
pNodeReporter: Summarizing a Node’s Position and
Status
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Overview 1

2 Using pNodeReporter 2
2.1 Overview Node Report Components . 2
2.2 Helm Characteristics . 3
2.3 Platform Characteristics . 4
2.4 Dealing with Local versus Global Coordinates . 4
2.5 Processing Alternate Navigation Solutions . 5

3 The Optional Blackout Interval Option 5

4 Configuration Parameters for pNodeReporter 7

5 Publications and Subscriptions for pNodeReporter 8
5.1 Variables Published by pNodeReporter . 9
5.2 Variables Subscribed for by pNodeReporter . 9
5.3 Command Line Usage of pNodeReporter . 9

6 The Optional Platform Report Feature 10

7 An Example Platform Report Configuration Block for pNodeReporter 11

8 Measuring the Odometry Extent Per Mission Hash 12

1 Overview

The pNodeReporter MOOS application runs on each vehicle (real or simulated) and generates
node-reports (as a proxy for AIS reports) for sharing between vehicles, depicted in Figure 1. The
process serves one primary function - it repeatedly gathers local platform information and navigation
data and creates an AIS like report in the form of the MOOS variable NODE REPORT LOCAL. The
NODE REPORT messages are communicated between the vehicles and the shore or shipside command
and control through an inter-MOOSDB communications process such as pShare or via acoustic
modem. Since a node or platform may both generate and receive reports, the locally generated
reports are labeled with the LOCAL suffix and bridged to the outside communities without the suffix.
This is to ensure that processes running locally may easily distinguish between locally generated
and externally generated reports.

1

Figure 1: Typical pNodeReporter usage: The pNodeReporter application is typically used with pShare or acoustic
modems to share node summaries between vehicles and to a shoreside command-and-control GUI.

To generate the local report, pNodeReporter registers for the local NAV * vehicle navigation
data and creates a report in the form of a single string posted to the variable NODE REPORT LOCAL.
An example of this variable is given in below in Section 2.1. The pMarineViewer and pHelmIvP

applications are two modules that consume and parse the incoming NODE REPORT messages.

The pNodeReporter utility may also publish a second report, the PLATFORM REPORT. While the
NODE REPORT summary consists of an immutable set of data fields described later in this section, the
PLATFORM REPORT consists of data fields configured by the user and may therefore vary widely across
applications. The user may also configure the frequency in which components of the PLATFORM REPORT

are posted within the report.

2 Using pNodeReporter

2.1 Overview Node Report Components

The primary output of pNodeReporter is the node report string. It is a comma-separated list of
key-value pairs. The order of the pairs is not significant. The following is an example report:

NODE_REPORT_LOCAL = "NAME=alpha,TYPE=UUV,TIME=1252348077.59,X=51.71,Y=-35.50,

LAT=43.824981,LON=-70.329755,SPD=2.00,HDG=118.85,YAW=118.84754,

DEP=4.63,LENGTH=3.8,MODE=MODE@ACTIVE:LOITERING"

The TIME reflects the Coordinated Universal Time as indicated by the system clock running on the
machine where the MOOSDB is running. Speed is given in meters per second, heading is in degrees
in the range [0, 360), depth is in meters, and the local x-y coordinates are also in meters. The source

2

of information for these fields is the NAV * navigation MOOS variables such as NAV SPEED. The report
also contains several components describing characteristics of the physical platform, and the state
of the IvP Helm, described next.

If desired, pNodeReporter may be configured to use a different variable than NODE REPORT LOCAL for
its node reports, by setting the configuration parameter node report output to MY REPORT for example.
Most applications that subscribe to node reports, subscribe to two variables, NODE REPORT LOCAL and
NODE REPORT. This is because node reports are meant to be bridged to other MOOS communities
(typically with pShare but not necessarily). A node report should be broadcast only from the
community that generated the report. In practice, to ensure that node reports that arrive in one
community are not then sent out to other communities, the node reports generated locally have the
LOCAL suffix, and when they are sent to other communities they are sent to arrive with the new
variable name, minus the suffix.

2.2 Helm Characteristics

The node report contains one field regarding the current mode of the helm, MODE. Typically the
pNodeReporter and pHelmIvP applications are running on the same platform, connected to the same
MOOSDB. When the helm is running, but disengaged, i.e., in manual override mode, the MODE

field in the node report simply reads "MODE=DISENGAGED". When or if the helm is detected to be
not running, the field reads "MODE=NOHELM-SECS", where SECS is the number of seconds since the last
time pNodeReporter detected the presence of the helm, or "MODE=NOHELM-EVER" if no helm presence
has ever been detected since pNodeReporter has been launched.

How does pNodeReporter know about the health or status of the helm? It subscribes to two
MOOS variables published by the helm, IVPHELM STATE and IVPHELM SUMMARY. These are described
more fully in helm documentation, but below are typical example values:

IVPHELM_STATE = "DRIVE"

IVPHELM_SUMMARY = "iter=72,ofnum=1,warnings=0,time=127349406.22,solve_time=0.00,

create_time=0.00,loop_time=0.00,var=course:209.0,var=speed:1.2,

halted=false,running_bhvs=none,modes=MODE@ACTIVE:LOITERING,

active_bhvs=loiter$17.8$100.00$9$0.04$0/0,completed_bhvs=none

idle_bhvs=waypt_return$17.8$0/0:station-keep17.8n/a

The IVPHELM STATE variable is published on each iteration of the pHelmIvP process regardless of
whether the helm is in manual override ("PARK") mode or not, and regardless of whether the value
of this variable has changed between iterations. It is considered the ”heartbeat” of the helm. This
is the variable monitored by pNodeReporter to determine whether a "NOHELM" message is warranted.
By default, a period of five seconds is used as a threshold for triggering a "NOHELM" warning. This
value may be changed by setting the nohelm threshold configuration parameter.

When the helm is indeed engaged, i.e., not in manual override mode, the value of IVPHELM STATE

posting simply reads "DRIVE", but the helm further publishes the IVPHELM SUMMARY variable similar to
the above example. If the user has chosen to configure the helm using hierarchical mode declarations
(as described in helm documentation), the IVPHELM SUMMARY posting will include a component such
as "modes=MODE@ACTIVE:LOITERING" as above. This value is then included in the node report by

3

pNodeReporter. If the helm is not configured with hierarchical mode declarations, the node report
simply reports "MODE=DRIVE".

2.3 Platform Characteristics

The node report contains three fields regarding the platform characteristics, NAME, TYPE, and LENGTH.
The name of the platform is equivalent to the name of the MOOS community within which
pNodeReporter is running. The MOOS community is declared as a global MOOS parameter (outside
any given process’ configuration block) in the .moos mission file. The TYPE and LENGTH parameters
are set in the pNodeReporter configuration block. They may alternatively derive their values from
a MOOS variable posted elsewhere by another process. The user may configure pNodeReporter

to use this external source by naming the MOOS variables with the platform length src and
platform type src parameters. If both the source and explicit values are set, as for example:

platform_length = 12 // meters

platform_length_src = SYSTEM_LENGTH // A MOOS Variable

then the explicit length of 12 would be used only if the MOOS variable SYSTEM LENGTH remained
unwritten to by any other MOOS application connected to the MOOSDB. The platform length and
type may be used by other platforms as a parameter affecting collision avoidance algorithms and
protocol. They are also used in the pMarineViewer application to allow the proper platform icon to
be displayed at the proper scale.

If the platform type is known, but no information about the platform length is known, certain
rough default values may be used if the platform type matches one of the following: "kayak” maps
to 4 meters, "mokai" maps to 4 meters, "uuv" maps to 4 meters, "auv" maps to 4 meters, "ship"
maps to 18 meters, "glider" maps to 3 meters.

A color may also be associated with a vehicle, which can be useful in applications like
pNodeReporter or alogview to indicate a team, or a certain vehicle configuration. This config-
uration parameter is completely optional. To specify the color:

platform_color = dodgerblue

2.4 Dealing with Local versus Global Coordinates

A primary component of the node report is the current position of the vehicle. The pNodeReporter

application subscribes for the following MOOS variables to garner this information: NAV X, NAV Y in
local coordinates, and the pair NAV LAT, NAV LONG in global coordinates. These two pairs should be
consistent, but what if they are not? And what if pNodeReporter is receiving mail for one pair but
not the other? Three distinct policy choices are supported:

� The default policy: node reports include exactly what is given. If NAV X and NAV Y are being
received only, then there will be no entry in the node report for global coordinates, and vice
versa. If both pairs are being received, then both pairs are reported. No attempt is made
to check or ensure that they are consistent. This is the default policy, equivalent to the
configuration crossfill policy=literal.

4

� If one of the two pairs is not being received, pNodeReporter will fill in the missing pair from
the other. This policy can be chosen with the configuration cross fill policy=fill-empty.

� If NAV LAT and NAV LONG are being received, pNodeReporter will use these in its report, and
convert the global coordinates to local coordinates, and use these converted coordinates in its
report, essentially disregarding NAV X and NAV Y if they are also being received. This policy
can be chosen with the configuration cross fill policy=global. This is available in the next
release after Release 19.8.x.

� If one of the two pairs has been received more recently, the older pair is updated by converting
from the other pair. The older pair may also be in a state where it has never been received.
This policy can be chosen with the configuration cross fill policy=fill-latest.

2.5 Processing Alternate Navigation Solutions

Under normal circumstances, node reports are generated reflecting the current navigation solution as
defined by the incoming NAV * variables. The pNodeReporter application can handle the case where
the vehicle also publishes an alternate navigation solution, as defined by a sister set of incoming
MOOS variables separate from the NAV * variables. In this case pNodeReporter will monitor both sets
of variables and may generate two node reports on each iteration. The following two configuration
parameters are needed to activate this capability:

alt_nav_prefix = <prefix> // example: NAV_GT_

alt_nav_name = <node-name> // example: _GT

alt_nav_group = <group-name> // example: ground_truth (Post R.19.8.x)

The configuration parameter, alt nav prefix, names a prefix for the alternate incoming navigation
variables. For example, alt nav prefix=NAV GT would result in pNodeReporter subscribing for
NAV GT X, NAV GT Y and so on. A separate vehicle state would be maintained internally based on
this alternate set of navigation information and a second node report would be generated. The
alt nav group allows the alt nav node report to have a different group name than the baseline node
report. If not specified, the group names will match. This feature was introduced after Release
19.8.x.

A second node report would be published under the same MOOS variable, NODE REPORT LOCAL, but
the NAME component of the report would be distinct based on the value provided in the alt nav name

parameter. If a name is provided that does not begin with an underscore character, that name is
used. If the name does begin with an underscore, the name used in the report is the otherwise
configured name of the vehicle plus the suffix.

3 The Optional Blackout Interval Option

Under normal circumstances, the pNodeReporter application will post a node report once per
iteration, the gap between postings being determined solely by the app tick parameter (Figure 2).
However, there are times when it is desirable to add an artificial delay between postings. Node
reports are typically only useful as information sent to another node, or to a shoreside computer

5

rendering fielded vehicles, and there are often dropped node report messages due to the uncertain
nature of communications in the field, whether it be acoustic communications, WiFi, or satellite
link.

Applications receiving node reports usually implement provisions that take dropped messages
into account. A collision-avoidance or formation-following behavior, or a contact manager, may
extrapolate a contact position from its last received position and trajectory. A shoreside command-
and-control GUI such as pMarineViewer may render an interpolation of vehicle positions between
node reports. To test the robustness of applications needing to deal with dropped messages, a way
of simulating the dropped messages is desired. One way is to add this to the simulation version of
whatever communications medium is being used. For example, there is an acoustic communications
simulator where the dropping of messages may be simulated, where the probability of a drop may
even be tied to the range between vehicles. Another way is to simply simulate the dropped message
at the source, by adding delay to the posting of reports by pNodeReporter.

By setting the blackout interval parameter, pNodeReporter may be configured to ensure that
a node report is not posted until at least the duration specified by this parameter has elapsed, as
shown in Figure 3.

Figure 2: Normal schedule of node report postings: The pNodeReporter application will post node reports
once per application iteration. The duration of time between postings is directly tied to the frequency at which
pNodeReporter is configured to run, as set by the standard MOOS AppTick parameter.

Figure 3: The optional blackout interval parameter: The schedule of node report postings may be altered by the
setting the BLACKOUT INTERVAL parameter. Reports will not be posted until at least the time specified by the blackout
interval has elapsed since the previous posting.

An element of unpredictability may be added by specifying a value for the blackout variance

parameter. This parameter is given in seconds and defines an interval [−t, t] from which a value is
chosen with uniform probability, to be added to the duration of the blackout interval. This variation
is re-calculated after each interval determination. The idea is depicted in Figure 4.

6

Figure 4: Blackout intervals with varying duration: The duration of a blackout interval may be configured to
vary randomly within a user-specified range, specified in the blackout variance parameter.

Message dropping is typically tied semi-predictably to characteristics of the environment, such
as range between nodes, water temperature or platform depth, an so on. This method of simulating
dropped messages captures none of that. It is however simple and allows for easily proceeding with
the testing of applications that need to deal with the dropped messages.

4 Configuration Parameters for pNodeReporter

The following parameters are defined for pNodeReporter. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated so in parentheses.

Listing 4.1: Configuration Parameters for pNodeReporter.

alt nav prefix: Source for processing alternate nav reports. Section 2.5.

alt nav group: Group associated with node reports generated for alternate nav node reports.
Introduced after Release 19.8.x. Section 2.5.

alt nav name: Node name in posting alternate nav reports. Section 2.5.

blackout interval: Minimum duration, in seconds, between reports (0). Section 3.

blackout variance: Variance in uniformly random blackout duration. Legal values: any non-
negative value. The default is zero. Section 3.

crossfill policy: Policy for handling local versus global nav reports ("literal"). Section 2.4.

node report output: MOOS variable used for the node report (NODE REPORT LOCAL). Section 2.1.

nohelm threshold: Seconds after which a quiet helm is reported as AWOL. Legal values: any
non-negative value. The default is 5 seconds. Section 2.2.

platform length: The reported length of the platform in meters. Legal values: any non-
negative value. The default is zero. Section 2.3.

plat report output: The Platform report MOOS variable. Legal values: conventions for MOOS
variable names. The default is PLATFORM REPORT LOCAL. Section 6.

plat report input: A component of the optional platform report. Section 6.

platform color: A hint on how to render the vehicle in a GUI application like pMarineViewer

or alogview. Introduced in Release 16.5. Section 2.3.

platform type: The reported type of the platform. Legal values: any string. The default is
"unknown". Section 2.3.

paused: If true, posting of reports is suspended. The default is "false". With release
15.3.

7

An Example MOOS Configuration Block

An example MOOS configuration block is provided in Listing 2 below. To see an example MOOS
configuration block from the console, enter the following:

$ pNodeReporter --example or -e

This will show the output shown in Listing 2 below.

Listing 4.2: Example configuration of pNodeReporter.

1 ===

2 pNodeReporter Example MOOS Configuration

3 ===

4 Blue lines: Default configuration

5

6 ProcessConfig = pNodeReporter

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Configure key aspects of the node

12 platform_type = glider // or {uuv,auv,ship,kayak}

13 platform_length = 8 // meters. Range [0,inf)

14

15 // Configure optional blackout functionality

16 blackout_interval = 0 // seconds. Range [0,inf)

17

18 // Configure the optional platform report summary

19 plat_report_input = COMPASS_HEADING, gap=1

20 plat_report_input = GPS_SAT, gap=5

21 plat_report_input = WIFI_QUALITY, gap=1

22 plat_report_output = PLATFORM_REPORT_LOCAL

23

24 // Configure the MOOS variable containg the node report

25 node_report_output = NODE_REPORT_LOCAL

26

27 // Threshold for conveying an absense of the helm

28 nohelm_threshold = 5 // seconds

39

30 // Policy for filling in missing lat/lon from x/y or v.versa

31 // Valid policies: [literal], fill-empty, use-latest, global

32 crossfill_policy = literal

33

34 // Configure monitor/reporting of dual nav solution

35 alt_nav_prefix = NAV_GT

36 alt_nav_name = _GT

37 }

5 Publications and Subscriptions for pNodeReporter

The interface for pNodeReporter, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

8

$ pNodeReporter --interface or -i

5.1 Variables Published by pNodeReporter

The primary output of pNodeReporter to the MOOSDB is the node report and the optional platform
report:

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

� NODE REPORT LOCAL: Primary summary of the node’s navigation and helm status. Section 2.1.

� PLATFORM REPORT LOCAL: Optional summary of certain platform characteristics. Section 2.3.

5.2 Variables Subscribed for by pNodeReporter

Variables subscribed for by pNodeReporter are summarized below. A more detailed description of
each variable follows. In addition to these variables, any MOOS variable that the user requests to
be included in the optional PLATFORM REPORT will also be automatically subscribed for.

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� IVPHELM STATE: A indicator of the helm state produced by pHelmIvP, e.g., "PARK", "DRIVE"

"DISABLED", or "STANDBY".

� IVPHELM ALLSTOP: A indicator of the helm allstop produced by pHelmIvP, e.g., "clear", or a
reason why the vehicle is at zero speed.

� IVPHELM SUMMARY: A summary report produced by the IvP Helm (pHelmIvP).

� NAV X: The ownship vehicle position on the x axis of local coordinates.

� NAV Y: The ownship vehicle position on the y axis of local coordinates.

� NAV LAT: The ownship vehicle position on the y axis of global coordinates.

� NAV LONG: The ownship vehicle position on the x axis of global coordinates.

� NAV HEADING: The ownship vehicle heading in degrees.

� NAV YAW: The ownship vehicle yaw in radians.

� NAV SPEED: The ownship vehicle speed in meters per second.

� NAV DEPTH: The ownship vehicle depth in meters.

� PNR PAUSE: Allows the paused state to be set or toggled. Acceptable values are "true" "false"

"toggle". With release 15.3.

If pNodeReporter is configured to handle a second navigation solution as described in Section 2.5, the
corresponding additional variables described in that section will also be automatically subscribed
for.

5.3 Command Line Usage of pNodeReporter

The pNodeReporter application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The basic command line usage for
the pNodeReporter application is the following:

9

Listing 5.3: Command line usage for the pNodeReporter application.

1 Usage: pNodeReporter file.moos [OPTIONS]

2

3 Options:

4 --alias=<ProcessName>

5 Launch pNodeReporter with the given process name

6 rather than pNodeReporter.

7 --example, -e

8 Display example MOOS configuration block.

9 --help, -h

10 Display this help message.

11 --version,-v

12 Display the release version of pNodeReporter.

6 The Optional Platform Report Feature

The pNodeReporter application allows for the optional reporting of another user-specified list of
information. This report is made by posting the PLATFORM REPORT LOCAL variable. An alternative
variable name may be used by setting the PLAT REPORT SUMMARY configuration parameter. This report
may be configured by specifying one or more components in the pNodeReporter configuration block,
of the following form:

plat_report_input = <variable>, gap=<duration>, alias=<variable>

If no component is specified, then no platform report will be posted. The <variable> element
specifies the name of a MOOS variable. This variable will be automatically subscribed for by
pNodeReporter and included in (not necessarily all) postings of the platform report. If the variable
BODY TEMP is specified, a component of the report may contain "BODY TEMP=98.6". An alias for a
MOOS variable may be specified. For example, alias=T, for the BODY TEMP component would result
in "T=98.6" in the platform report instead.

How often is the platform report posted? Certainly it will not be posted any more often than
the apptick parameter allows, but it may be posted far more infrequently depending on the user
configuration and how often the values of its components are changing. The platform report is
posted only when one or more of its components requires a re-posting. A component requires a
re-posting only if (a) its value has changed, and (b) the time specified by its gap setting has elapsed
since the last platform report that included that component. When a PLATFORM REPORT LOCAL posting
is made, only components that required a posting will be included in the report.

The wide variation in configurations of the platform report allow for reporting information
about the node that may be very specific to the platform, not suitable for a general-purpose node
report. As an example, consider a situation where a shoreside application is running to monitor the
platform’s battery level and whether or not the payload compartment has suffered a breach, i.e.,
the presence of water is detected inside. A platform report could be configured as follows:

plat_report_input = ACME_BATT_LEVEL, gap=300, alias=BATTERY_LEVEL

plat_report_input = PAYLOAD_BREACH

10

This would result in an initial posting of:

PLATFORM_REPORT_LOCAL = "platform=alpha,utc_time=1273510720.99,BATTERY_LEVEL=97.3,

PAYLOAD_BREACH=false"

In this case, the platform uses batteries made by the ACME Battery Company and the interface to
the battery monitor happens to publish its value in the variable ACME BATT LEVEL, and the software
on the shoreside that monitors all vehicles in the field accepts the generic variable BATTERY LEVEL,
so the alias is used. It is also known that the ACME battery monitor output tends to fluctuate a
percentage point or two on each posting, so the platform report is configured to include a battery
level component no more than once every five minutes, (gap=300). The MOOS process monitoring
the indication of a payload breach is known to have few false alarms and to publish its findings
in the variable PAYLOAD BREACH. Unlike the battery level which has frequent minor fluctuations and
degrades slowly, the detection of a payload breach amounts to the flipping of a Boolean value and
needs to be conveyed to the shoreside as quickly as possible. Setting gap=0, the default, ensures
that a platform report is posted on the very next iteration of pNodeReporter, presumably to be read
by a MOOS process controlling the platform’s outgoing communication mechanism.

7 An Example Platform Report Configuration Block for pNodeRe-
porter

Listing 4 below shows an example configuration block for pNodeReporter where an extensive platform
report is configured to report information about the autonomous kayak platform to support a “kayak
dashboard” display running on a shoreside computer. Most of the components in the platform
report are specific to the autonomous kayak platform, which is precisely why this information is
included in the platform report, and not the node report.

Listing 7.4: An example pNodeReporter configuration block.

1 //--

2 // pNodeReporter config block

3

4 ProcessConfig = pNodeReporter

5 {

6 AppTick = 2

7 CommsTick = 2

8

9 platform_type = KAYAK

10 platform_length = 3.5 // Units in meters

11 nohelm_thresh = 5 // The default

12 blackout_interval = 0 // The default

13 blackout_variance = 0 // The default

14

15 node_report_output = NODE_REPORT_LOCAL // The default

16 plat_report_output = PLATFORM_REPORT_LOCAL // The default

17

18 plat_report_input = COMPASS_PITCH, gap=1

19 plat_report_input = COMPASS_HEADING, gap=1

20 plat_report_input = COMPASS_ROLL, gap=1

11

21 plat_report_input = DB_UPTIME, gap=1

22 plat_report_input = COMPASS_TEMPERATURE, gap=1, alias=COMPASS_TEMP

23 plat_report_input = GPS_MAGNETIC_DECLINATION, gap=10, alias=MAG_DECL

24 plat_report_input = GPS_SAT, gap=5

25 plat_report_input = DESIRED_RUDDER, gap=0.5

26 plat_report_input = DESIRED_HEADING, gap=0.5

27 plat_report_input = DESIRED_THRUST, gap=0.5

28 plat_report_input = GPS_SPEED, gap=0.5

29 plat_report_input = DESIRED_SPEED, gap=0.5

30 plat_report_input = WIFI_QUALITY, gap=0.5

31 plat_report_input = WIFI_QUALITY, gap=1.0

32 plat_report_input = MOOS_MANUAL_OVERRIDE, gap=1.0

33 }

8 Measuring the Odometry Extent Per Mission Hash

A new feature, after Release 22.8, is introduced to enable pNodeReporter to post useful information
to be logged with the vehicle alog file. This coincides with the introduction of a mission hash. The
mission hash is published by the shoreside and shared to all vehicles and logged. It has the form:

MISSION_HASH = mhash=221119-1255K-NEAR-MILK,utc=1668880538.69

The posting contains both the hash itself, 221119-1255K-NEAR-MILK, and the UTC timestamp when
the hash was created on the shoreside. The first part of the hash reflects the time and date,
221119-1255, Nov 19th, 2022, 12:55. The second part of the hash is comprised of randomly
configured words that are easier to remember. The final two-word part of the hash can be used as
an alias in some applications.

The shoreside generates the hash, and it cannot be ruled out that the shoreside generates multiple
hashes for a single vehicle alog file. This can happen for example if the shoreside app, e.g.,
pMarineViewer, generating the mission hash, is re-started during the vehicle deployment. In this
case the vehicle alog file may have multiple mission hashes, leading to confusion. This is where
pNodeReporter can help.

pNodeReporter will register for MISSION HASH and use an odometer to track the maximum vehicle
extent associated with this hash. The extent is the maximum distance from the odometer starting
point, i.e., the farthest linear distance from the starting point at any time in the mission. The node
reporter will publish to PNR MHASH whenever this maximum extent has reached a new max value. If
the MISSION HASH value should change mid-mission, the PNR MHASH value will also change.

If the mission hash changes mid-mission, we may see a set of alog entries from pMarineViewer along
the lines of:

12

14.853 PNR_MHASH mhash=221119-1412M-GOLD-EPIC,ext=2.6

15.874 PNR_MHASH mhash=221119-1412M-GOLD-EPIC,ext=3.9

16.897 PNR_MHASH mhash=221119-1412M-GOLD-EPIC,ext=5.4

22.538 PNR_MHASH mhash=221119-1412M-GOLD-EPIC,ext=6.9

23.560 PNR_MHASH mhash=221119-1412M-GOLD-EPIC,ext=8.3

24.587 PNR_MHASH mhash=221119-1412M-GOLD-EPIC,ext=9.5

26.119 PNR_MHASH mhash=221119-1412M-GOLD-EPIC,ext=10.6

177.068 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=12.1

178.093 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=13.5

179.117 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=14.9

180.129 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=16.3

181.159 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=17.8

182.172 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=19.2

183.207 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=20.4

184.228 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=21.8

218.643 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=23.2

219.682 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=24.3

220.693 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=25.4

222.219 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=26.9

223.762 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=28.3

225.317 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=29.8

226.876 PNR_MHASH mhash=221119-1413E-MAIN-KHAN,ext=31.1

In this case the mission hash was changed sometime between the offset times of 26.119 and 177.068.
When pNodeReporter noticed that the max extent distance accumulated while the mission hash was
"MAIN-KHAN" had exceeded 10.6, a new PNR MHASH posting was made.

In a nutshell, if there was unfortunately more than one mission hash received by a vehicle and logged
in a single alog file, this information can help determine which mission hash was the ”real” one. It
should always be the hash associated with the final posting to PNR MHASH. And this information can
be obtained using a few aloggrep switches:

$ aloggrep file.alog --final --no_report

226.876 PNR_MHASH pNodeReporter mhash=221119-1413E-MAIN-KHAN,ext=31.1

Or, to isolate the hash itself:

$ aloggrep file.alog --final --format=val --subpat=mhash

221119-1413E-MAIN-KHAN

The latter example is essentially the whole point of this feature: to enable aloggrep to determine
the most likely single mission hash for a give alog file, even if multiple hashes exist. This tool can
then be used as a component of other scripts that are performing post-mission log file archiving
tasks.

13

	Overview
	Using pNodeReporter
	Overview Node Report Components
	Helm Characteristics
	Platform Characteristics
	Dealing with Local versus Global Coordinates
	Processing Alternate Navigation Solutions

	The Optional Blackout Interval Option
	Configuration Parameters for pNodeReporter
	Publications and Subscriptions for pNodeReporter
	Variables Published by pNodeReporter
	Variables Subscribed for by pNodeReporter
	Command Line Usage of pNodeReporter

	The Optional Platform Report Feature
	An Example Platform Report Configuration Block for pNodeReporter
	Measuring the Odometry Extent Per Mission Hash

