
The Alog Toolbox Command Line Utilities
June 2018

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139
project-pavlab/apps/app alog cmdline

1 Overview 2

2 An Example .alog File 3

3 The alogscan Tool 3
3.1 Command Line Usage for the alogscan Tool . 3
3.2 Example Output from the alogscan Tool . 4

4 The alogclip Tool 6
4.1 Command Line Usage for the alogclip Tool . 6
4.2 Example Output from the alogclip Tool . 7

5 The aloggrep Tool 7
5.1 Using aloggrep to Produce a Reduced and/or Ordered Output 8

5.1.1 Creating a New ALog File . 10
5.1.2 Filtering based on the Data Source (Publishing App) 11
5.1.3 Wildcard Matching . 11

5.2 Using aloggrep to Extract Plottable Data . 11
5.2.1 Extracting Plottable Data from a Complex Posting . 12

5.3 Extracting a First or Final Posting . 13

6 The alogrm Tool 13
6.1 Command Line Usage for the alogrm Tool . 13
6.2 Example Output from the alogrm Tool . 14

7 The aloghelm Tool 15
7.1 The Life Events (–life) Option in the aloghelm Tool . 15
7.2 The Modes (–modes) Option in the aloghelm Tool . 16
7.3 The Behaviors Option in the aloghelm Tool . 18
7.4 Command Line Usage for the aloghelm Tool . 20

8 The alogiter Tool 21
8.1 Command Line Usage for the alogiter Tool . 21
8.2 Example Output from the alogiter Tool . 21

9 The alogsplit Tool 22
9.1 Naming and Cleaning the Auto-Generated Split Directories 22
9.2 Command Line Usage for the alogsplit Tool . 23
9.3 Example Output from the alogsplit Tool . 23

10 The alogpare Tool 24
10.1 Mark Variables Define Events of Interest . 24
10.2 The Pare List of Variables to be Pared . 24

1

10.3 The Hit List of Variables to be Removed Completely . 25
10.4 Command Line Usage for the alogpare Tool . 25
10.5 Planned additions to the alogpare Utility . 26

11 The alogcd Tool 26
11.1 Producing a Time-Stamped file of Collisions and Near Misses 26
11.2 The Terse Output Option . 27
11.3 Command Line Return Values . 27
11.4 Command Line Usage for the alogcd Tool . 27
11.5 Planned additions to the alogcd Utility . 28

12 The alogcat Tool 28

13 The alogavg Tool 29
13.1 Input Format for alogavg . 29
13.2 Output Format for alogavg . 30

14 The alogmhash Tool 30
14.1 Output Components . 31
14.2 Command Line Usage for the alogmhash Tool . 32

15 The alogeval Tool 33
15.1 Test Criteria Input File . 33
15.2 Test Criteria Logic Test Sequence . 33
15.3 Test Output and Return Values . 34
15.4 Examining the Test Sequence Structure . 35

1 Overview

The Alog Toolbox, in addition to the alogview GUI based utility, also contains a set of command
line post-mission analysis utility applications:

� alogclip

� aloggrep

� alogrm

� alogscan

� aloghelm

� alogiter

� alogsplit

� alogpare

� alogcd

� alogcat

� alogavg

� alogmhash

� alognpos

Each application manipulates or renderings .alog files generated by the pLogger application. Four

2

of the applications, alogclip, aloggrep, alogpare, and alogrm are command-line tools for filtering a
given .alog file to a reduced size. Reduction of a log file size may facilitate the time to load a file
in a post-processing application, may facilitate its transmission over slow transmission links when
analyzing data between remote users, or may simply ease in the storing and back-up procedures. The
alogscan tool provides statistics on a given .alog file that may indicate how to best reduce file size
by eliminating variable entries not used in post-processing. It also generates other information that
may be handy in debugging a mission. The alogsplit tool will split a single alog file into a folder
containing a dedicated alog file for each logged variable. This operation is also done automatically
upon the launch of appalogview when launched on an alog file for the first time. The alogview tool
is a GUI-based tool that accepts one or more .alog files and renders a vehicle positions over time
on an operation area, provides time-correlated plots of any logged numerical MOOS variables, and
renders helm autonomy mode data with plots of generated objective functions.

2 An Example .alog File

The .alog file used in the examples below was generated from the Alpha example mission. This file,
alpha.alog, is found in the missions distributed with the MOOS-IvP tree. The alpha.alog file was
created by simply running the mission as described, and can be found in:

moos-ivp/trunk/ivp/missions/alpha/alpha.alog

3 The alogscan Tool

The alogscan tool is a command-line application for providing statistics relating to a given .alog

file. It reports, for each unique MOOS variable in the log file, (a) the number of lines in which
the variable appears, i.e., the number of times the variable was posted by a MOOS application,
(b) the total number of characters comprising the variable value for all entries of a variable, (c)
the timestamp of the first recorded posting of the variable, (d) the timestamp of the last recorded
posting of the variable, (e) the list of MOOS applications the posted the variable.

3.1 Command Line Usage for the alogscan Tool

The alogscan tool is run from the command line with a given .alog file and a number of options.
The usage options are listed when the tool is launched with the -h switch:

$ alogscan --help or -h

3

1 Usage:

2 alogscan file.alog [OPTIONS]

3

4 Synopsis:

5 Generate a report on the contents of a given

6 MOOS .alog file.

7

8 Options:

9 --sort=type Sort by one of SIX criteria:

10 start: sort by first post of a var

11 stop: sort by last post of a var

12 (Default) vars: sort by variable name

13 proc: sort by process/source name

14 chars: sort by total chars for a var

15 lines: sort by total lines for a var

16

17 --appstat Output application statistics

18 -r,--reverse Reverse the sorting output

19 -n,--nocolors Turn off process/source color coding

20 -h,--help Displays this help message

21 -v,--version Displays the current release version

22 --rate_only Only report the data rate

23 --noaux Ignore auxilliary source info

24

25 See also: aloggrp, alogrm, alogclip, alogview

The order of the arguments passed to alogscan do not matter. The lines of output are sorted by
grouping variables posted by the same MOOS process or source. The sorting criteria can instead be
done by alphabetical order on the variable name (--sort=vars), the total characters in the file due
to a variable (--sort=chars), the total lines in the file due to a variable (--sort=lines), the time
of the first posting of the variable (--sort=start), or the time of the last posting of the variable
(--sort=stop). The order of the output may be reversed (-r, --reverse). By default, the entries
are color-coded by the variable source, using the few available terminal colors (there are not many).
When unique colors are exhausted, the color reverts back to the default terminal color in effect at
the time.

3.2 Example Output from the alogscan Tool

The output shown below was generated from the alpha.alog file generated by the Alpha example
mission.

$ alogscan file.alog

4

Variable Name Lines Chars Start Stop Sources

------------- ----- ----- ------ ------ -------

DB_CLIENTS 282 22252 -0.38 566.42 MOOSDB_alpha

DB_TIME 556 7132 1.21 566.18 MOOSDB_alpha

DB_UPTIME 556 7173 1.21 566.18 MOOSDB_alpha

USIMMARINE_STATUS 276 92705 0.39 565.82 uSimMarine

NAV_DEPTH 6011 6011 1.43 566.38 uSimMarine

NAV_HEADING 6011 75312 1.43 566.38 uSimMarine

NAV_LAT 6011 74799 1.43 566.38 uSimMarine

NAV_LONG 6011 80377 1.43 566.38 uSimMarine

NAV_SPEED 6011 8352 1.43 566.38 uSimMarine

NAV_STATE 6011 18033 1.43 566.38 uSimMarine

NAV_X 6011 72244 1.43 566.38 uSimMarine

NAV_Y 6011 77568 1.43 566.38 uSimMarine

NAV_YAW 6011 80273 1.43 566.38 uSimMarine

BHV_IPF 2009 564165 46.26 542.85 pHelmIvP

CREATE_CPU 2108 2348 46.26 566.33 pHelmIvP

CYCLE_INDEX 5 5 44.98 543.09 pHelmIvP

DEPLOY 3 14 3.84 543.09 pHelmIvP,pMarineViewer

DESIRED_HEADING 2017 5445 3.85 543.09 pHelmIvP

DESIRED_SPEED 2017 2017 3.85 543.09 pHelmIvP

HELM_IPF_COUNT 2108 2108 46.26 566.32 pHelmIvP

HSLINE 1 3 3.84 3.84 pHelmIvP

IVPHELM_DOMAIN 1 29 3.84 3.84 pHelmIvP

IVPHELM_ENGAGED 462 3342 3.85 566.32 pHelmIvP

IVPHELM_MODESET 1 0 3.84 3.84 pHelmIvP

IVPHELM_POSTINGS 2014 236320 46.26 543.33 pHelmIvP

IVPHELM_STATEVARS 1 20 44.98 44.98 pHelmIvP

IVPHELM_SUMMARY 2113 612685 44.98 566.33 pHelmIvP

LOOP_CPU 2108 2348 46.26 566.33 pHelmIvP

PC_hsline 1 9 44.98 44.98 pHelmIvP

PC_waypt_return 3 14 44.98 543.33 pHelmIvP

PC_waypt_survey 3 14 44.98 543.33 pHelmIvP

PHELMIVP_STATUS 255 198957 3.85 565.12 pHelmIvP

PLOGGER_CMD 1 17 3.84 3.84 pHelmIvP

PWT_BHV_HSLINE 1 1 44.98 44.98 pHelmIvP

PWT_BHV_WAYPT_RETURN 3 5 44.98 543.09 pHelmIvP

PWT_BHV_WAYPT_SURVEY 2 4 44.98 462.90 pHelmIvP

RETURN 4 19 3.84 543.09 pHelmIvP,pMarineViewer

STATE_BHV_HSLINE 1 1 44.98 44.98 pHelmIvP

STATE_BHV_WAYPT_RETURN 4 4 44.98 543.33 pHelmIvP

STATE_BHV_WAYPT_SURVEY 3 3 44.98 463.15 pHelmIvP

SURVEY_INDEX 10 10 44.98 429.70 pHelmIvP

SURVEY_STATUS 1116 77929 45.97 462.90 pHelmIvP

VIEW_POINT 4034 101662 44.98 543.33 pHelmIvP

VIEW_SEGLIST 4 273 44.98 543.33 pHelmIvP

WPT_INDEX 1 1 463.15 463.15 pHelmIvP

WPT_STAT 223 15626 463.15 543.09 pHelmIvP

LOGGER_DIRECTORY 56 1792 1.07 559.19 pLogger

PLOGGER_STATUS 263 331114 1.07 566.40 pLogger

DESIRED_RUDDER 10185 150449 -9.28 545.18 pMarinePID

DESIRED_THRUST 10637 20774 -9.28 566.52 pMarinePID

MOOS_DEBUG 5 39 -9.31 545.23 pMarinePID,pHelmIvP

PMARINEPID_STATUS 279 81990 0.95 566.28 pMarinePID

HELM_MAP_CLEAR 1 1 -1.56 -1.56 pMarineViewer

MOOS_MANUAL_OVERIDE 1 5 44.65 44.65 pMarineViewer

PMARINEVIEWER_STATUS 270 95560 -0.95 564.89 pMarineViewer

NODE_REPORT_LOCAL 1159 207535 1.15 565.91 pNodeReporter

PNODEREPORTER_STATUS 233 50534 -0.37 563.93 pNodeReporter

Total variables: 57

Start/Stop Time: -9.31 / 566.52

5

When the -appstat command line option is included, a second report is generated, after the above
report, that provides statistics keyed by application, rather than by variable. For each application
that has posted a variable recorded in the given .alog file, the number of lines and characters are
recorded, as well as the percentage of total lines and characters. An example of this report:

MOOS Application Total Lines Total Chars Lines/Total Chars/Total

--------------- ----------- ----------- ----------- -----------

MOOSDB_alpha 1394 36557 1.37 1.08

uSimMarine 54375 585674 53.57 17.29

pHelmIvP 22642 1825437 22.31 53.89

pLogger 319 332906 0.31 9.83

pMarinePID 21106 253252 20.80 7.48

pMarineViewer 279 95599 0.27 2.82

pNodeReporter 1392 258069 1.37 7.62

Further Tips

� If a small number of variables are responsible for a relatively large portion of the file size, and
are expendable in terms of how data is being analyzed, the variables may be removed to ease
the handling, transmission, or storage of the data. To remove variables from existing files, the
alogrm tool described in Section 6 may be used. To remove the variable from future files, the
pLogger configuration may be edited by either removing the variable from the list of variables
explicitly requested for logging, or if WildCardLogging is used, mask out the variable with the
WildCardOmitPattern parameter setting. See the pLogger documentation.

� The output of alogscan can be further distilled using common tools such as grep. For example,
if one only wants a report on variables published by the pHelmIvP application, one could type:

$ alogscan alpha.alog | grep pHelmIvP

4 The alogclip Tool

The alogclip tool will prune a given .alog file based on a given beginning and end timestamp.
This is particularly useful when a log file contains a sizeable stretch of data logged after mission
completion, such as data being recorded while the vehicle is being recovered or sitting idle topside
after recovery.

4.1 Command Line Usage for the alogclip Tool

The alogclip tool is run from the command line with a given .alog file, a start time, end time, and
the name of a new .alog file. By default, if the named output file exists, the user will be prompted
before overwriting it. The user prompt can be bypassed with the -f,--force option. The usage
options are listed when the tool is launched with the -h switch:

$ alogclip --help or -h

6

Usage:

alogclip in.alog mintime maxtime [out.alog] [OPTIONS]

Synopsis:

Create a new MOOS .alog file from a given .alog file

by removing entries outside a given time window.

Standard Arguments:

in.alog - The input logfile.

mintime - Log entries with timestamps below mintime

will be excluded from the output file.

maxtime - Log entries with timestamps above mintime

will be excluded from the output file.

out.alog - The newly generated output logfile. If no

file provided, output goes to stdout.

Options:

-h,--help Display this usage/help message.

-v,--version Display version information.

-f,--force Overwrite an existing output file

-q,--quiet Verbose report suppressed at conclusion.

Further Notes:

(1) The order of arguments may vary. The first alog

file is treated as the input file, and the first

numerical value is treated as the mintime.

(2) Two numerical values, in order, must be given.

(3) See also: alogscan, alogrm, aloggrep, alogview

4.2 Example Output from the alogclip Tool

The output shown below was generated from the alpha.alog file generated by the Alpha example
mission.

$ alogclip alpha.alog new.alog 50 350

Processing input file alpha.alog...

Total lines clipped: 44,988 (44.32 pct)

Front lines clipped: 5,474

Back lines clipped: 39,514

Total chars clipped: 4,200,260 (43.09 pct)

Front chars clipped: 432,409

Back chars clipped: 3,767,851

5 The aloggrep Tool

The aloggrep tool has two primary purposes. The first is to prune a given .alog file into a smaller,
yet syntactically valid .alog file. It this mode it can also be used for enforcing strict ordering of
entries, and removing duplicate entries, since the pLogger app does not guarantee perfect ordering
or files without the occasional duplicate entry. The second primary purpose is to extract data for

7

plotting in a tool like matlab or similar, or extracting a single value that may be ingested in a shell
script. These use cases are described below.

A concise form of this documentation is available with aloggrep --help, and the web version of this
content can be quickly opened with aloggrep --web.

5.1 Using aloggrep to Produce a Reduced and/or Ordered Output

The aloggrep tool will prune a given .alog file by retaining lines of the original file that contain
log entries for a user-specified list of MOOS variables or MOOS processes (sources). As the name
implies it is motivated by the Unix grep command, but grep will return a matched line regardless of
where the pattern appears in the line. Since MOOS variables also often appear in the string content
of other MOOS variables, grep often returns much more than one is looking for. The aloggrep tool
will only pattern-match on the second column of data (the MOOS variable name), or the third
column of data (the MOOS source), of any given entry in a given .alog file.

For example, try running the alpha mission and let the vehicle traverse the waypoints for a little
while. Quit the mission and find the .alog file.

$ cd alpha_4_1_2022_____18_33_46/

$ ls

alpha._bhv alpha_4_1_2022_____18_33_46.blog

alpha_4_1_2022_____18_33_46._moos alpha_4_1_2022_____18_33_46.xlog

alpha_4_1_2022_____18_33_46.alog alpha_4_1_2022_____18_33_46.ylog

Then we can use aloggrep to see what is happening with the DEPLOY and WFLAG variable. The former
is used for starting the mission, while the latter is incremented each time the vehicle hits a waypoint:

8

$ aloggrep DEPLOY WFLAGalpha_4_1_2022_____18_33_46.alog

%%%

%% LOG FILE: ./alpha_4_1_2022_____18_33_46/alpha_4_1_2022_____18_33_46.alog

%% FILE OPENED ON Wed Dec 31 19:00:00 1969

%% LOGSTART 41033480654.29403

%%%

26.28008 DEPLOY pHelmIvP:HELM_VAR_INIT false

26.28008 DEPLOY pHelmIvP:HELM_VAR_INIT false

26.28008 DEPLOY pHelmIvP:HELM_VAR_INIT false

26.28008 DEPLOY pHelmIvP:HELM_VAR_INIT false

26.28008 DEPLOY pHelmIvP:HELM_VAR_INIT false

26.28008 DEPLOY pHelmIvP:HELM_VAR_INIT false

74.65635 DEPLOY pMarineViewer true

74.65635 DEPLOY pMarineViewer true

74.65635 DEPLOY pMarineViewer true

85.23170 WFLAG pHelmIvP:38:waypt_survey waypoints=1

116.06017 WFLAG pHelmIvP:148:waypt_survey waypoints=2

74.65635 DEPLOY pMarineViewer true

116.06017 WFLAG pHelmIvP:148:waypt_survey waypoints=2

140.11575 WFLAG pHelmIvP:234:waypt_survey waypoints=3

158.09377 WFLAG pHelmIvP:298:waypt_survey waypoints=4

176.15134 WFLAG pHelmIvP:362:waypt_survey waypoints=5

74.65635 DEPLOY pMarineViewer true

176.15134 WFLAG pHelmIvP:362:waypt_survey waypoints=5

199.22812 WFLAG pHelmIvP:444:waypt_survey waypoints=6

230.22727 WFLAG pHelmIvP:554:waypt_survey waypoints=7

254.00302 WFLAG pHelmIvP:640:waypt_survey waypoints=8

Total lines retained: 21 (0.05%)

Total lines excluded: 44238 (99.95%)

Total chars retained: 1435 (0.04%)

Total chars excluded: 3873898 (99.96%)

Variables retained: (2) DEPLOY, WFLAG

The last five lines provide a summary contained retained and excluded. All lines above that are
essentially a valid .alog file. Note however that there are some duplicate lines, and a couple lines
out of order. To order the output and remove duplicates, try running with the --sort,-s and
--duplicates,-d options, or simply the -sd option to do both:

9

$ aloggrep DEPLOY WFLAG alpha_4_1_2022_____18_33_46.alog -sd

%%%

%% LOG FILE: ./alpha_4_1_2022_____18_33_46/alpha_4_1_2022_____18_33_46.alog

%% FILE OPENED ON Wed Dec 31 19:00:00 1969

%% LOGSTART 41033480654.29403

26.28008 DEPLOY pHelmIvP:HELM_VAR_INIT false

74.65635 DEPLOY pMarineViewer true

85.23170 WFLAG pHelmIvP:38:waypt_survey waypoints=1

116.06017 WFLAG pHelmIvP:148:waypt_survey waypoints=2

140.11575 WFLAG pHelmIvP:234:waypt_survey waypoints=3

158.09377 WFLAG pHelmIvP:298:waypt_survey waypoints=4

176.15134 WFLAG pHelmIvP:362:waypt_survey waypoints=5

199.22812 WFLAG pHelmIvP:444:waypt_survey waypoints=6

230.22727 WFLAG pHelmIvP:554:waypt_survey waypoints=7

254.00302 WFLAG pHelmIvP:640:waypt_survey waypoints=8

Total re-sorts: 2

Total lines retained: 10 (0.02%)

Total lines excluded: 44238 (99.98%)

Total chars retained: 723 (0.02%)

Total chars excluded: 3873898 (99.98%)

Variables retained: (2) DEPLOY, WFLAG

Notice the duplicates are removed, and the entries are ordered. Note also that, with alog tools,
the order of the arguments on the command line do not matter. In the above example, the report
section on the bottom now also indicates how many lines needed to be re-sorted, in this case 2.

5.1.1 Creating a New ALog File

Notice that the output above is not quite a syntactically valid .alog file since the report lines at the
end are not log lines. So if output is simply re-directed to a file, the following would produce an
.alog file with essentially garbage at the end:

$ aloggrep DEPLOY WFLAG alpha_4_1_2022_____18_33_46.alog -sd > newfile.alog

To create a new logfile either suppress the report lines at the end with:

$ aloggrep DEPLOY WFLAG oldfile.alog -sd --no_report > newfile.alog

Or simply provide a second (new) file name and the new file will not include the report lines:

$ aloggrep DEPLOY WFLAG alpha_4_1_2022_____18_33_46.alog -sd newfile.alog

Total re-sorts: 2

Total lines retained: 10 (0.02%)

Total lines excluded: 44238 (99.98%)

Total chars retained: 723 (0.02%)

Total chars excluded: 3873898 (99.98%)

Variables retained: (2) DEPLOY, WFLAG

Note the report lines still go to the terminal, but the log files are written to the new .alog file.

10

5.1.2 Filtering based on the Data Source (Publishing App)

Rather than naming variables to keep, aloggrep can be provided with the name of one or more
apps, and all entries published by these apps will be retained.

$ aloggrep pHelmIvP alpha_4_1_2022_____18_33_46.alog

5.1.3 Wildcard Matching

Limited simple wildcard matching is supported:

$ aloggrep NAV_* file.alog

The above will grab all variables beginning with NAV . Placing the asterisk in any other position will
have no effect, e.g., * SPEED will not grap NAV SPEED.

5.2 Using aloggrep to Extract Plottable Data

An additional use case for aloggrep involves getting data for plotting. Using the same example as
above, suppose we want to plot the value of WPT ODO versus time. This variable represents vehicle
odometry data, published by the waypoint behavior, and reset to zero on each waypoint. Using the
above arguments we get:

$ aloggrep alpha_4_1_2022_____18_33_46.alog WPT_ODO

%%%

%% LOG FILE: ./alpha_4_1_2022_____18_33_46/alpha_4_1_2022_____18_33_46.alog

%% FILE OPENED ON Wed Dec 31 19:00:00 1969

%% LOGSTART 41033480654.29403

%%%

74.83427 WPT_ODO pHelmIvP:1:waypt_survey 0.00000

75.90277 WPT_ODO pHelmIvP:5:waypt_survey 0.34869

76.20800 WPT_ODO pHelmIvP:6:waypt_survey 0.57995

76.49590 WPT_ODO pHelmIvP:7:waypt_survey 0.88998

76.77897 WPT_ODO pHelmIvP:8:waypt_survey 1.42170

77.08220 WPT_ODO pHelmIvP:9:waypt_survey 2.79976

77.39445 WPT_ODO pHelmIvP:10:waypt_survey 3.53386

77.67854 WPT_ODO pHelmIvP:11:waypt_survey 4.38950

77.95012 WPT_ODO pHelmIvP:12:waypt_survey 5.40420

...

Total lines retained: 571 (1.29%)

Total lines excluded: 43688 (98.71%)

Total chars retained: 43305 (1.12%)

Total chars excluded: 3832028 (98.88%)

Variables retained: (1) WPT_ODO

The above output does grab the relevant lines, but we’d like to drop the header lines and report at

11

the end. Using the --format=time:val of --tv option, the results are stripped down to data lines
only and just the time and value columns are retained:

$ aloggrep alpha_4_1_2022_____18_33_46.alog WPT_ODO --format=time:val

74.83427 0.00000

75.90277 0.34869

76.20800 0.57995

76.49590 0.88998

76.77897 1.42170

77.08220 2.79976

77.39445 3.53386

77.67854 4.38950

77.95012 5.40420

...

5.2.1 Extracting Plottable Data from a Complex Posting

Not all posted data is in simple numerical format as in case above with the variable WPT ODO. Suppose
for example, instead of WPT ODO, our objective is to plot the value of the waypoint index versus time.
This value, in the Alpha mission, is published as part of a string:

$ aloggrep alpha_4_1_2022_____18_33_46.alog WFLAG --format=time:val

85.23170 waypoints=1

116.06017 waypoints=2

140.11575 waypoints=3

158.09377 waypoints=4

176.15134 waypoints=5

199.22812 waypoints=6

230.22727 waypoints=7

254.00302 waypoints=8

In this case, we would like to isolate the numerical value from the string. Using the --subpat=PATTERN
option we can isolate numerical values from variable postings made in the common format of:

field1=value1, field2=value2, ..., fieldN=valueN

$ aloggrep alpha_4_1_2022_____18_33_46.alog WFLAG --format=time:val --subpat=waypoints

85.23170 1

116.06017 2

140.11575 3

158.09377 4

176.15134 5

199.22812 6

230.22727 7

254.00302 8

Note in the above example, the column separator is single white space character (ASCII 32). If a
colon separator is desired, use the --cso flag. If a comma separator is desired, use the --csc flag.

12

5.3 Extracting a First or Final Posting

In some cases, aloggrep may be used as a tool within a script to determine mission outcome. If the
mission outcome is represented in a single MOOS variable, e.g., MISSION RESULT or MISSION SCORE,
then the goal is to isolate just this value. Using the --first or --final option, we can reduce the
output to just one line. Using the example above:

$ aloggrep alpha_4_1_2022_____18_33_46.alog WFLAG --format=time:val --final

254.00302 8

To isolate just the value column, use the --format=val, or --v option:

$ aloggrep alpha_4_1_2022_____18_33_46.alog WFLAG --v --final

8

The style of output can then be used within a shell script to take action based on the result, stored
in a shell variable:

$ FOO=(‘aloggrep alpha_4_1_2022_____18_33_46.alog WFLAG --v --final‘)

$ echo $FOO

8

$ FOO=(‘aloggrep alpha_10_5_2022_____14_31_06.alog MISSION_HASH --v --first‘)

$ echo $MISSION_HASH

2211-0528V-SOUR-CLUB

6 The alogrm Tool

The alogrm tool will prune a given .alog file by removing lines of the original file that contain log
entries for a user-specified list of MOOS variables or MOOS processes (sources). It may be fairly
viewed as the complement of the aloggrep tool.

6.1 Command Line Usage for the alogrm Tool

$ alogrm --help or -h

13

Usage:

alogrm in.alog [VAR] [SRC] [out.alog] [OPTIONS]

Synopsis:

Remove the entries matching the given MOOS variables or sources

from the given .alog file and generate a new .alog file.

Standard Arguments:

in.alog - The input logfile.

out.alog - The newly generated output logfile. If no

file provided, output goes to stdout.

VAR - The name of a MOOS variable

SRC - The name of a MOOS process (source)

Options:

-h,--help Displays this help message

-v,--version Displays the current release version

-f,--force Force overwrite of existing file

-q,--quiet Verbose report suppressed at conclusion

--nostr Remove lines with string data values

--nonum Remove lines with double data values

--clean Remove lines that have a timestamp that is

non-numerical or lines w/ no 4th column

Further Notes:

(1) The second alog is the output file. Otherwise the

order of arguments is irrelevent.

(2) VAR* matches any MOOS variable starting with VAR

(3) See also: alogscan, aloggrep, alogclip, alogview

Note that, in specifying items to be filtered out, there is no distinction made on the command line
that a given item refers to a entry’s variable name or an entry’s source, i.e., MOOS process name.

6.2 Example Output from the alogrm Tool

The output shown below was generated from the alpha.alog file generated by the Alpha example
mission.

$ alogrm alpha.alog NAV_* new.alog

14

Processing on file : alpha.alog

Total lines retained: 47396 (46.70%)

Total lines excluded: 54099 (53.30%)

Total chars retained: 6453494 (66.21%)

Total chars excluded: 3293774 (33.79%)

Variables retained: (48) BHV_IPF, CREATE_CPU, CYCLE_INDEX, DB_CLIENTS,

DB_TIME, DB_UPTIME, DEPLOY, DESIRED_HEADING, DESIRED_RUDDER, DESIRED_SPEED,

DESIRED_THRUST, HELM_IPF_COUNT, HELM_MAP_CLEAR, HSLINE, USIMMARINE_STATUS,

IVPHELM_DOMAIN, IVPHELM_ENGAGED, IVPHELM_MODESET, IVPHELM_POSTINGS,

IVPHELM_STATEVARS, IVPHELM_SUMMARY, LOGGER_DIRECTORY, LOOP_CPU, MOOS_DEBUG,

MOOS_MANUAL_OVERIDE, NODE_REPORT_LOCAL, PC_hsline, PC_waypt_return,

PC_waypt_survey, PHELMIVP_STATUS, PLOGGER_CMD, PLOGGER_STATUS,

PMARINEPID_STATUS, PMARINEVIEWER_STATUS, PNODEREPORTER_STATUS,

PWT_BHV_HSLINE, PWT_BHV_WAYPT_RETURN, PWT_BHV_WAYPT_SURVEY, RETURN,

STATE_BHV_HSLINE, STATE_BHV_WAYPT_RETURN, STATE_BHV_WAYPT_SURVEY,

SURVEY_INDEX, SURVEY_STATUS, VIEW_POINT, VIEW_SEGLIST, WPT_INDEX, WPT_STAT

7 The aloghelm Tool

The aloghelm tool provides a few handy ways of looking at helm activity over the course of a given
single alog file. This includes:

� Life Events: Using the --life/-l option, every spawning or death of a behavior is sorted into
a list of life events. Section 7.1.

� Mode Changes: Using the --modes/-m option, every helm mode change is sorted into a list of
chronological entries. Section 7.2.

� Behavior States: Using the --bhvs/-b option, every instance where a behavior changes states
is recorded and sorted into a list of chronological entries. Section 7.3.

In each mode, the user may additionally specify one or more MOOS variables to be interleaved in
the report as they occur chronologically

7.1 The Life Events (–life) Option in the aloghelm Tool

The life events option in aloghelm will scan the given alog file for all life events, defined by the
spawning or destruction of a behavior instance. This information is posted by the helm in the
IVPHELM LIFE EVENT variable. Example output is show below:

$ aloghelm file.alog --life

15

Processing on file : henry.alog

++++++++++ (100,000) lines

++++++++++ (200,000) lines

+++

233,736 lines total.

10 life events.

* Summary of Behavior Life Events *

Time Iter Event Behavior Behavior Type Spawning Seed

------ ---- ----- ------------ ------------------ ------------------------------

41.27 1 spawn loiter BHV_Loiter helm_startup

41.27 1 spawn waypt_return BHV_Waypoint helm_startup

41.27 1 spawn station-keep BHV_StationKeep helm_startup

316.78 995 spawn ac_avd_gilda BHV_AvoidCollision name=avd_gilda # contact=gilda

369.72 1191 death ac_avd_gilda BHV_AvoidCollision

482.92 1601 spawn ac_avd_gilda BHV_AvoidCollision name=avd_gilda # contact=gilda

545.18 1833 death ac_avd_gilda BHV_AvoidCollision

654.70 2228 spawn ac_avd_gilda BHV_AvoidCollision name=avd_gilda # contact=gilda

751.87 2591 death ac_avd_gilda BHV_AvoidCollision

809.85 2799 spawn ac_avd_gilda BHV_AvoidCollision name=avd_gilda # contact=gilda

The actual output, by default, is color-code green for all spawnings and black for all deaths. The
color-coding can be turned off with the additional command line argument --nocolor.

7.2 The Modes (–modes) Option in the aloghelm Tool

The modes option in aloghelm will scan the given alog and report all instances of a helm mode
change.

$ aloghelm file.alog --modes

16

Processing on file : /Users/mikerb/henry.alog

==

45.221 Mode: ACTIVE:LOITERING

==

92.687 Mode: ACTIVE:STATION-KEEPING

==

120.919 Mode: ACTIVE:LOITERING

==

386.632 Mode: ACTIVE:RETURNING

==

413.980 Mode: ACTIVE:LOITERING

==

558.254 Mode: ACTIVE:RETURNING

==

584.283 Mode: ACTIVE:LOITERING

==

663.162 Mode: ACTIVE:STATION-KEEPING

==

703.517 Mode: ACTIVE:LOITERING

==

766.938 Mode: ACTIVE:RETURNING

233,736 lines total.

Using the --mode option, it is sometimes helpful to augment the output to include certain other
variable postings, by simply naming the MOOS variable on the command line. The variables and
mode changes will be presented on the screen in their chronological order. For example:

$ aloghelm file.alog --modes CONTACT_RESOLVED

17

Processing on file : /Users/mikerb/henry.alog

==

45.221 Mode: ACTIVE:LOITERING

==

92.687 Mode: ACTIVE:STATION-KEEPING

==

120.919 Mode: ACTIVE:LOITERING

373.392 CONTACT_RESOLVED pHelmIvP:1190:ac_avd_gilda GILDA

==

386.632 Mode: ACTIVE:RETURNING

==

413.980 Mode: ACTIVE:LOITERING

548.838 CONTACT_RESOLVED pHelmIvP:1832:ac_avd_gilda GILDA

==

558.254 Mode: ACTIVE:RETURNING

==

584.283 Mode: ACTIVE:LOITERING

==

663.162 Mode: ACTIVE:STATION-KEEPING

==

703.517 Mode: ACTIVE:LOITERING

755.509 CONTACT_RESOLVED pHelmIvP:2590:ac_avd_gilda GILDA

==

766.938 Mode: ACTIVE:RETURNING

233,736 lines total.

7.3 The Behaviors Option in the aloghelm Tool

The behaviors option in aloghelm will scan the given alog file taking note of all helm iterations
where there is a change to one or more of the four groups of (a) active, (b) running, (c) idle, or (d)
completed behaviors. Example output is show below:

$ aloghelm file.alog --bhvs

18

Processing on file : henry.alog

==

45.221 Mode: ACTIVE:LOITERING

- -

45.225 (1) Active: loiter

45.225 (1) Running:

45.225 (1) Idle: waypt_return,station-keep

==

92.687 Mode: ACTIVE:STATION-KEEPING

- -

92.689 (172) Active: station-keep

92.689 (172) Running:

92.689 (172) Idle: loiter,waypt_return

==

120.919 Mode: ACTIVE:LOITERING

- -

120.921 (274) Active: loiter

120.921 (274) Running:

120.921 (274) Idle: waypt_return,station-keep

- -

320.786 (995) Active: loiter,ac_avd_gilda

320.786 (995) Running:

320.786 (995) Idle: waypt_return,station-keep

- -

345.778 (1090) Active: loiter

345.778 (1090) Running: ac_avd_gilda

345.778 (1090) Idle: waypt_return,station-keep

- -

373.642 (1191) Active: loiter

373.642 (1191) Running:

373.642 (1191) Idle: waypt_return,station-keep

373.642 (1191) Completed: ac_avd_gilda

==

386.632 Mode: ACTIVE:RETURNING

- -

386.636 (1238) Active: waypt_return

386.636 (1238) Running:

386.636 (1238) Idle: loiter,station-keep

386.636 (1238) Completed: ac_avd_gilda

==

In some cases, there is interest in a particular behavior in the this kind of output. To make it
easier to visually parse, the --watch=BHV option can be used to draw attention to each the particular
behavior changes state. Example output is shown below. The primary difference is the CHANGE tag
for each instance of a state change. In the terminal, such lines are also rendered in a different color.

$ aloghelm file.alog --bhvs --watch=loiter

19

Processing on file : henry.alog

==

45.221 Mode: ACTIVE:LOITERING

- -

45.225 (1) Active: loiter CHANGE

45.225 (1) Running:

45.225 (1) Idle: waypt_return,station-keep

==

92.687 Mode: ACTIVE:STATION-KEEPING

- -

92.689 (172) Active: station-keep

92.689 (172) Running:

92.689 (172) Idle: loiter,waypt_return CHANGE

==

120.919 Mode: ACTIVE:LOITERING

- -

120.921 (274) Active: loiter CHANGE

120.921 (274) Running:

120.921 (274) Idle: waypt_return,station-keep

- -

320.786 (995) Active: loiter,ac_avd_gilda

320.786 (995) Running:

320.786 (995) Idle: waypt_return,station-keep

- -

345.778 (1090) Active: loiter

345.778 (1090) Running: ac_avd_gilda

345.778 (1090) Idle: waypt_return,station-keep

- -

373.642 (1191) Active: loiter

373.642 (1191) Running:

373.642 (1191) Idle: waypt_return,station-keep

373.642 (1191) Completed: ac_avd_gilda

==

386.632 Mode: ACTIVE:RETURNING

- -

386.636 (1238) Active: waypt_return

386.636 (1238) Running:

386.636 (1238) Idle: loiter,station-keep CHANGE

386.636 (1238) Completed: ac_avd_gilda

==

7.4 Command Line Usage for the aloghelm Tool

$ aloghelm --help or -h

Listing 7.1: Command line usage for the aloghelm tool.

1 Usage:

2 aloghelm file.alog [OPTIONS] [MOOSVARS]

3

4 Synopsis:

5 Perform one of several optional helm reports based on

6 helm output logged in the given .alog file.

7

8 Options:

20

9 -h,--help Displays this help message

10 -v,--version Displays the current release version

11 -l,--life Show report on IvP Helm Life Events

12 -b,--bhvs Show helm behavior state changes

13 -m,--modes Show helm mode changes

14 --watch=bhv Watch a particular behavior for state change

15 --nocolor Turn off use of color coding

16 --notrunc Don’t truncate MOOSVAR output (on by default)

17

18 Further Notes:

19 (1) The order of arguments is irrelevent.

20 (2) Only the first specified .alog file is reported on.

21 (3) Arguments that are not one of the above options or an

22 alog file, are interpreted as MOOS variables on which

23 to report as encountered.

8 The alogiter Tool

The alogiter tool will analyze the ITER GAP and ITER LEN information produced by any appcasting
MOOS app. These variables indicate the ability of an application to keep up with the requested
apptick frequency. For example PHELMIVP ITER GAP will be close to 1.0 when configured with an
apptick of 4, and the observed apptick is also 4. The gap value will be around 2 if the observed
apptick is around 2. The PHELMIVP ITER LEN is the elapsed time between the start and end of the
helm iterate loop.

8.1 Command Line Usage for the alogiter Tool

$ alogiter --help or -h

Listing 8.2: Command line usage for the alogiter tool.

1 $ alogrm -h

2

3 Usage:

4 alogiter in.alog [OPTIONS]

5

6 Synopsis:

7 Analyze the ITER_GAP and ITER_LEN information provided by

8 all applications recorded in the given alog file.

9

10 Standard Arguments:

11 file.alog - The input logfile.

12

13 Options:

14 -h,--help Displays this help message

15 -v,--version Displays the current release version

16

17 Further Notes:

18 See also: alogscan, alogrm, alogclip, alogview, aloggrep

8.2 Example Output from the alogiter Tool

The output shown in Listing 3 was generated from the alpha.alog file generated by the Alpha
example mission, at time warp 20.

Listing 8.3: Example alogiter output applied to the alpha.alog file.

21

1 $ alogiter alpha.alog

2

3 Processing on file : MOOSLog_22_4_2015_____13_25_19.alog

4 GAP GAP PCT PCT PCT

5 AppName MAX AVG >1.25 >1.50 >2.0

6 ------------- ----- ----- ----- ----- -----

7 PHELMIVP 1.26 1.11 0.005 0.000 0.000

8 PMARINEVIEWER 1.10 1.07 0.000 0.000 0.000

9 PNODEREPORTER 1.25 1.15 0.008 0.000 0.000

10 UPROCESSWATCH 1.26 1.12 0.014 0.000 0.000

11 USIMMARINE 1.27 1.12 0.009 0.000 0.000

12

13 LEN LEN PCT PCT PCT PCT

14 AppName MAX AVG >0.25 >0.50 >0.75 >1.0

15 ------------- ----- ----- ----- ----- ----- -----

16 PHELMIVP 0.08 0.04 0.000 0.000 0.000 0.000

17 PMARINEVIEWER 0.00 0.00 0.000 0.000 0.000 0.000

18 PNODEREPORTER 0.01 0.00 0.000 0.000 0.000 0.000

19 UPROCESSWATCH 0.01 0.00 0.000 0.000 0.000 0.000

20 USIMMARINE 0.02 0.00 0.000 0.000 0.000 0.000

22

23 Mission Summmary

24 ---------------------------

25 Collective APP_GAP: 1.11

26 Collective APP_LEN: 0.01

9 The alogsplit Tool

The alogsplit tool will split a given .alog file into a directory containing a file for each MOOS
variable found in the .alog file. This is essentially the first stage of pre-processing done at the
outset of launching the alogview tool. It is implement here as a stand-alone app to be used for
purposes other than alogview. It may also be useful as a command-line tool for preparing multiple
.alog files from a shell script well before the first time they are used in alogview.

This is a new tool in Release 15.4 coinciding with the major re-write of the alogview tool also
released in 15.4.

9.1 Naming and Cleaning the Auto-Generated Split Directories

The name of the split directory created by alogsplit is determined automatically from the .alog

filename. For a file name alpha.alog, the directory created will be alpha alvtmp/ by default. This
can be overridden with the command line switch --dir=my dirname. The fairly distinctive alvtmp

suffix was chosen to facilitate cleaning these auto-generated temporary directories with a simple
shell script, alv rm:

#!/bin/bash

find . -name ’*_alvtmp’ -print -exec rm -rfv {} \;

The above script is found in the moos-ivp/bin directory and will remove (without prompting for
confirmation) all split directories in the current directory and sub-directories.

22

9.2 Command Line Usage for the alogsplit Tool

$ alogsplit --help or -h

Listing 9.4: Command line usage for the alogsplit tool.

1 $ alogsplit -h

2

3 Usage:

4 alogsplit in.alog [OPTIONS]

5

6 Synopsis:

7 Split the given alog file into a directory, within which

8 each MOOS variable is split into it’s own (klog) file

9 containing only that variable. The split will also create

10 a summary.klog file with summary information.

11

12 Given file.alog, file_alvtmp/ directory will be created.

13 Will not overwrite directory if previously created.

14 This is essentially the operation done at the outset of

15 launching the alogview applicaton.

16

17 Standard Arguments:

18 in.alog - The input logfile.

19

20 Options:

21 -h,--help Displays this help message

22 -v,--version Displays the current release version

23 --verbose Show output for successful operation

24 --dir=DIR Override the default dir with given dir.

9.3 Example Output from the alogsplit Tool

The output shown in Listing 5 was generated from the alpha.alog file generated by the Alpha
example mission.

Listing 9.5: Example alogsplit directory applied to the alpha.alog file.

1 $ alogsplit alpha.alog

2

3 APPCAST.klog IVPHELM_CPU.klog NODE_REPORT_LOCAL.klog

4 APPCAST_REQ.klog IVPHELM_CREATE_CPU.klog PHELMIVP_ITER_GAP.klog

5 APPCAST_REQ_ALL.klog IVPHELM_DOMAIN.klog PHELMIVP_ITER_LEN.klog

6 APPCAST_REQ_ALPHA.klog IVPHELM_IPF_CNT.klog PLOGGER_CMD.klog

7 BHV_IPF_waypt_return.klog IVPHELM_ITER.klog PMARINEVIEWER_ITER_GAP.klog

8 BHV_IPF_waypt_survey.klog IVPHELM_LIFE_EVENT.klog PMARINEVIEWER_ITER_LEN.klog

9 CYCLE_INDEX.klog IVPHELM_LOOP_CPU.klog PMV_CONNECT.klog

10 CYCLE_INDEX_SURVEYING.klog IVPHELM_MODESET.klog PNODEREPORTER_ITER_GAP.klog

11 DB_CLIENTS.klog IVPHELM_REGISTER.klog PNODEREPORTER_ITER_LEN.klog

12 DB_EVENT.klog IVPHELM_STATE.klog PROC_WATCH_EVENT.klog

13 DB_QOS.klog IVPHELM_STATEVARS.klog PROC_WATCH_FULL_SUMMARY.klog

14 DB_RWSUMMARY.klog IVPHELM_SUMMARY.klog PROC_WATCH_SUMMARY.klog

15 DB_TIME.klog LOGGER_DIRECTORY.klog PROC_WATCH_TIME_WARP.klog

16 DB_UPTIME.klog MOOS_DEBUG.klog RETURN.klog

17 DEPLOY.klog MOOS_MANUAL_OVERRIDE.klog SIMULATION_MODE.klog

18 DESIRED_HEADING.klog NAV_DEPTH.klog TRUE_X.klog

19 DESIRED_RUDDER.klog NAV_HEADING.klog TRUE_Y.klog

20 DESIRED_SPEED.klog NAV_HEADING_OVER_GROUND.klog UPROCESSWATCH_ITER_GAP.klog

21 DESIRED_THRUST.klog NAV_LAT.klog UPROCESSWATCH_ITER_LEN.klog

22 HELM_MAP_CLEAR.klog NAV_LONG.klog USIMMARINE_ITER_GAP.klog

23 IVPHELM_ALLSTOP.klog NAV_PITCH.klog USIMMARINE_ITER_LEN.klog

23

24 IVPHELM_ALLSTOP_DEBUG.klog NAV_SPEED.klog USM_DRIFT_SUMMARY.klog

25 IVPHELM_BHV_ACTIVE.klog NAV_SPEED_OVER_GROUND.klog USM_FSUMMARY.klog

26 IVPHELM_BHV_CNT.klog NAV_X.klog VISUALS.klog

27 IVPHELM_BHV_CNT_EVER.klog NAV_Y.klog summary.klog

28 IVPHELM_BHV_IDLE.klog NAV_YAW.klog

29 IVPHELM_BHV_RUNNING.klog NAV_Z.klog

Notice the summary.klot file on line 27. It contains some meta information gathered during the split
process that is useful for alogview in fetching information at run time.

10 The alogpare Tool

The alogpare tool is a utility for pruning alog files by removing certain alog entries outside certain
time windows. The time windows are defined by a user-defined time duration around the entries
of further user-defined variables in the log file. The idea is that some robot missions have events
of interest, e.g., a near collision event, where retaining all data just before and after the event is
critical to analyzing what may have gone wrong. Perhaps certain high data rate log entries outside
these critical event windows may be removed without any loss in utility to the users. In some cases
this reduction in logged data may dramatically ease the acrhiving of these log files.

This was a new tool in Release 17.7 but was not documented until the following release.

10.1 Mark Variables Define Events of Interest

A mark variable is a MOOS variable provided to alogpare on the command line to indicate an event
of interest. From the perspective of alogpare, the value of the mark variable does not matter. One
or variables may be provided. For example:

$ alogpare --markvars=ENCOUNTER,NEAR_MISS

The alogpare utility will make an initial pass through the alog file and make not of each instance of
a mark variable. A window of time, given by the command line parameter --pare window, will will
be associated around each instance of a mark variable. If windows overlap, that’s fine. The during
of the pare window is 30 seconds by default, even split in time before and after the mark event.
This may be adjusted on the command line. For example:

$ alogpare --markvars=ENCOUNTER --pare_window=60

The alogpare utility will make a second pass through the alog file pruning log entries outside
the pare windows, based on variables on the pare list.

10.2 The Pare List of Variables to be Pared

Variables on the pare list indicate which lines of an alog file are to be removed, outside of pare
windows. The pare list is defined on the command line with:

$ alogpare --markvars=ENCOUNTER --pare_window=60 --parevars=BHV_IPF,BIG_ENTRY

24

Typically these variables constitute relatively large portions of an alog file, and provide little value
outside the pare windows.

10.3 The Hit List of Variables to be Removed Completely

The alogpare utility also provides the means for removing named variables outright, regardless of
where they occur relative to a pare window. These variables are on the hit list. For example:

$ alogpare --varkvars=ENCOUNTER --parevars=BHV_IPF --hitvars=ITER_GAP

This functionality is also achieved with the alogrm utility, and is provided in this tool just as a
convenience.

10.4 Command Line Usage for the alogpare Tool

$ alogpare --help or -h

Listing 10.6: Command line usage for the alogpare tool.

1 $ alogpare -h

2

3 Usage:

4 alogpare .alog [out.alog] [OPTIONS]

5

6 Synopsis:

7 Pare back the given alog file in a two-pass manner.

8 First pass detects events defined by given mark vars.

9 The second pass removes lines with vars on the pare

10 list if they are not within pare_window seconds of

11 an event line. It also removes lines with vars on the

13 hitlist unconditionally. Latter could also be done

15 with alogrm.

16 The original alog file is not altered.

17

18 Options:

19 -h,--help Displays this help message

20 -v,--version Display current release version

21 --verbose Enable verbose output

22 --markvars=<L> Comma-separated list of mark vars

23 --hitvars=<L> Comma-separated list of hit vars

24 --parevars=<L> Comma-separated list of pare vars

25 --pare_window=<N> Set window to N seconds (default 30)

26

27 Examples:

28 alogpare --markvars=ENCOUNTER --parevars=BHV_IPF

29 original.alog smaller.alog

30 alogpare --markvars=ENCOUNTER

31 --parevars=BHV_IPF,VIEW_*

32 --hitvars=*ITER_GAP,*ITER_LEN,DB_QOS

33 --pare_window=10

34 original.alog smaller.alog

35

36 Further Notes:

37 (1) The order of alogfile args IS significant.

38 (2) The order of non alogfile args is not significant.

25

10.5 Planned additions to the alogpare Utility

� Soft parevars: removing perhaps every other entry outside pare window. Or remove success
entries with identical values outside the pare window.

� Separate specification for pare window time. Currently the window is split evenly around the
mark event. Some user may want more control.

� Pattern matching: Add support for specifying sets of variables with simple wildcard prefix or
suffix, e.g., NAV * or * REPORT.

11 The alogcd Tool

The alogcd tool is a utility for scanning a given alog file and tallying the number of encounters,
near misses, and collisions. This utility works under the assumption that another utility had been
running during the mission, and monitoring encounters, near misses and collisions. It assumes that
these three events were separately noted with MOOS variables that also indicate the closest point
of approach (CPA) range for each event. And it also assumes that these three variables were logged
in the alog file.

The alogcd utility uses the MOOS variables ENCOUNTER, NEAR MISS, and COLLISION. For now,
these three variables are hard-coded in this utility. The uFldCollisionDetect utility is one utility
capable of generating this kind of output. If there is collision to report, the report will also show
the CPA value for the worst collision encounter.

An example run may produce output similar to:

$ alogcd file.alog

7,686 total alog file lines.

===

Collision Report:

===

Encounters: 27 (avg 16.93 m)

Near Misses: 6 (avg 10.18 m)

Collisions: 3 (avg 5.55 m)

Collision Worst: 3.87

11.1 Producing a Time-Stamped file of Collisions and Near Misses

The near misses and collisions are the real events of interests, and if the standard summary report
is not enough, a time stamped list of each near miss and collision may be written to a file, if
the --tfile=filename parameter is provided. For example, the six near misses and three collisions
reported above could be written to file with:

26

$ alogcd file.alog --tfile=myfile

$ cat myfile

69.149,COLLISION,5.17

231.826,NEAR_MISS,9.41

351.374,NEAR_MISS,10.33

556.815,NEAR_MISS,10.35

592.976,NEAR_MISS,9.69

792.884,COLLISION,3.87

1065.484,NEAR_MISS,11.51

1129.862,COLLISION,7.61

1275.018,NEAR_MISS,9.82

The first column is the timestamp from the alog file, the second column is the type of encounter
(near miss or collision), and the third column is the CPA distance for that encounter.

11.2 The Terse Output Option

For a super terse, one line report, use the following, which produces the below output for the same
alog file as in the example above:

$ alogcd file.alog

27/6/3

27 encounters, 6 near misses, 3 collisions.

11.3 Command Line Return Values

The ultimate terse output is none at all! In this case we’re only interested in the return value of
alogcd. This can be used for example in a shell script to launch a series of simulations, altering the
configuration parameters until no collisions are detected. The following (integer) return values are
implemented:

� [0]: The alog file was found and readable, encounters were indeed reported, and no collisions
were reported. The success condition.

� [1]: The alog file was not found or it was not readable.

� [2]: The alog file was indeed found and was readable, but sadly, collisions were reported.

� [3]: The alog file was indeed found and was readable, and no collisions were reported, but no
encounters were reported either. Something is amiss. Either the vehicles never even got close
enough to each other to constitute an encounter, or a monitoring app like uFldCollisionDetect
was not even running.

11.4 Command Line Usage for the alogcd Tool

$ alogcd --help or -h

Listing 11.7: Command line usage for the alogcd tool.

1 $ alogcd -h

27

2

3 Usage:

4 alogcd .alog [OPTIONS]

5

6 Synopsis:

7 Scan an alog file for collision detection reports.

8 Tally the totals and averages, and optionally create

9 a file holding all the timestamps of events.

10

11 By default, it scans for events defined by postings

12 to the following three MOOS variables:

13

14 (1) COLLISION

15 (2) NEAR_MISS

16 (3) ENCOUNTER

17

18 Options:

19 -h,--help Displays this help message

20 -v,--version Display current release version

21 -t,--terse Write terse output.

22

23 Returns:

24 0 if alog file ok, encounters detected, no collisions.

25 1 if alog file not ok, unable to open.

26 2 if alog ok, but collisions were detected

27 3 if alog ok, no collisions or encounters detected

11.5 Planned additions to the alogcd Utility

� Allow the key MOOS variables to be provided as parameters, rather then fixed to ENCOUNTER,
NEAR MISS, and COLLISION.

� Support cmd line option like --collision count which produces the integer value of colli-
sion counts as the command line return value. Perhaps the same for --near miss count or
encounter count.

12 The alogcat Tool

A concise form of this documentation is available with alogcat --help, -h, and the web version of
this content can be quickly opened with alogcat --web, -w.

The alogcat tool is a utility for concatenating a given set of alog files into a new single alog file.
Recall that each alog file has a header at the beginning of the file with meta information. This
includes the starting timestamp which allows all further timestamps to be relative to the starting
time. So to concatenate alog files, we cannot simply just append one file onto the end another. If
that were done, there would be multiple header blocks in the file and different blocks of data with
timestamps relative to different start times.

Why would we need this tool? In certain field exercises, occasionally an operator may decide to
stop the mission (killing the MOOS community), and restart with perhaps a slight modification in
an important parameter. In such cases, two sets of log files will be produced, one from before the
restart and one from after. The two of them may constitute a valid mission log file, but they are
now split into two. The alogcat utility can be used for merging them back into one.

28

The alogcat tool performs a proper concatenation. First, it determines the chronological ordering
of the provided alog files. It will use the header block and starting time of the earliest file. For the
remaning files, (a) the relative time to the first file is calculated, (b) the header block of the later
file(s) is removed, (c) the log entries of the later file(s) are appended to the end of the earlier file
with timestamps appropriately adjusted along the way.

As an example, consider two alog files created from the same mission, fil1.alog and file2.alog.
They can be joined with:

$ alogcatfile1.alog file2.alog --new=final.alog --verbose

Performing a pre-check on the list of alog files...

Processing file: file1.alog

Processing file: file2.alog

Created new alog file: final.alog

Overlapping files will produce an error and no new file will be created. If a second log file is created
by re-starting the logger after it has been stopped during a mission, it is possible that initial postings
will have negative time stamps. This is due to the MOOSDB delivering the mail with the latest
values. These postings may have occurred before the logger re-started, and in fact may represent
duplicate postings found in the earlier log file. These postings are ignore. Keep in mind that any
posting in subsequent log files that have a negative timestamp will be ignored with the files are
concatenated.

If the new file to be created already exists, no action will be taken. This can be overridden with the
--force, -f parameter.

13 The alogavg Tool

The post-mission analysis pipeline starts with raw alog files and ends with plotted data. The raw
data in alog files cannot be directly plotted without some filtering and analysis steps. The alogavg

tool is one of the tools for performing these steps. These steps could also be done within the plotting
language such as Matlab or Python, but our preference is to have general tools in the ALog Toolbox
for these steps to allow users to choose between plotting tools without having to re-write the data
preparation steps in each plotting language.

A concise form of this documentation is available on the command line:

$ alogavg --help (or -h)

The web version of this content can be quickly summoned from the command line with:

$ alogavg --web (or -w)

13.1 Input Format for alogavg

The alogavg tool ingests a single file, using the --file=file.txt argument. This file will have two
columns of data, the domain (x) in the first column, and the range (y) in the second column. A file

29

of this type may have been produced by aloggrep directly from the raw alog file. No ordering is
presumed. A simple example:

2 289.09

1 357.331

2 287.762

1 358.505

2 289.645

1 358.952

For now it is assumed that the column separator is white space (ASCII 32). White space at either
the beginning or end of each line is ignored, and it does not matter how much white space is between
the two columns.

13.2 Output Format for alogavg

The output of alogavg will be five columns:

� The domain (x values), ordered

� The average of the range (y values)

� The minimum range value for the given domain value

� The maximum range value for the given domain value

� The standard deviation of range values for the given domain value

A simple example, using the data above, stored in file.log:

$ alogavg file.log

1 358.262667 357.331 358.952 0.683596

2 288.832333 287.762 289.645 0.790028

By default the columns of the output are padded to line up all columns in a more human readable
format. With the --noformat option, the columns will all be separated by a single white space.

14 The alogmhash Tool

The alogmhash command-line tool will examine a given single alog file and discern key pieces of
information related to the mission hash. It’s primary intended use is to be invoked within a script
as step in the automated archiving of log files. But it can also be run on the command line to
provide some useful information about the mission hash of an alog file:

30

$ alogmhash LOG_ABE_26_6_2023_____22_00_52.alog

Analyzing odometry in file : LOG_ABE_26_6_2023_____22_00_52.alog

6,697 total alog file lines.

MHash: 230626-2200N-MALT-PAIR

Odometry: 0

Duration: 73.2

Node Name: abe

UTC: 1687831252.73

Full List of MHashes noted:

[230626-2200N-MALT-PAIR]: 0.00 secs

The condensed output version of this tool is the primary use case. It will produce a slingle line of
ouput that will be saved in an .mhash file. This information is critical to the archiving pipeline

$ alogmhash --all LOG_ABE_26_6_2023_____22_00_52.alog

mhash=230626-2200N-MALT-PAIR,odo=0.0,duration=73.2,name=abe,utc=1687831252,xhash=ABE-073S-000M

14.1 Output Components

The mhash utility will scour the log file for the following pieces of information.

� The mission hash (mhash)

� The UTC start time of the mission

� The odometry, e.g., distance travelled

� The duration of the log file

� The node name

The mission hash is obtained by examining the alog file for entries to the variable MISSION HASH. An
example is:

mhash=230626-2200N-MALT-PAIR,utc=1687831252.73

If there is only one value for this variable in the alog file, then identifying the mission hash and
the UTC start time is pretty easy. However, if the alog file is from a vehicle, it’s possible that the
shoreside mission may have been restarted one or more times in the duration of the vehicle log
file. This would result in the vehicle log file having multiple values for the MISSION HASH. For this
reason alogmhash tallies the odometry distance accumulated while each distinct MISSION HASH is the
prevailing value. In the end, the one with the longest odometry distance is the one chosen. The
assumption is that, when or if a shoreside mission is re-started, it is usually while the vehicle is
sitting in a pre-launch mode, in which case the mission hash values from earlier starts should be
disregarded.

The odometry distance calculated by alogmhash is derived simply from the logged NAV X and NAV Y

values.

The duration value calculated by alogmhash is derived simply from timestamp of the last logged
entry in the alog file against the UTC start time recorded at the top of the alog file.

31

The node name is either the vehicle name or "shoreside". It is derived by examining a publication
to the MOOS variable DB UPTIME and noting the source (MOOS App) name that published it, which
is always the MOOSDB with the format MOOSDB node. The component to the right of the underscore is
regarded as the node name. The node name of "shoreside" is always shortened to "shore"

14.2 Command Line Usage for the alogmhash Tool

$ alogmhash --help or -h

Listing 14.8: Command line usage for the alogmhash tool.

Usage:

alogmhash file.alog [OPTIONS]

Synopsis:

alogmhash will read the one given alog file and

parse for key values used in a .mhash cache file.

Value Examples:

MHASH: 230513-1453B-ICED-OWEN

ODO: 423.2

DURATION: 874.3

NAME: abe

UTC: 33678848885.977

If multiple MISSION_HASH values are present in

the given log file, the posting value with the

highest odemetry distance is the one chosen. This

guards against the situation where a shoreside

re-starts after the logging has started and thus

generates a new mission hash. Rule of thumb is to

regard the MISSION_HASH that prevailed for the

highest odometry as the one true MISSION_HASH.

Options:

-h,--help Displays this help message

-v,--version Display current release version

-t,--terse terse output (No newline/CRLF)

-m,--mhash Report MHASH w/ longest odometry

-o,--odo Report total odometry

-d,--duration Report total duration

-n,--name Report node/vehicle name

-u,--utc Report UTC start time

-a,--all Report mhash,odo,dur,name

--web,-w

Open browser to:

https://oceanai.mit.edu/ivpman/apps/alogmhash

Returns:

0 if alog file ok.

1 if alog file not ok, unable to open.

Further Notes:

(1) The order of arguments is irrelevent.

(2) Only last given .alog file is reported on.

(3) Intended to be used in mhash_tag.sh script.

(1) Example:

$ alogmhash *.alog --all

mhash=230512-2147I-ICED-OWEN,odo=1507.5, \

32

duration=451.3,name=alpha,utc=33678848885.977

(2) Example:

$ alogmhash *.alog --mhash

mhash=230512-2147I-ICED-OWEN

15 The alogeval Tool

The alogeval tool will scan a given alog file and apply test criteria found in a separate input
file. The test criteria should be similar to that used by pMissionEval, specifying criteria for when
the test should be applied, and then the criteria for passing or failing the test. The advantage
of alogeval over pMissionEval is that the user can repeatedly adjust the evaluation criteria and
re-run the evaluations. With pMissionEval, the test criteria loaded at run-time will produce mission
evaluations that are based on the run-time criteria only.

A concise form of this documentation is available on the command line:

$ alogeval --help (or -h)

The web version of this content can be quickly summoned from the command line with:

$ alogeval --web (or -w)

15.1 Test Criteria Input File

The test criteria is provided in a separate input file. If the file has the suffix .txt, it can simply be
provided, otherwise use the --testfile=filename argument. The following two are equivalent:

$ alogeval mission.alog criteria.txt

$ alogeval mission.alog --testfile=criteria.txt

15.2 Test Criteria Logic Test Sequence

The primary configuration structure is a logic test sequence, comprised of one or more logic tests.
The sequence of tests may be ordered by time, but may also be time invariant. The overall test
evaluation is completed when either (a) all logic tests in the sequence have been evaluated and
passed, or (b) when any one of the logic tests in the sequence has failed.

A logic single test is comprised of:

� lead conditions

� pass conditions

� fail conditions

One or more lead conditions may be provided. As soon as all lead conditions have been satisfied,
the pass/fail conditions are evaluated. If one or more pass conditions have been provided, then

33

all must satisfied or else the test fails. If one or more fail conditions are provided, then if any fail
condition is satisfied, the test fails.

A test sequence is comprised one or more tests. Each test has its own conditions. In this case the
order of lines in the configuration file is important as it determines the grouping. For example,
in the Alpha End Flag mission, the sole test is whether the end flag has been set after the fifth
waypoint has been hit. This does not test for the possible error case where the endflag is posted
after the third or fourth waypoint has been hit. The single logic test could be replace with the
following test sequence:

lead_condition = WC_FLAG = 3

pass_condition = EFLAG = 0

lead_condition = WC_FLAG = 4

pass_condition = EFLAG = 0

Note in this case there are three tests, all tests need to pass if the pass flag is to be posted. Note
also that the test EFLAG=0 will not pass unless it is explicitly published with this value. And the
condition EFLAG!=1 will also not pass unless EFLAG has been published. In this example, in the Alpha
End Flag mission, the helm initializes the EFLAG variable to 0 upon helm launch.

The order of the tasks in the configuration does matter. The app at any given moment will address
the next element in the sequence. Only when the last element has been addressed will the result,
pass, and fail flags be published. Consider what would happen if the first two of the above tests
were reversed? In this case the mission would never finish evaluation. Why?

15.3 Test Output and Return Values

If alogeval succeeds, with valid alog file, valid criteria file, and passing all logic tests, it returns
with a value of 0. Other possible values:

� 0: Success

� 1: All valid files, but test criteria failed

� 2: Unhandled command line argument

� 3: Missing alog file or could not be opened

� 4: Missing criteria file or could not be opened

� 5: ALog or criteria file could not be parsed

The above return values are returned to the shell on the command line. By default, alogeval
produces no output to the terminal. Output can be enabled with the --verbose flag, for example:

34

$ alogeval file.alog criteria.txt --verbose

BEGIN ALogEvaluator: Handling ALog File:

14.72909 EFLAG 0 [false,false] (0)

121.82700 WC_FLAG 1 [false,false] (0)

162.14515 WC_FLAG 2 [false,false] (0)

192.43813 WC_FLAG 3 [false,false] (1)

215.20145 WC_FLAG 4 [true,true] (2)

EVALUATION COMPLETE

END ALogEvaluator: Handling ALog File

Result: pass=true

$ echo $?

0

In the above output, several lines with timestamps are shown. Variables involved in the criteria
logic conditions are noted by alogeval. Each time a log entry is encountered with one of these
variables, the test criteria is applied, and a line of output is produced. The second column is the
MOOS variable name. The third column is the posted value of the MOOS variable. The fourth
column contains two Booleans. The first is whether the entire test sequence has been evaluated, and
the second Boolean is whether the evaluation passed. If the first is false, the second will false. The
fifth column is index of the current logic test. Since there are only two logic tests in this example,
with the index is 2, then the evaluations should be complete.

In the line with timestamp at 192 seconds, the WC FLAG posting is 3, which is the first lead condition.
Since EFLAG=0 is the pass condition, this first logic test passes and the logic test index increments
from 0 to 1. In the line with timestamp at 215 seconds, the WC FLAG posting is 4, which is the second
lead condition. Since EFLAG=0 is the pass condition, this second logic test passes and the logic test
index increments from 0 to 2. Since all logic tests have been evaluated, and all passed, the fourth
column on this final line reads [true,true], and the evaluation is complete.

15.4 Examining the Test Sequence Structure

The normal verbose output can be augmented with the --show seq or -ss flag. This will show the
structure of test criteria before the evaluation, and again after the evaluations. For example:

35

$ alogeval file.alog criteria.txt --verbose -ss

BEGIN ALogEvaluator LogicTestSequence =========

LogicTestSequence: Total Aspects:2

Enabled: true

Evaluated: false

Satisfied: false

Status: pending

++++++++++ aspect[0] +++++++++++++

Lead Conditions: (1) WC_FLAG = 3

Pass Conditions: (1) EFLAG = 0

Fail Conditions: (none)

Enabled(true), Evaluated(false), Satisfied(false), Status(pending)

++++++++++ aspect[1] +++++++++++++

Lead Conditions: (1) WC_FLAG = 4

Pass Conditions: (1) EFLAG = 0

Fail Conditions: (none)

Enabled(true), Evaluated(false), Satisfied(false), Status(pending)

END ALogEvaluator LogicTestSequence =========

BEGIN ALogEvaluator: Handling ALog File:

14.72909 EFLAG 0 [false,false] (0)

121.82700 WC_FLAG 1 [false,false] (0)

162.14515 WC_FLAG 2 [false,false] (0)

192.43813 WC_FLAG 3 [false,false] (1)

215.20145 WC_FLAG 4 [true,true] (2)

EVALUATION COMPLETE

END ALogEvaluator: Handling ALog File

BEGIN ALogEvaluator LogicTestSequence =========

LogicTestSequence: Total Aspects:2

Enabled: true

Evaluated: true

Satisfied: true

Status: pass

++++++++++ aspect[0] +++++++++++++

Lead Conditions: (1) WC_FLAG = 3

Pass Conditions: (1) EFLAG = 0

Fail Conditions: (none)

Enabled(true), Evaluated(true), Satisfied(true), Status(pass)

++++++++++ aspect[1] +++++++++++++

Lead Conditions: (1) WC_FLAG = 4

Pass Conditions: (1) EFLAG = 0

Fail Conditions: (none)

Enabled(true), Evaluated(true), Satisfied(true), Status(pass)

END ALogEvaluator LogicTestSequence =========

Result: pass=true

36

	Overview
	An Example .alog File
	The alogscan Tool
	Command Line Usage for the alogscan Tool
	Example Output from the alogscan Tool

	The alogclip Tool
	Command Line Usage for the alogclip Tool
	Example Output from the alogclip Tool

	The aloggrep Tool
	Using aloggrep to Produce a Reduced and/or Ordered Output
	Creating a New ALog File
	Filtering based on the Data Source (Publishing App)
	Wildcard Matching

	Using aloggrep to Extract Plottable Data
	Extracting Plottable Data from a Complex Posting

	Extracting a First or Final Posting

	The alogrm Tool
	Command Line Usage for the alogrm Tool
	Example Output from the alogrm Tool

	The aloghelm Tool
	The Life Events (–life) Option in the aloghelm Tool
	The Modes (–modes) Option in the aloghelm Tool
	The Behaviors Option in the aloghelm Tool
	Command Line Usage for the aloghelm Tool

	The alogiter Tool
	Command Line Usage for the alogiter Tool
	Example Output from the alogiter Tool

	The alogsplit Tool
	Naming and Cleaning the Auto-Generated Split Directories
	Command Line Usage for the alogsplit Tool
	Example Output from the alogsplit Tool

	The alogpare Tool
	Mark Variables Define Events of Interest
	The Pare List of Variables to be Pared
	The Hit List of Variables to be Removed Completely
	Command Line Usage for the alogpare Tool
	Planned additions to the alogpare Utility

	The alogcd Tool
	Producing a Time-Stamped file of Collisions and Near Misses
	The Terse Output Option
	Command Line Return Values
	Command Line Usage for the alogcd Tool
	Planned additions to the alogcd Utility

	The alogcat Tool
	The alogavg Tool
	Input Format for alogavg
	Output Format for alogavg

	The alogmhash Tool
	Output Components
	Command Line Usage for the alogmhash Tool

	The alogeval Tool
	Test Criteria Input File
	Test Criteria Logic Test Sequence
	Test Output and Return Values
	Examining the Test Sequence Structure

