
pHostInfo: Detecting and Sharing Host Info
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Overview 1

2 Configuration Parameters for pHostInfo 2

3 Publications and Subscriptions for pHostInfo 3
3.1 Variables Published by pHostInfo . 3
3.2 Variables Subscribed for by pHostInfo . 4
3.3 Command Line Usage of pHostInfo . 4

4 Usage Scenarios for the pHostInfo Utility 4
4.1 Handling Multiple IP Addresses . 4

5 A Peek Under the Hood 5
5.1 Temporary Files . 5
5.2 Possible Gotchas . 5

1 Overview

The pHostInfo application is a tool with a simple objective - determine the IP address of the machine
on which it is running and post it to the MOOSDB. Although this information is available in a
number of ways to a user at the keyboard, it may not be readily available for reasoning about within
a MOOS community. Often, from an application’s perspective, the host name is simply known
and configured as localhost. This is fine for most purposes, but in situations where a user is on a
machine where the IP address changes frequently, and the user is launching MOOS processes that
talk to other machines, it may be very convenient to auto-determine the prevailing IP address and
publish it to the MOOSDB. The typical usage scenario for pHostInfo is shown in Figure 1.

1

Figure 1: Typical pHostInfo Topology: A shoreside or topside community is receiving information from several
deployed vehicles, in the form of node reports. The node reports contain time-stamped updated vehicle positions,
from which the speed and distance measurements are derived and posted to the shoreside MOOSDB.

There are two scenarios where this is currently envisioned to be useful. The first is when the
fielded vehicles are on the network with their IP addresses set via DHCP. For example if on the
network via a cellular phone connection. The second is if the ”vehicle” is a simulated vehicle running
on a user’s laptop also with its IP address set via DHCP. In both cases there may be another MOOS
community with a known IP address, e.g., a shoreside community, to which the local vehicle wishes
to inform it of its current IP address. This simple process however does not get involved in any
activity regarding the communication to other MOOS communities, but simply tries to determine
and post, the IP address, e.g., PHI HOST IP ="192.168.0.1" for other applications to do as they see
fit.

2 Configuration Parameters for pHostInfo

The pHostInfo application may be configured with a configuration block within a MOOS mission
file, typically with a .moos file suffix. The following parameters are defined for pHostInfo.

Listing 2.1: Configuration Parameters for pHostInto.

temp file dir: Directory where temporary files are written. Default is "∼/".
default hostip: IP address used if no IP address can otherwise be determined.

default hostip force: This IP address will override any IP address from an auto-discovered network
interface. Useful for debugging.

2

prefer inerface : If multiple interfaces have a valid IP address then a preference can be
specified. Valid options are wlan0, wifi, eth0, eth1, usb0, usb1,usb2.

An Example MOOS Configuration Block

An example MOOS configuration block may be obtained from the command line with the following:

$ pHostInfo --example or -e

Listing 2.2: Example configuration of the pHostInfo application.

1 ===

2 pHostInfo Example MOOS Configuration

3 ===

4

5 ProcessConfig = pHostInfo

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 temp_file_dir = ./

11 default_hostip = 192.168.0.55 // default is "localhost"

12

13 default_hostip_force = 192.168.0.99

14 }

3 Publications and Subscriptions for pHostInfo

The interface for pHostInfo, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ pHostInfo --interface or -i

3.1 Variables Published by pHostInfo

The primary output of pHostInfo to the MOOSDB are the following five PHI * variables. Once these
variables are published, pHostInfo does not publish them again unless requested by receiving mail
HOST INFO REQUEST. Thus pHostInfo is mostly idle once the below five variables are posted.

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

� PHI HOST IP: The single best guess of the Host’s IP address.

� PHI HOST IP ALL: A comma-separated list of IP addresses if multiple addresses detected.

� PHI HOST IP VERBOSE: A comma-separated list of IP addresses, with source information, if
multiple addresses detected.

� PHI HOST PORT DB: The port number of the MOOSDB for this community.

3

� PHI HOST PORT INFO: A comma-separated list of parameter-value pairs describing all relevant
aspects of the host.

3.2 Variables Subscribed for by pHostInfo

The pHostInfo application subscribes to the following MOOS variable:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section ??.

� HOST INFO REQUEST: A request to re-determine and re-post the platform’s host information.

� PSHARE INPUT SUMMARY: The input routes used by pShare for listening for incoming messages
from other MOOSDBs.

3.3 Command Line Usage of pHostInfo

The pHostInfo application is typically launched with pAntler, along with a group of other modules.
However, it may be launched separately from the command line. The command line options may be
shown by typing:

$ pHostInfo --help or -h

Listing 3.3: Command line usage for the pHostInfo tool.

1 Usage: pHostInfo file.moos [OPTIONS]

2

3 Options:

4 --alias=<ProcessName>

5 Launch pHostInfo with the given process

6 name rather than pHostInfo.

7 --example, -e

8 Display example MOOS configuration block

9 --help, -h

10 Display this help message.

11 --HOSTIP=<HostIP>

12 Force the use of the given IP address as the reported IP

13 address ignoring any other auto-discovered IP address.

14 --interface, -i

15 Display MOOS publications and subscriptions.

16 --version,-v

17 Display the release version of pHostInfo.

18

19 Note: If argv[2] is not of one of the above formats

20 this will be interpreted as a run alias. This

21 is to support pAntler launching conventions.

4 Usage Scenarios for the pHostInfo Utility

4.1 Handling Multiple IP Addresses

It is possible that a machine has more than one valid IP address at any given time, e.g., if its ethernet
cable is plugged in, and it has a wireless connection. In this case, pHostInfo will make a guess that

4

the ethernet connection takes precedent, and it will report this in the variable PHI HOST IP. The full
set of IP addresses can be found in the other postings. For example it may not be uncommon to see
something like the following three postings at one time:

PHI_HOST_IP = 118.10.24.23

PHI_HOST_IP_ALL = 118.10.24.23,169.224.126.40

PHI_HOST_IP_VERBOSE = OSX_ETHERNET2=118.10.24.23,OSX_AIRPORT=169.224.126.40

5 A Peek Under the Hood

The pHostInfo application currently only works for GNU/Linux and Apple OS X. It determines
the IP information by making a system call within C++. A system call when generated will act
as if the argument were typed on the command line. In this case the system call is generated and
the output is redirected to a file. In a second step, pHostInfo then tries to read the IP address
information from those files.

In GNU/Linux, the system call is based on the ifconfig command. In OS X, the system call is
based on the networksetup command. Rather than determining in pHostInfo whether the user is
running in a GNU/Linux or OS X environment, the system calls for both are invoked. Presumably
a system call on a command not found in the user’s shell path will not generate something that is
confusable with a valid IP address.

5.1 Temporary Files

The temporary files are written to the user’s home directory by default. This may be changed with
the temp file dir cofiguration parameter, for example, temp file dir=/tmp. The set of temporary
files are put into a folder named .phostinfo/. The set of temporary files may look like:

$ cd ~/.phostinfo

$ ls -a .ipinfo*

.ipinfo_linux_ethernet.txt .ipinfo_osx_airport.txt .ipinfo_osx_ethernet2.txt

.ipinfo_osx_wifi.txt .ipinfo_linux_wifi.txt .ipinfo_osx_ethernet1.txt

.ipinfo_osx_ethernet.txt

Some of these files may be empty, or some may contain error output if one of the system
commands was not found, or was given an improper argument. The pHostInfo app will try to parse
all of them to find a valid IP address. If more than one IP address is found, then this handled in
the manner described previously in Section 4.1.

5.2 Possible Gotchas

The system calls invoked by pHostInfo need to be in the users shell path. A typical user default
environment would have these in their shell path anyway, but it may be worth checking if things
aren’t working properly. Below is a list of commands that are run under the hood, and their
probable locations on your system.

5

For Linux:

/sbin/ifconfig

/bin/grep

/usr/bin/cut

/usr/bin/awk

/usr/bin/print

For OS X:

/usr/sbin/networksetup

6

	Overview
	Configuration Parameters for pHostInfo
	Publications and Subscriptions for pHostInfo
	Variables Published by pHostInfo
	Variables Subscribed for by pHostInfo
	Command Line Usage of pHostInfo

	Usage Scenarios for the pHostInfo Utility
	Handling Multiple IP Addresses

	A Peek Under the Hood
	Temporary Files
	Possible Gotchas

