling the preferences. The seven methods are:

� Omission of the variable Source column

� Omission of the variable Community column

� Omission of the Subscriptions (top) block

� Masking out certain variables (described in Section 5.2)

� Wrapping the output of the variable Value column

� Truncating the output of the variabe Value column

� Showing time stamps in UTC format

Each of the above seven modifications come as part of the client’s request for a realmcast report. A
keyword is associated with each modification, and the absence of the keywork indicates that the
modification is not requested. For example, a realmcast request with the Source and Community
columns suppressed would look something like:

REALMCAST_REQ = client=pmv,duration=5,nosrc,nocomm,proc=pProxonoi

The keywords for the seven modifications are: nosrc, nocom, nosub, mask, wrap, trunc and utc

respectively. Each incoming request sets the state for each of these mods. For example if the next
request after the above one were:

REALMCAST_REQ = client=pmv,duration=5,nocomm,proc=pProxonoi

then the next outoing realmcast would no longer suppress the Source column for each variable.

5.1 Modifying the Column Output Based on Source and Community

By omitting the Source and Community columns the original output from Section 4.1 would look like
that below, with both columns removed in both the Subscriptions block (top) and the Publications
block (bottom):

8

=======================================

pProxonoi ben (33)

=======================================

Subscriptions

=======================================

Variable Time Value

-------------- ------ ---

APPCAST_REQ 111.44 node=all,app=all,duration=3.0,key=uMAC_5533:app,thresh=run_warning

NAV_X 111.69 5408

NAV_Y 111.69 -1725

NODE_REPORT 39.22 NAME=abe,X=5327,Y=-1769,SPD=0,HDG=287,TYPE=kayak,COLOR=dodgerblue,MODE=PARK,ALLSTO

PROX_CLEAR never -

PROX_POLY_VIEW never -

=======================================

Publications

=======================================

Variable Time Value

------------------ ------ ---

APPCAST 26.28 formatted report

PPROXONOI_ITER_GAP 111.43 1.011477

PPROXONOI_ITER_LEN 111.43 0.000436

PPROXONOI_STATUS 110.93 AppErrorFlag=false,Uptime=112.009,cpuload=0.1298,memory_kb=1768,memory_max_kb=

PROXONOI_PID -0.42 63498

PROXONOI_POLY 111.43 active=false,label=vpoly_ben

PROXONOI_REGION 110.43 pts={-500,2300:-3500,-1000:-3500,-4600:3100,-4600:8400,2300},label=prox_opregi

The modified output simply allows more of the righthand Value columm to be more visible to the
user.

5.2 Modifying the Row Output By Masking and Dropping Subscriptions

Notice the last two lines of Subscriptions section of the above output. These two variables have
never been written to. They are included in the output because pRealm noticed in the DB RWSUMMARY

content that this particular app subscribes to those two variables. And at times it is helpful to see
exactly the list of variables subscribed to for a given app. For some apps, however, these virgin
variables can take big chunk of the report space, and it may be better to mask them out. This can
be achieved by attaching the mask keyword to the realmcast request. The resulting output is shown
below, with the two lines dropped.

9

=======================================

pProxonoi ben (33)

=======================================

Subscriptions

=======================================

Variable Time Value

-------------- ------ ---

APPCAST_REQ 111.44 node=all,app=all,duration=3.0,key=uMAC_5533:app,thresh=run_warning

NAV_X 111.69 5408

NAV_Y 111.69 -1725

NODE_REPORT 39.22 NAME=abe,X=5327,Y=-1769,SPD=0,HDG=287,TYPE=kayak,COLOR=dodgerblue,MODE=PARK,ALLSTO

=======================================

Publications

=======================================

Variable Time Value

------------------ ------ ---

APPCAST 26.28 formatted report

PPROXONOI_ITER_GAP 111.43 1.011477

PPROXONOI_ITER_LEN 111.43 0.000436

PPROXONOI_STATUS 110.93 AppErrorFlag=false,Uptime=112.009,cpuload=0.1298,memory_kb=1768,memory_max

PROXONOI_PID -0.42 63498

PROXONOI_POLY 111.43 active=false,label=vpoly_ben

PROXONOI_REGION 110.43 pts={-500,2300:-3500,-1000:-3500,-4600:3100,-4600:8400,2300},label=prox_o

Furthermore, for certain apps, the number of variable subscriptions can be huge, and the user may
be solely interested in monitoring one or more variable publications. The Subscriptions section can
be omitted entirely by attaching the nosubs keyword to the realmcast request, resulting in the above
output being further reduced to:

=======================================

pProxonoi ben (33)

=======================================

Subscriptions

=======================================

Variable Time Variable

-------------- ------ ---

APPCAST_REQ 111.44 node=all,app=all,duration=3.0,key=uMAC_5533:app,thresh=run_warning

NAV_X 111.69 5408

NAV_Y 111.69 -1725

NODE_REPORT 39.22 NAME=abe,X=5327,Y=-1769,SPD=0,HDG=287,TYPE=kayak,COLOR=dodgerblue,MODE=PARK,ALLSTO

PROX_CLEAR never -

PROX_POLY_VIEW never -

5.3 Modifying the Content of Very Large String Publications

Occasionally an app will publish very long string messages. In many cases, just seeing the first part
of the message is sufficient for a user monitoring the system. As with the NODE REPORT posting in
the example above, the last part of the variable value is simply cut off in the output presented to
the user. Rather than cutting off the line, it can be wrapped instead, by including the wrap tag in
the realmcast request. Wrapping is shown in the example below.

10

=======================================

pProxonoi ben (33)

=======================================

Subscriptions

=======================================

Variable Time Value

-------------- ------ ---

APPCAST_REQ 111.44 node=all,app=all,duration=3.0,key=uMAC_5533:app,thresh=run_warning

NAV_X 111.69 5408

NAV_Y 111.69 -1725

NODE_REPORT 39.22 NAME=abe,X=5327,Y=-1769,SPD=0,HDG=287,TYPE=kayak,COLOR=dodgerblue,MODE=PARK,

ALLSTOP=ManualOverride,INDEX=81,TIME=3216098849.96,LENGTH=4

PROX_CLEAR never -

PROX_POLY_VIEW never -

=======================================

Publications

=======================================

Variable Time Value

------------------ ------ ---

APPCAST 26.28 formatted report

PPROXONOI_ITER_GAP 111.43 1.011477

PPROXONOI_ITER_LEN 111.43 0.000436

PPROXONOI_STATUS 110.93 AppErrorFlag=false,Uptime=112.009,cpuload=0.1298,memory_kb=1768,memory_max

_kb=1768,

PROXONOI_PID -0.42 63498

PROXONOI_POLY 111.43 active=false,label=vpoly_ben

PROXONOI_REGION 110.43 pts={-500,2300:-3500,-1000:-3500,-4600:3100,-4600:8400,2300},label=prox_o

pregion

By default, the wrapping is done in 90 character increments. This can be changed with the pRealm

configuration parameter, wrap length.

Finally, in some cases wrapping may not be enough. If the string is thousands of characters long, it
will dominate the realmcast output and make it hard to read anything else. The user has the option
of also truncating the variable string value, by default, to 270 characters. This can be modified with
the trunc length parameter. To make the most of each line of output, it is recommended to set the
trunc length to be a multiple of the wrap length.

5.4 Modifying the Time Format to UTC

Normally the posted time stamp is relative to the ”start of the mission”. There is no consensus
on then the start of the mission occurs, although one could argue that it is the very instance the
MOOSDB starts. However, in multi-vehicle missions, each MOOSDB starts at a slightly different
time. In the case of pRealm, the start time used for calculating timestamps is simply the UTC
time when pRealm started. This vagary is usually tolerated because we are simply trying to get
a feel for the rough time or age of a variable post, and the nice small numbers help get a quick
sense. However, at times, more precision may be preferred. The user has the option of requesting
timestamps to be posted in absolute UTC time, i.e., the number of seconds since January 1st, 1970.
In this way, all postings from all vehicles will be referencing the same start time, regardless of when
the MOOSDB or other processes began.

A client application simply needs to add the utc component to the end of a realmcast request as
such:

11

REALMCAST_REQ = client=pmv,duration=5,utc,proc=pProxonoi

5.5 How Does the User Actually Modify Output?

As described above, modification to the realmcast report content is achieved by adding tags to the
incoming REALMCAST REQ messages. For example, the Source and Community columns are removed
when the request contains the nosrc and nocom tags:

REALMCAST_REQ = client=pmv,duration=5,nosrc,nocomm,proc=pProxonoi

And virgin variables and string content can be wrapped with the mask and wrap tags:

REALMCAST_REQ = client=pmv,duration=5,mask,wrap,proc=pProxonoi

In general the user does not need to be involved in formatting string messages with these tags. The
pMarineViewer app is a client that interacts with the user and contains toggle buttons for the above
content modifiers. Figure 3 shows the lefthand bottom corner of the pMarineViewer window when
realmcast output is being viewed. (Also see Figure 7.) Each button is a toggle button.

Figure 3: Content Modifier Buttons: The pMarineViewer app acts as a client requesting and receiving realmcast
reports. The modifier buttons will toggle the seven modifiers affecting realmast formatting.

When pMarineViewer is in the mode to present realmcast content, it will generate a steady stream of
REALMCAST REQ messages. As the above seven content buttons are toggled, the next outgoing request
message will be modified with the proper content tags.

6 WatchCasting: A Special Type of RealmCast

In addition to the outgoing REALMCAST message, pRealm supports a second type of message called
a watchcast, posted in the variable WATCHCAST. This message contains the information about the
most recent post to one MOOS variable. Watchcasts are generated when the most recent realmcast
request names a set of MOOS variables. Here is a normal realmcast request discussed above,
requesting the pub/sub information for pHelmIvP:

REALMCAST_REQ = client=pmv,duration=5,proc=pHelmIvP

12

And here is a realmcast request that specifies a particular set of MOOS variables:

REALMCAST_REQ = client=pmv,duration=5,vars=DEPLOY:RETURN:STATION_KEEP

When pRealm has been asked to produce this kind of content, it produces it in a watchcast message,
one per variable. The idea is shown in Figure 4.

Figure 4: WatchCast Request: A request is generated by a client, specifying a set of variables, and a duration. For
the next period in time specified by the duration, pRealm will produce a watchcast report for each variable, each time
the variable changes, but no more frequent than a fixed interval.

Watchcasting allows the client to configure a cluster of variables that may be important to the user.
These variables may be involved in several different MOOS applications and thus hard to visualize
and monitor. Clients of pRealm like pMarineViewer and uMACView are able to specify watch clusters
and view a single report similar to:

Node DEPLOY RETURN STATION_KEEP

---- ------ ------ ------------

abe true false false

ben true false false

cal true false false

deb true false false

eve true false false

fin true false false

gus true false false

hal true false false

These may be the key variables in the autonomy of a particular mission, or they could be health
montitoring variables for deployed platforms:

13

Node BATT_VOLTAGE CPU_TEMP GPS_SATELLITES

---- ------------ -------- --------------

abe 17.2 111.2 11

ben 16.9 112.0 8

cal 17.4 111.9 9

deb 17.4 108.7 10

eve 17.0 101.2 11

fin 15.8 105.5 11

gus 16.4 114.2 9

hal 16.1 105.6 10

Since multiple pRealm clients may be run simultaneously, e.g., pMarineViewer and one or more
instances of uMACView, then the user could have several such tables viewable. In multi-robot vehicle
deployments, this may be extremely useful. Unlike appcast content, the above content is customizable
by the user without any adjustments to code. Watch clusters are configured in pMarineViewer or
uMACView configuration files. See the documentation for these app for more information, [1], [2].

7 How pRealm Informs Potential Clients

We have established how clients of pRealm may request reports on a given channel, Figure 2. But how
does a client like pMarineViewer know there exists a pRealm to query, and which channels may be
queried? To accomplish this, pRealm publishes its key information periodically for clients to discover.
At a rate of once per five seconds, pRealm publishes to the MOOS variable REALMCAST CHANNELS a
report that identifies the name of the node/vehicle, and all available channels for querying. This
idea is conveyed below.

Figure 5: RealmCast Channels: The pRealm app periodically posts information about itself. This information is
used later by clients to request realmcast reports from specific nodes and specific channels.

By default, these messages are posted once every 5 seconds. This value can be changed with the
summary interval parameter. There are two exceptions to this interval. For the first minute after
launch, the summary will be posted every half second. The second exception is applied when a new
app has been detected. The set of apps participating in the local MOOS community normally doesn’t

14

change after the initial startup. But if a new app is later detected by pRealm, the REALMCAST CHANNELS

variable will be published immediately with this new information.

A final note: the time interval between summaries is real time, not time warp time.

8 Terminal and AppCast Output

The pRealm application produces some useful information to the terminal on every iteration of the
application. An example is shown in Listing 4 below. This application is also appcast enabled,
meaning its reports are published to the MOOSDB and viewable from any uMAC application or
pMarineViewer. The counter on the end of line 2 is incremented on each iteration of pRealm, and
serves a bit as a heartbeat indicator. The "0/0" also on line 2 indicates there are no configuration
or run warnings detected.

Listing 8.4: Example terminal or appcast output for pRealm.

1 ===

2 pRealm gilda 0/0(3074)

3 ===

4 Configuration:

5 --

6 RelCast Interval: 0.55

7 Summary Interval: 7.60

8 Wrap Length: 90

9 Trunc Length: 270

10 Max Msg Hist: 10

11

12 MOOS Community State:

13 --

14 MOOSDB Name: MOOSDB_gilda

15 Known Apps: 15

16 Known Apps: MOOSDB_gilda,iSay,pContactMgrV20,pHelmIvP,

17 pHostInfo,pLogger,pMarinePID,pNodeReporter,

18 pRealm,pShare,uFldNodeBroker,uLoadWatch,

19 uMemWatch,uProcessWatch,uSimMarine

20 Total SVars: 196

21 Total PVars: 137

22 Unique Vars: 206

23 UTC Time: 12874301098.43

24 Local Time: 1605.84

25 Summaries: 40

26

27 Recent RealmCasts or WatchCasts:

28 --

29 Total RealmCasts: 238

30 Total WatchCasts: 6

31 --

32 Count Time Client Content

33 ----- ------- ------ ---

34 (165) 1604.28 pmv pHelmIvP

35 (47) 829.04 pmv iSay

36 (1) 424.30 pmv vars=DEPLOY

37 (1) 137.69 pmv vars=AVOID,DEPLOY,LOITER,RETURN,STATION_KEE

15

38 (26) 132.98 pmv iSay

39

40 Currently Active Clients:

41 --

42 Client Active Content

43 ------ ------ --------

44 pmv 21.37 pHelmIvP

45

46 ===

47 Most Recent Events (8):

48 ===

49 [831.62]: Client pmv, new pipe: pHelmIvP

50 [533.97]: Client pmv, new pipe: iSay

51 [386.22]: Client pmv, new pipe: vars=DEPLOY

52 [336.66]: Client pmv, new pipe: vars=AVOID

Lines 6-10 of the output show the current values of the five pRealm configuration parameters listed
in Section 2.

Lines 12-22 relate state of the MOOSDB, including the name of the MOOSDB which is always the
community name at the end of the MOOSDB prefix. The number of and list of know apps connected
to the MOOSDB are shown in lines 15 and 16. Line 20 shows the number of MOOS variables
involved in a subscription by at least one app. Line 21 shows the number of unique MOOS variable
publications. Line 22 shows the number of unique variables known to the MOOSDB involved in
either a subscription or publication. Line 33 shows the current UTC time, with the time warp
multiplier applied. Line 24 shows the local time, i.e., the time since pRealm was started. Line 25
shows the total number of realmcast summaries posted, to the variable REALMCAST CHANNELS.

Lines 27-38 indicate the most recent realmcasts or watchcasts. First the total of each is shown on
lines 29 and 30. Lines 34-38 show the five most recent content settings. The first column, Count,
shows the number of successive outgoing messages. The Time column shows the local time of the
most recent message in that group. The Client column shows which app is requesting the content.
This will show as "pmv" when pMarineViewer is the client. Finally, the Client column indicates the
content of the outgoing message. When the content begins with "vars=", this indicates that it is a
watchcast.

Lines 40-44 show the status of active clients. A client is active if pRealm has recently received a
realmcast request. As discussed earlier, each request has a duration. The duration implies a time
remaining before the request expires. This time is shown in column two. Column three shows the
content being requested in the realmcast request.

Lines 46-56 contain the typical recent events block for all appcasting apps. In the case of pRealm, an
event is posted each time a realmcast request has been received that contains a change in requested
content.

16

9 A Preview of Using pRealm Information within pMarineViewer

In most cases the user won’t give another thought about pRealm beyond simply including it in the
pAntler launch lists. The user experience is through pMarineViewer. Initially this is the only app
that is able to handle realmcasts and present them to a user. So here is a quick preview of the
pMarineViewer experience.

Normally when the a mission is launched with the pMarineViewer the window shows the three
”infocast” panes shown on the left. The infocast panes are either showing appcast content, or
realmcast content. The infocast panes show appcast content by default. Unless the user changes
the default color schemes, appcasting is distinguished by an indigo background as in Figure 6.

Figure 6: The pMarineViewer AppCasting Mode: When pMarineViewer starts, normally it is in appcasting
mode, with the left three appcasting panes rendered in indigo showing appcast content in the lower pane.

The appcasting panes let the user select the node in the upper left pane, e.g., the shoreside or one
of several vehicles. The upper right pane lets the user select the MOOS app running on the selected
node. The bottom pane shows the appcast content for the node and app selected in the top two
panes.

The realmcast mode is very similar. To toggle between modes, the ’a’ key is used. Unless the user
changes the default color schemes, the realmcasting is distinguished by a beige background as in
Figure 7. As in the appcasting mode, the top two panes offer virtually the same options based on
nodes and processes. The bottom middle pane switches however to show realmcast content.

17

Figure 7: The pMarineViewer RealmCasting Mode: The pMarineViewer user may toggle into realmcasting
mode using the ’a’ key, with the left three panes rendered in beige.

When in realmcast mode, pMarineViewer will display the seven buttons shown above. These buttons
allow the user to modify the content modes discussed in Section 5.

10 Additional Notes

Some additions planned for the future:

� General masking: Currently masking is only done on virgin variables. The plan is to also
allow the user to mask out entire apps, or a list of variables for an app, or list of variables
across all apps.

� Configurable channels: Currently the only channels are connected apps, plus an artficial
channel for the MOOSDB. Like uXMS, the plan is to allow the user to define their own channel
with a custom list of variables to watch.

� Global channel: Currently there is no channel that simply lists all variables.

� Messaging channel: A channel specifically for monitoring inter-vehicle messaging.

References

[1] Michael R. Benjamin. pMarineViewer: A Tool for Mission Monitoring and Control. http://oceanai.mit.edu/
ivpman/apps/pMarineViewer.

[2] Michael R. Benjamin. The uMAC Utilities. http://oceanai.mit.edu/ivpman/apps/uMAC.

18

http://oceanai.mit.edu/ivpman/apps/pMarineViewer
http://oceanai.mit.edu/ivpman/apps/pMarineViewer
http://oceanai.mit.edu/ivpman/apps/uMAC

	Overview
	Configuration Parameters for pRealm
	Publications and Subscriptions for pRealm
	Variables Published by pRealm
	Variables Subscribed for by pRealm
	Command Line Usage of pRealm

	Structure of RealmCast Reports
	The RealmCast Structure
	Serialization of the RealmCast Structure
	When RealmCast Reports are Generated

	Altering the RealmCast Format to Suit the User
	Modifying the Column Output Based on Source and Community
	Modifying the Row Output By Masking and Dropping Subscriptions
	Modifying the Content of Very Large String Publications
	Modifying the Time Format to UTC
	How Does the User Actually Modify Output?

	WatchCasting: A Special Type of RealmCast
	How pRealm Informs Potential Clients
	Terminal and AppCast Output
	A Preview of Using pRealm Information within pMarineViewer
	Additional Notes

