
The uFldTagManager Application
Fall 2017

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering, CSAIL

MIT, Cambridge MA 02139

1 Overview 1

2 Configuration Parameters for uFldTagManager 2

3 Publications and Subscriptions of uFldTagManager 3
3.1 Variables Published by uFldTagManager . 3
3.2 Variables Subscribed for by uFldTagManager . 4

4 Configuration of uFldTagManager 4
4.1 Configuring the Tagging Range, Duration and Min Interval 4
4.2 Configuring the Tagging Visuals . 4
4.3 Configuring the Vehicle Team Names and Zones . 5
4.4 Configuring Tag and UnTag Postings . 6
4.5 Determining Which Vehicles are Humans and Which are Robots 7

5 Operation of uFldTagManager 7
5.1 Handling Node Reports . 7
5.2 Ensuring Node Reports are Sent from Vehicles to Shore . 7
5.3 Configuring Team Membership for Vehicles . 8
5.4 Handling Tag Requests . 8
5.5 Criteria for Granting a Tag Request . 9
5.6 The Results of a Tag Request (Posted to the MOOSDB) . 9
5.7 The Results of a Tag Request (Tag Manager Book Keeping) 10
5.8 Handling Tag Expiration . 10
5.9 Handling Tag and UnTag Postings . 10

6 Terminal and AppCast Output 11

7 A Simple Example 12

1 Overview

The uFldTagManager application is used for field management of inter-vehicle tags during head-to-
head competitions. It is a key component of the Aquaticus competition, but could be used in other
competitions as well. The application runs on the shoreside, accepts a tag request from a vehicle,
applies the tag criteria, and either grants or denies the tag.

1

Figure 1: Typical uFldTagManager Topology: The tag manager runs on the shoreside and handles requests from
one vehicle to tag another vehicle.

2 Configuration Parameters for uFldTagManager

The following parameters are defined for uFldTagManager. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated.

Listing 2.1: Configuration Parameters for uFldTagManager.

human platform: The vehicle type, as seen on incoming node reports, to be regarded as
human-controlled platform. The default is "mokai". Section 4.4.

human tag post: A MOOS variable-value pair to be posted whenever at tag is applied to a
human-controlled platform. Multiple pairs allowed. Section 4.4.

human untag post: A MOOS variable-value pair to be posted whenever at tag expires on a
human-controlled platform . Multiple pairs allowed. Section 4.4.

post color: The color of the tag visual upon initial posting, before a decision is made.
Default is white. Section 4.2.

robot tag post: A MOOS variable-value pair to be posted whenever at tag is applied to a
non human-controlled platform. Multiple pairs allowed. Section 4.4.

robot untag post: A MOOS variable-value pair to be posted whenever at tag expires on a non
human-controlled (robot) platform. Multiple pairs allowed. Section 4.4.

tag circle: If true, a small circle is posted by uFldTagManager to be rendered around
the tagged vehicle. The default is true. Section 4.2.

tag circle color: Specifies the color of the tag circle. The default is green. Section 4.2.

oob circle color: Specifies the color of the tag circle, when the vehicle has been deemed tagged
due to being out-of-bounds. The default is yellow. Section 4.2.

tag circle range: Specifies the range, in meters, of the circle to be rendered around a tagged
vehicle. The default is 5 meters. Section 4.2.

tag duration: The amount of time, in seconds, before a successfully applied tag expires.
The default is 30 seconds. Section4.1.

2

tag min interval: The time required after one tag, before another tag is allowed. The default
is 10 seconds. Section 4.1.

tag range: The range (meters) within which a tag request is granted. Section 4.1.

team one: The name of team one. Section 4.3.

team two: The name of team two. Section 4.4.

zone one: A convex polygon representing the home region for team one. Section 4.3.

zone one color: The color used for rendering zone one. The default is white. Use ”empty”
to specify no fill color. Section 4.3.

zone two: A convex polygon representing the home region for team two. Section 4.3.

zone two color: The color used for rendering zone two. The default is green. Use ”empty”
to specify no fill color. Section 4.3.

3 Publications and Subscriptions of uFldTagManager

The interface for uFldTagManager, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldTagManager --interface or -i

3.1 Variables Published by uFldTagManager

The following variables are published by uFldTagManager:

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 6.

• TAG RESULT VNAME: A brief result description of the most recent tag request. Section 5.9.

• TAG RESULT VERBOSE: A more detailed result of the most recent tag request. Section 5.4.

• TAG RELEASE VERBOSE: The details of a release event, the expiration of a previously applied tag.
Section 5.8.

• VIEW RANGE PULSE: A visual marker posted upon receipt of a particular tag request. Section
4.2.

• VIEW CIRCLE: A visual circle posted to encircle a vehicle that is in a tagged state. By default
green when tagged by an enemy, and yellow when tagged due to being out of bounds. Section
4.2.

• VIEW POLYGON: A visual polygon, typically to represent the home zones of each team. Section
4.3.

Variables configured in the human tag post, robot tag post, human untag post, and robot untag post

parameters will also be published. These MOOS variables are mission specific and configured by
the user.

3

3.2 Variables Subscribed for by uFldTagManager

The uFldTagManager application will subscribe for the following four MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 6.

• TAG REQUEST: A request from a particular vehicle, to apply a tag immediately. Section 5.4.

• NODE REPORT: A vehicle position report expected regularly from each vehicle in the field. Section
5.1.

4 Configuration of uFldTagManager

4.1 Configuring the Tagging Range, Duration and Min Interval

The tagging range is the distance, in meters, within which tag requests are granted. The default is
25 meters. The tag duration is the number of seconds that a tagged vehicle remains tagged before
returning to an untagged state. The default is 30 seconds. The tag min interval is the amount
of time required before a vehicle can apply a tag after successfully applying a previous tag. The
default value is 10 seconds.

tag_range = 25 // The default is 25 meters.

tag_duration = 30 // The default is 30 seconds.

tag_min_interval = 10 // The default is 10 seconds.

4.2 Configuring the Tagging Visuals

When a tag request is received from one of the vehicles, an initial visual marker is posted to indicate
the tag is under consideration. The post is to the variable VIEW RANGE PULSE. This marker is in form
of an expanding circle. The color of this circle can be set with the post color parameter. The
default is white.

post_color = white // The default color is white

If a tag is indeed applied to a target vehicle, this may be indicated with the posting of a small
circle centered on the vehicle. The posting is to the variable VIEW CIRCLE. This feature is enabled
with the tag circle parameter. The default is true. The color of this circle can be configured with
the tag circle color parameter. The default is green. The color of the circle may be different if
the vehicle is tagged due to being out of bounds. The default for this color is yellow, but may be
configured with the oob circle color paramaeter. The range of this circle can be configured with
the tag circle range parameter. The default is 10 meters. For example:

tag_circle = true // The default is true

tag_circle_color = white // The default is green

oob_circle_color = red // The default is yellow

tag_circle_range = 5 // The default is 10 meters.

4

4.3 Configuring the Vehicle Team Names and Zones

The uFldTagManager assumes the existence of two teams. These two teams must be declared and be
different. This is done with the team one and team two configuration parameters. For example:

team_one = red

team_one = blue

Each vehicle known to uFldTagManager must be on one of these teams, or else a run warning will be
posted. Assigning a vehicle to a team is done by configuring the group parameter in pNodeReporter

for each vehicle. For example:

ProcessConfig = pNodeReporter

{

...

group = blue

...

}

The uFldTagManager also assumes the existence of two team zones. The zones are convex polygons
where the vertices are provided in the zone one and zone two configuration parameters. For example:

zone_one = pts={0,-20:120,-20:120,-100:0,-100}

zone_two = pts={0,-100:120,-100:120,-180:0,-180}

The above two lines result in two posts to the variable VIEW POLYLGON, which when handled by
pMarineViewer, results in the rendering of the two zones shown below in Figure 2.

Figure 2: Tag Manager Zones: Example team zones from the alpha mission.

5

The user can also configure the internal colors of the two zones, or shut off the interal color completely,
with the zone one color and zone two color parameters. For example:

zone_one_color = red // The default is white

zone_two_color = blue // The default is green

The internal color can be shut off completely with the special color name of "empty".

4.4 Configuring Tag and UnTag Postings

The tag manager may be configured to make user-specified postings to the MOOSDB upon a vehicle
tag and upon a vehicle tag expiration. This is done with the robot tag post and robot untag post

parameters respectively. For either type of post, single, multiple or no postings at all are perfectly
legal configurations. Below is taken from the example mission:

robot_tag_post = MOOS_MANUAL_OVERRIDE_$UP_TARGET=true

robot_tag_post = SAY_MOOS=file=sounds/tennis_grunt.wav

robot_untag_post = MOOS_MANUAL_OVERRIDE_$UP_TARGET=false

robot_untag_post = SAY_MOOS=file=sounds/shipbell.wav

In the above case, every time a vehicle is tagged a message is posted to halt the tagged vehicle, and
generate an audio cue. Whe the tag expires, the vehicle is allowed to resume its mission, and a
different audio cue is posted.

If the tag is being applied to a human-controlled vehicle, the tag manager can be configure to post
a different set of postings. This is done by swapping the "robot" for "human" in the configuration
parameters. For example:

human_tag_post = MESSAGE_TO_DRIVER="tagged"

human_untag_post = MESSAGE_TO_DRIVER="proceed"

To accomplish ”vehicle specific” posts, certain macros are supported in specifying both the MOOS
variable and the string value being posted. These macros are:

• $TARGET - the name of the vehicle just tagged, or whose tag has just expired.

• $UP TARGET - the name of the vehicle just tagged, or whose tag has just expired. The vehicle
name is converted to all upper case.

• $SOURCE - the name of the vehicle who just applied a tag.

• $UP SOURCE - the name of the vehicle who just applied a tag. The vehicle name is converted to
all upper case.

• $TIME - a UTC time stamp of the event.

The $SOURCE and $UP SOURCE macros are only elevant only in the * tag post cases since there is no
concept of a source when a tag expires. There is only one relevant vehicle in a tag expiration event,
the vehicle originally targeted for a tag.

6

4.5 Determining Which Vehicles are Humans and Which are Robots

The tag managers gets vehicle information solely from node reports, typically generated by
pNodeReporter. For example, the below node report indicates the report originated from a MOKAI
(human-controlled) platform:

NODE_REPORT = "NAME=archie,X=0,Y=0,SPD=0,HDG=180,DEP=0,LAT=43.8253,LON=-70.3304,

TYPE=mokai,GROUP=red,MODE=PARK,ALLSTOP=clear,INDEX=405,

YAW=-1.5707963,TIME=1450007892.9,LENGTH=4

The vehicle type information is declared in the pNodeReporter configuration block. For example:

ProcessConfig pNodeReporter

{

...

type = mokai

...

}

From the tag manager’s perspective, it does not matter whether a source vehicle (the one applying
the tag) is human or not. But it typically does matter whether the target vehicle (the one being
tagged) is human or robot. This is because we may want to send a voice message to a human and a
different kind of message to a robot to cue an appropriate behavior. The differences are present
both in simulation and in the field. This is why there are separate configuration parameters for
making tag posts, e.g., human tag post and robot tag post.

By default the tag manager regards vehicles of type "mokai" to be human-controlled platforms.
This can be overridden by setting the human platform configuration parameter to something else,
e.g., human platform=launch boat.

5 Operation of uFldTagManager

5.1 Handling Node Reports

The tag manager needs to know where all the vehicles are, for both teams, in order to reason about
and apply tags. This information comes via NODE REPORT messages, originating on each vehicle, and
shared via pShare to the shoreside where uFldTagManager is running. See Figure 1.

5.2 Ensuring Node Reports are Sent from Vehicles to Shore

The pNodeReporter application publishes its node report typically a few times per second in the
MOOS variable NODE REPORT LOCAL. When this is shared to the shoreside, it changes its variable
name to simply NODE REPORT. Chances are, in any mission folder taken as a starting point or
example, vehicles are already configured to share node reports to the shoreside (otherwise no vehicles
would be visible in pMarineViewer. This sharing is configured in the vehicle configuration file, in
uFldNodeBroker configuration block, with the line:

7

ProcessConfig uFldNodeBroker

{

...

bridge = src=NODE_REPORT_LOCAL, alias=NODE_REPORT

...

}

5.3 Configuring Team Membership for Vehicles

The tag manager also needs to know which team each vehicle belongs to. A vehicle’s team is
declared in the vehicle configuration file, in the pNodeReporter application, with a configuration line
something like:

ProcessConfig pNodeReporter

{

...

group = red

...

}

This group name, must match one of the team names declared in either the team one or team two

configuration parameter of uFldTagManager (Section 4.3). If a group/team name is not included in
the node report, uFldTagManager will post the run warning:

Node report for archie with no group

If a node report is received for a vehicle, where the vehicle group (team) is unknown to uFldTagManager,
the following run warning will be posted:

Node report for betty w/ unknown team: purple

5.4 Handling Tag Requests

A tag request may originate from any vehicle known to the tag manager. The tag manager knows
about a vehicle (its name, position and team membership) through incoming node reports. Based
on a few criteria, described below, the tag manager may or may not grant the tag request. The
source vehicle, requesting the tag, does not name a target vehicle. Thus the tag request is quite
simple, of the form:

TAG_REQUEST = vname=archie

The request simply identifies the requesting vehicle. A vehicle is prevented from making a request
on behalf of another vehicle, by checking the MOOS community name associated with the incoming
tag request. The community name and vname argument must match.

8

5.5 Criteria for Granting a Tag Request

For a source vehicle requesting a tag, to have its tag applied to a target vehicle, the following criteria
must be met:

• team membership: The source vehicle and target vehicle must be on different teams.

• zone: The source vehicle must be within its own zone. The target vehicle must be outside his
own zone (note - check that the latter is implemented this way).

• frequency: The source vehicle must wait at a minimum number of seconds, configured in the
tag min interval configuration parameter, after a previous successful tag before a subsequent
tag may be granted. Unsuccessful tag attempts have no effect on the clock.

• target state: The target vehicle must not be already tagged.

• range: The source to target range must be within the maximum range specified in the tag range

configuration parameter.

• proximity: If multiple qualifying targets are within range of the source vehicle, the target
closest to the source is the one tagged.

5.6 The Results of a Tag Request (Posted to the MOOSDB)

When a tag request meets all the criteria described above, a tag is applied. The most significant
consequences are user-define, in the form of MOOS postings configured in the configuration parameter
tag post. This is described further in Section 5.9.

Each time a tag is requested, regardless of the result or reason, a result is posted in the MOOS
variable TAG RESULT. It contains an event number, the source vehicle, the source vehicle’s team, and
the actual result. Below are a few examples:

TAG_RESULT_HENRY = "event=23,src=henry,team=red,rejected=freq"

TAG_RESULT_HENRY = "event=23,src=henry,team=red,rejected=zone"

TAG_RESULT_HENRY = "event=23,src=henry,team=red,tagged=none"

TAG_RESULT_HERFY = "event=23,src=henry,team=red,tagged=gilda"

Note the four possible results. If a vehicle tag is successful, as in the last posting, the tagged vehicle
is named (tagged=gilda). A tag is rejected if the tag manager doesn’t even consider the positions or
state of nearby vehicles. The rejection may be due to either the vehicle being out of its home zone
(rejected=zone), or because it has applied a previous tag too recently (rejected=freq). If the tag
request is not rejected but there simply are no taggable vehicles within range, then the reported
result is just tagged=none.

Note that the TAG RESULT variable name is appended with the name of the source vehicle. The result
information is to be sent to the source vehicle only. In a typical mission configuration, variables on
the shoreside fitting the pattern of FOOBAR VNAME, are configured to be shared out to the vehicle with
name VNAME. The variable posted in vehicle’s MOOSDB will have the name truncated, to FOOBAR in
this case, with vehicle name suffix truncated.

The tag manager also publishes, for each received TAG REQUEST, a verbose posting for post-mission
analysis of logic applied during any tag request event

9

5.7 The Results of a Tag Request (Tag Manager Book Keeping)

After a successfully applied tag, a few things happen internally to the tag manager worth noting.
First, the tag time is associated with the source vehicle. In a subsequent tag request, the time of
the previous tag is used for determining if the minimum time interval has been respected. This
minimum interval is configured in the tag min interval parameter.

Second, the tag time is noted associate with the target name. A tag will expire after a certain
period, determined by the tag duration parameter. On each iteration of the tag manager, all
vehicles currently in a tagged state are checked to see if their tag has expired. Third, the state of
tagged vehicle is noted so that subsequent tag requests by the other team are not applied to an
already-tagged vehicle.

5.8 Handling Tag Expiration

Once a vehicle has been tagged, the tag will expire after a set amount of time. This duration is
configured in the tag duration parameter, and by default is 30 seconds. A release event will be
accompanied by a posting containing the released/untagged vehicle name and time at which it was
released:

TAG_RELEASE_VERBOSE = "vname=henry,time=234.1"

5.9 Handling Tag and UnTag Postings

The tag manager may be configured to post arbitrary MOOS variable-value pairs whenever a tag
has been applied or released. This is where the effect of a tag is determined, e.g., forcing a vehicle
to stop or return, or slow down. Likewise the tag release may be configured to allow a vehicle to
resume moving or speed up and so on. Posts made up on a tag are configured with the tag post

parameter. For example in the example mission:

tag_post = MOOS_MANUAL_OVERRIDE_$UP_TARGET = true

In the above example, a tag event where ”abe” is tagged, will publish MOOS MANUAL OVERRIDE ABE=true.
In this mission, this will result in the halting of the tagged vehicle. The tag post parameter allows
for the expansion of the below macros:

• $TARGET: Expands to the name of the vehicle being tagged.

• $UP TARGET: Expands to the upper case name of the vehicle being tagged

• $SOURCE: Expands to the name of the vehicle applying the tag.

• $UP SOURCE: Expands to the upper case name of the vehicle applying the tag.

• $TIME: Expands to the local time of the event, i.e., the number of seconds since the start of
the MOOSDB to which the tag manager is connected.

• $UTC TIME: Expands to the UTC time of the event

The target and source macros will be expanded if used in both the variable name and variable value.
The time macros are only expanded if used in the variable value.

10

When a tag expires, resulting in a release or untag event, postings may also be configured with the
untag post configuration parameter. The same macro scheme holds as in the case configuring tag
posts, except the source macros are not supported since there is no notion of a source vehicle in an
untag event.

6 Terminal and AppCast Output

The uFldTagManager application produces some useful information to the terminal on every iteration
of the application. An example is shown in Listing 2 below. This application is also appcast enabled,
meaning its reports are published to the MOOSDB and viewable from any uMAC application or
pMarineViewer. The counter on the end of line 2 is incremented on each iteration of uFldTagManager,
and serves a bit as a heartbeat indicator. The "0/0" also on line 2 indicates there are no configuration
or run warnings detected.

The output in the below example comes from the example described in Section 7.

Listing 6.2: Example terminal or appcast output for uFldTagManager.

1 ===

2 uFldTagManager alpha 0/0(834)

3 ===

4 Global Settings

5 ===========================

6 Tag Range: 50

7 Tag Interval: 2

8 Team [blue]: betty (1)

9 Team [red]: archie (1)

10

11 Tag Application Stats:

12 ===

13 ReQ Rejec Rejec Applied Time

14 Name Tags Zone Freq Accepted Tags Next

15 ------ ---- ----- ----- -------- ------- ----

16 archie 2 1 0 1 1 n/a

17 betty 0 0 0 0 0 n/a

18

19 Tag Receiver Stats:

20 ===

21 Times Currently Time

22 Name Tagged Tagged Remain Taggable

23 ------ ------ --------- ------ --------

24 betty 1 false 0.00 true

25 ------ ------ --------- ------ --------

26 archie 0 false 0.00 true

27

28 ===

29 Most Recent Events (4):

30 ===

31 [115.59]: event=2,src=archie,team=redrejected=zone

32 [115.59]: Tag requested by archie[2]

33 [54.27]: event=1,src=archie,team=redtagged=betty

34 [54.27]: Tag requested by archie[1]

11

The first few lines (4-11) show the configuration settings for uFldTagManager. The status of
uFldTagManager is shown in Lines 13-26.

7 A Simple Example

The s1 alpha utmgr example mission distributed with moos-ivp-aquaticus tree provides a simple
working example. More explanation to come...

12

	Overview
	Configuration Parameters for uFldTagManager
	Publications and Subscriptions of uFldTagManager
	Variables Published by uFldTagManager
	Variables Subscribed for by uFldTagManager

	Configuration of uFldTagManager
	Configuring the Tagging Range, Duration and Min Interval
	Configuring the Tagging Visuals
	Configuring the Vehicle Team Names and Zones
	Configuring Tag and UnTag Postings
	Determining Which Vehicles are Humans and Which are Robots

	Operation of uFldTagManager
	Handling Node Reports
	Ensuring Node Reports are Sent from Vehicles to Shore
	Configuring Team Membership for Vehicles
	Handling Tag Requests
	Criteria for Granting a Tag Request
	The Results of a Tag Request (Posted to the MOOSDB)
	The Results of a Tag Request (Tag Manager Book Keeping)
	Handling Tag Expiration
	Handling Tag and UnTag Postings

	Terminal and AppCast Output
	A Simple Example

