
pEchoVar: Re-publishing Variables Under a Different
Name
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139
project-pavlab/appdocs/app pechovar

1 Overview 1

2 Using pEchoVar 1
2.1 Configuring Echo Mapping Events . 2
2.2 Configuring Flip Mapping Events . 2
2.3 Applying Conditions to the Echo and Flip Operation . 3
2.4 Holding Outgoing Messages Until Conditions are Met . 4
2.5 Limiting the Echo Posting Frequency to the AppTick Setting 4

3 Configuring for Vehicle Simulation with pEchoVar 4

4 Configuration Parameters for pEchoVar 5

5 Publications and Subscriptions for pEchoVar 5
5.1 Variables Posted by pEchoVar . 6
5.2 Variables Subscribed for by pEchoVar . 6

6 Terminal and AppCast Output 6

1 Overview

The pEchoVar application is a lightweight process that runs without any user interaction for ”echoing”
the posting of specified variable-value pairs with a follow-on posting having different variable name.
For example the posting of FOO=5.5 could be echoed such that BAR=5.5 immediately follows the
first posting. The motivation for this tool was to convert, for example, a posting such as GPS X to
become NAV X. The former is the output of a particular device, and the latter is a de facto standard
for representing the vehicle’s longitudinal position in local coordinates.

2 Using pEchoVar

Configuring pEchoVar minimally involves the specification of one or more echo or flip mapping
events. It may also optionally involve specifying one or more logic conditions that must be met
before mapping events are posted.

1

2.1 Configuring Echo Mapping Events

An echo event mapping maps one MOOS variable to another. Each mapping requires one line using
the echo configuration parameter of the form:

echo = <MOOSVar> -> <MOOSVar>

The source <MOOSVar> and target <MOOSVar> components are case sensitive since they are MOOS
variables. A source variable can be echoed to more than one target variable. If the set of lines
forms a cycle, this will be detected and pEchoVar post a configuration and run warning and cease to
perform any function whatsoever. An example configuration is given in Listing 1.

Listing 2.1: An example pEchoVar configuration block.

1 //--

2 // pEchoVar configuration block

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 20

7 CommsTick = 20

8

9 echo = GPS_X -> NAV_X

10 echo = GPS_Y -> NAV_Y

11 echo = COMPASS_HEADING -> NAV_HEADING

12 echo = GPS_SPEED -> NAV_SPEED

13 }

2.2 Configuring Flip Mapping Events

The pEchoVar application can be used to ”flip” a variable rather than doing a simple echo. A flipped
variable, like an echoed variable, is one that is republished under a different name, but a flipped
variable parses the contents of a string comprised of a series of variable=value comma-separated
pairs, and republishes a portion of the series under the new variable name. For example, the
following string,

ALPHA = "xpos=23, ypos=-49, depth=20, age=19.3, certainty=1"

may be flipped to publish the below new string, with the fields xpos, ypos, and depth replaced with
x, y, vehicle depth respectively.

BRAVO = "x=23, y=-49, vehicle_depth=20"

The above ”flip relationship” is configured with the flip configuration parameter with the following
form:

flip:<key> = source_variable = <variable>

flip:<key> = dest_variable = <variable>

flip:<key> = source_separator = <separator>

2

flip:<key> = dest_separator = <separator>

flip:<key> = filter = <variable>=<value>

flip:<key> = component = <old-field> -> <new-field>

flip:<key> = component = <old-field> -> <new-field>

The relationship is distinguished with a <key>, and several components. The source variable

and dest variable components are mandatory and must be different. The source separator and
dest separator components are optional with default values being the string ",". Fields in the
source variable will only be included in the destination variable if they are specified in a component
mapping <old-vield> -> <new-field>. The example configuration in Listing 2 implements the
above described example flip mapping. In this case only postings that satisfy the further filter,
certainty=1, will be posted.

Listing 2.2: An example pEchoVar configuration block with flip mappings.

1 //--

2 // pEchoVar configuration block

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 10

7 CommsTick = 10

8

9 flip:1 = source_variable = ALPHA

10 flip:1 = dest_variable = BRAVO

11 flip:1 = source_separator = ,

12 flip:1 = dest_separator = ,

13 flip:1 = filter = certainty=1

14 flip:1 = component = ypos -> y

15 flip:1 = component = xpos -> x

16 }

Some caution should be noted with flip mappings - the current implementation does not check for
cycles, as is done with echo mappings.

2.3 Applying Conditions to the Echo and Flip Operation

The execution of the mappings configured in pEchoVar may be configured to depend on one or more
logic conditions. If conditions are specified in the configuration block, all specified logic conditions
must be met or else the posting of echo and flip mappings will be suspended. The logic conditions
are configured with the condition parameter as follows:

condition = <logic-expression>

The <logic-expression> syntax is described in the Appendix document on logic utilities, and may
involve the simple comparison of MOOS variables to specified literal values, or the comparison of
MOOS variables to one another. If a condition parameter is specified, pEchoVar will automatically
subscribe to all MOOS variables used in the condition expressions.

3

2.4 Holding Outgoing Messages Until Conditions are Met

If the conditions are not met, all incoming mail messages that would otherwise result in an echo or
flip posting, are held. When or if the conditions are met at some point later, those mail messages
are processed in the order received and echo and flip mappings may be posted en masse. However,
if several mail messages for a given MOOS variable are received and stored while conditions are
unmet, only the latest received mail message for that variable will be processed. As an example,
consider pEchoVar configured with the below two lines:

echo = FOO -> BAR

condition = DEGREES <= 32

If the condition is not met for some period of time, and the following mail were received during this
interval: FOO="apples", FOO="pears", FOO="grapes", followed by DEGREES=30, then pEchoVar would
post BAR="grapes" immediately on the very iteration that the DEGREES=30 message was received.
Note that BAR="apples" and BAR="pears" would never be posted. This is to help ensure that the
pEchoVar memory doesn’t grow unbounded by holding onto all mail while conditions are unmet.

The user may alternatively configure pEchoVar to not hold incoming mail messages when or if
it is in a state where its logic conditions are not met. This can be done with the hold messages

parameter:

hold_messages = false // The default is true

When configured this way, upon meeting the specified logic conditions, pEchoVar will begin processing
echo and flip mappings when or if new mail messages are received relevant to the mappings. In
the above example, once DEGREES=30 is received by pEchoVar, nothing would be posted until new
incoming mail on the variable FOO is received (not even BAR="grapes").

2.5 Limiting the Echo Posting Frequency to the AppTick Setting

By default, when the conditions are met, an echo posting is made once for each incoming piece of
mail related that echo mapping. If FOO is echo mapped to BAR, and if 40 pieces of incoming mail for
FOO are received on one iteration, 40 postings are made to BAR on that iteration. Instead one may
wish that, on each iteration where there is posting ready for BAR, that only the latest value for BAR
be made. This may be arranged with the echo latest only parameter:

echo_latest_only = true // The default is false

In this case, the frequency of postings to BAR and all other echo mappings will occur at most at a
frequency equal to the AppTick setting.

3 Configuring for Vehicle Simulation with pEchoVar

When in simulation mode with uSimMarine, the navigation information is generated by the simulator
and not the sensors such as GPS or compass as indicated in lines 9-12 in Listing 1. The simulator
instead produces USM * values which can be echoed as NAV * values as shown in Listing 3.

4

Listing 3.3: An example pEchoVar configuration block during simulation.

1 //--

2 // pEchoVar configuration block (for simulation mode)

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 20

7 CommsTick = 20

8

9 echo = USM_X -> NAV_X

10 echo = USM_Y -> NAV_Y

11 echo = USM_HEADING -> NAV_HEADING

12 echo = USM_SPEED -> NAV_SPEED

13 }

Note in more recent versions of uSimMarine the simulator output may be changed to have a NAV

prefix by setting prefix = NAV , obviating the use of pEchoVar configured as above.

4 Configuration Parameters for pEchoVar

The following parameters are defined for pEchoVar. A more detailed description is provided in other
parts of this section. Parameters having default values are indicated so.

Listing 4.4: Configuration Parameters for pEchoVar.

echo: A mapping from one MOOS variable to another constituting an echo.
Section 2.1.

echo latest only: If true, only the latest value of variable will be echoed on each iteration,
even if several pieces of incoming mail have been received since the last
posting. Legal values: true, false. The default is false. Section 2.1.

condition: A logic condition that must be met or all echo and flip publications are
held. Section 2.3.

flip: A description of how components from one variable are re-posted under
another MOOS variable. Section 2.2.

hold messages: If true, messages are held when conditions are not met for later processing
when logic conditions are indeed met. Legal values: true, false. The
default is true. Section 2.3.

5 Publications and Subscriptions for pEchoVar

The interface for pEchoVar, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ pEchoVar --interface or -i

5

5.1 Variables Posted by pEchoVar

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 6.

� <USER-DEFINED>: Any MOOS variable specified in either the echo or flip config parameters.

5.2 Variables Subscribed for by pEchoVar

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� <USER-DEFINED>: Any MOOS variables found in the antecedent of either the echo or flip

mappings. It will also subscribe for any MOOS variable found in any of its logic conditions.

6 Terminal and AppCast Output

The pEchoVar application produces some useful information to the terminal on every iteration of
the application. An example is shown in Listing 5 below. This application is also appcast enabled,
meaning its reports are published to the MOOSDB and viewable from any uMAC application
or pMarineViewer. See the documentation on uMAC viewing utilities for more on appcasting and
viewing appcasts. The counter on the end of line 2 in parentheses is incremented on each iteration
of pEchoVar, and serves a bit as a heartbeat indicator. The "0/0" also on line 2 indicates there are
no configuration or run warnings detected.

Listing 6.5: Example terminal or appcast output for pEchoVar.

1 ===

2 pEchoVar alpha 0/0(81)

3 ===

4 conditions_met: true

5 hold_messages: true

6 echo_latest_only: false

7

8 ==

9 Echoes: (5)

10 ==

11

12 Source Dest Hits Posts

13 --------- --- ------------- ---- -----

14 NAV_X --> NAV_XX 324 324

15 NAV_X --> NAV_XPOS 324 324

16 NAV_Y --> NAV_YY 324 324

17 NAV_Y --> NAV_YPOS 324 324

18 NAV_SPEED --> NAV_SPEED_ALT 324 324

19

20 ==

21 Flips: (1)

22 ==

23

24 Src Dest Old New

25 Key Hits Source Dest Sep Sep Filter Field Field

26 --- ---- ----------------- ------ --- ---- ---------- ----- -----

6

27 1 162 NODE_REPORT_LOCAL FOOBAR , # type:kayak X xpos

28 1 162 NODE_REPORT_LOCAL FOOBAR , # type:kayak Y ypos

Lines 4 indicates whether or not any specified logic conditions have been met. This line will also read
true even if no logic conditions were provided. Lines 5 and 6 simply confirm the user’s settings for
the hold messages and echo latest only parameters discussed in Sections 2.4 and 2.5 respectively.

Lines 12-18 convey the configured echo mappings, one for each line. At the end of each line, the
Hits column shows the number of incoming mails received for that variable. The number of times
it is echoed, or re-posted is shown under the Posts column. When echo latest only is false, these
numbers should match. Lines 20-28 convey the configure flips. A single flip configuration, identified
by its key, may have several lines, as in this example. Here the only difference between lines 27 and
28 are the flip components. One maps X to xpos, and the other maps Y to ypos.

The terminal or appcast output shown in Listing 5 above may be seen first hand by running
the Alpha example mission. The below configuration block in Listing 6 corresponds to the above
appcast output. The user just needs to add pEchoVar to the Antler launch list.

Listing 6.6: Example pEchoVar configuration from the Alpha example mission.

1 ProcessConfig = pEchoVar

2 {

3 AppTick = 1

4 CommsTick = 1

5

6 echo = NAV_X -> NAV_XX

7 echo = NAV_X -> NAV_XPOS

8 echo = NAV_Y -> NAV_YY

9 echo = NAV_Y -> NAV_YPOS

10 //echo = NAV_YY -> FOOBAR

11 //echo = FOOBAR -> NAV_Y

12 echo = NAV_SPEED -> NAV_SPEED_ALT

13

14 FLIP:1 = source_variable = NODE_REPORT_LOCAL

15 FLIP:1 = dest_variable = FOOBAR

16 FLIP:1 = source_separator = ,

17 FLIP:1 = dest_separator = #

18 FLIP:1 = filter = type == kayak

19 FLIP:1 = component = X -> xpos

20 FLIP:1 = component = Y -> ypos

21 }

The two echo mappings in lines 10 and 11 may be commented out to demonstrate the detection
of echo mapping cycles. The pairs of mappings in Lines 6-7 and 8-9 demonstrate that a single
incoming variable may be mapped to multiple destinations.

7

	Overview
	Using pEchoVar
	Configuring Echo Mapping Events
	Configuring Flip Mapping Events
	Applying Conditions to the Echo and Flip Operation
	Holding Outgoing Messages Until Conditions are Met
	Limiting the Echo Posting Frequency to the AppTick Setting

	Configuring for Vehicle Simulation with pEchoVar
	Configuration Parameters for pEchoVar
	Publications and Subscriptions for pEchoVar
	Variables Posted by pEchoVar
	Variables Subscribed for by pEchoVar

	Terminal and AppCast Output

