
The uFldFlagManager Application
Fall 2017

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering, CSAIL

MIT, Cambridge MA 02139

1 Overview 1

2 Configuration Parameters for uFldFlagManager 2

3 Publications and Subscriptions of uFldFlagManager 4
3.1 Variables Published by uFldFlagManager . 4
3.2 Variables Subscribed for by uFldFlagManager . 4

4 Configuration of uFldFlagManager 4
4.1 Basic Flag Configuration . 4
4.2 Configuring the Grabbed and UnGrabbed Colors . 5
4.3 Optional Flag Configuration Parameters . 5
4.4 Changing the Default Values of Optional Parameters . 6

5 Operation of uFldFlagManager 6
5.1 Handling Node Reports . 6
5.2 Handling Flag Grab Requests . 6
5.3 Handling Flag Resets . 7
5.4 Posting Flag Grab Reports . 7
5.5 Posting Flag Grab Summary Reports . 7
5.6 Posting Flag Markers . 8
5.7 User-Configurable Event Postings . 8

5.7.1 Macros Available in MOOS Variable Names . 8
5.7.2 Macros Available in MOOS Variable Values . 9

6 Terminal and AppCast Output 9

7 A Simple Example 10

1 Overview

The uFldFlagManager is a shoreside manager used for marine autonomy competitions where flags
are involved. Flags are declared at the outset, each with a position and a unique label. Vehicles
have the ability to grab a flag by posting a request. The flag may or not be granted, but if granted,
then the grabbing vehicle then owns the flag and it cannot be grabbed by other vehicles.

1

Figure 1: Typical uFldFlagManager Topology: The flag manager runs on the shoreside and handles requests
from vehicles to grab flags at pre-defined locations provided to the flag manager through configuration upon startup.

2 Configuration Parameters for uFldFlagManager

The following parameters are defined for uFldFlagManager. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated.

Listing 2.1: Configuration Parameters for uFldFlagManager.

default flag range: The default range of the flag if no range is specified. Default is 10 meters.
Section 4.1.

near flag range buffer: The distance, beyond the flag range, within which a near post event will
occur. Default is 2 meters. This compensates for latency between the event
and user receipt of the event notice.

default flag type: The default type of the rendered marker if no type is speciFied. Default is
circle. Section 4.1.

default flag width: The default width of the rendered marker if no width is specified. Default
is 5 meters. Section 4.1.

flag: A declaration of a flag, with ID and location information. Section 4.1.

ungrabbed color: The color of the posted marker when not grabbed by any vehicle. Default is
"red". Section 4.2.

grabbed color: The color of the posted marker when grabbed by some vehicle. Default is
"white". Section 4.2.

flag follows vehicle: If true, when a vehicle has a flag, the flag is rendered to be just behind the
vehicle. Default is "true". Section 4.2.

poly edge size: Sets the edge width of the polygon rendered around each flag. Default is 1.

poly edge size: Sets the edge width of the polygon rendered around each flag. Default is 1.

poly vertex size: Sets the vertex size of the polygon rendered around each flag. Default is 1.

poly edge color: Sets the edge color of the polygon rendered around each flag. Default is
grey50.

2

poly vertex color: Sets the vertex color of the polygon rendered around each flag. Default is
blue.

poly fill color: Sets the fill color of the polygon rendered around each flag. Default is
grey90.

grab post: A MOOS variable and value posting to be made when a vehicle has success-
fully grabbed a flag. Section 5.7.

goal post: A MOOS variable and value posting to be made when a vehicle has success-
fully scored, returned home with a flag. Section 5.7.

home post: A MOOS variable and value posting to be made when a vehicle has returned
home without a flag. Section 5.7.

lose post: A MOOS variable and value posting to be made when a flag is reset prior
to successfully returning home. Section 5.7.

near post: A MOOS variable and value posting to be made when a vehicle comes within
grabbing range of an enemy flag. Section 5.7.

away post: A MOOS variable and value posting to be made when a vehicle leaves
grabbing range of an enemy flag. Section 5.7.

deny post: A MOOS variable and value posting to be made when a vehicle is unsuccessful
in a flag grab attempt. Section 5.7.

An Example MOOS Configuration Block

An example MOOS configuration block can be obtained by entering the following from the command-
line:

$ uFldFlagManager --example or -e

Listing 2.2: Example configuration of the uFldFlagManager application.

1 ===

2 uFldFlagManager Example MOOS Configuration

3 ===

4

5 ProcessConfig = uFldFlagManager

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 default_flag_width = 3 // Default (in meters)

11 default_flag_type = circle // Default is circle

12 default_flag_range = 10 // Default (in meters)

13

14 flag = x=60, y=-30, label=one, range=15

15 flag = x=60, y=-170, label=two

16

17 ungrabbed_color = red // Default is red

18 grabbed_color = white // Default is white

19

20 grab_post = var=SAY_MOOS, sval={say={$VNAME has $FLAG flag}}

3

21 lose_post = var=SAY_MOOS, sval={say={$FLAG flag is reset}}

22 near_post = var=SAY_MOOS, sval={file=sounds/shipbell.wav}

23 away_post = var=SAY_MOOS, sval={file=sounds/buzzer.wav}

24 deny_post = var=SAY_MOOS, sval={file=sounds/sf-no-soup.wav}

25 }

3 Publications and Subscriptions of uFldFlagManager

The interface for uFldFlagManager, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldFlagManager --interface or -i

3.1 Variables Published by uFldFlagManager

The only output of uFldFlagManager is:

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 6.

• FLAG GRAB REPORT: Shows the result of an incoming flag grab request. Section 5.4.

• FLAG SUMMARY: A summary of all known flags, positions and whether the flag has been grabbed
and by whom. Updated any time a single flag has had its state altered. Section 5.5.

• VIEW MARKER: A geometric object for rendering a flag at its configured location and current
grab state. Section 5.6.

3.2 Variables Subscribed for by uFldFlagManager

The uFldFlagManager application will subscribe for the following four MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 6.

• FLAG GRAB REQUEST: A request from a vehicle to make a grab for any and all flags within grab
range. Section 5.2.

• FLAG RESET: A request to reset some or all flags back to the ungrabbed state. Section 5.3.

• NODE REPORT: A report, usually in a steady stream, from a vehicle indicating its current position
and other vehicle states. Section 5.1.

4 Configuration of uFldFlagManager

4.1 Basic Flag Configuration

Flags are configured minimally with a location, and a unique label. For example:

flag = x=60, y=-30, label=one

flag = x=60, y=-170, label=two

4

If a flag configuration is provided with a non-unique label, the flag will not be loaded, and a
configuration warning will be posted in the terminal or appcasting output:

Flag with duplicate label: one

If a flag configuration is provided with no label, the flag will not be loaded, and a configuration
warning will be posted in the terminal or appcasting output:

Flag with missing label: x=1, y=2

4.2 Configuring the Grabbed and UnGrabbed Colors

Each flag is rendered by a marker configured with the flag parameter. For example:

flag = x=60, y=-30, label=one, color=blue

flag = x=60, y=-170, label=two

If the color is not specified, it will default to the value given by the parametr ungrabbed color.

When the flag has been grabbed, one of two things will happen. By default, the flag will follow the
vehicle, keeping its original color, unless the parameter flag follows vehicle is set to false. The
default is true. If the flag does not follow the vehicle, a grabbed flag will change color to the value
specified in the grabbed color parameter. This value by default is white.

4.3 Optional Flag Configuration Parameters

Flags may be additionally configured with the following optional parameters:

• range: The range parameter indicates the maximum distance between the flag and a vehicle
beyond which a flag grab request will be rejected. The default is 10 meters.

• type: The type parameter refers to the shape of the rendered flag. Legal values are circle,
triangle, square, efield, gateway, diamond. See Figure 2. The default is ”circle”.

• width: The width parameter determines the width of the rendered flag, in meters. It has no
bearing on flag capturing otherwise. In terms of the range between a vehicle and flag the flag
is treated as point-object. The default is 5 meters.

• color: The color parameter affects the color of the rendered flag. When a flag type has two
colors (marker types efield and gateway, it only affects one of the colors. The default is red.
This refers to the ”ungrabbed” color. The ”grabbed” color cannot be modified. See Section
5.2 for more on grabbing and colors.

Here are some examples:

flag = x=60, y=-30, label=one, range=20, type=triangle, width=11

flag = x=60, y=-170, label=two, color=gree, width=11

Here are the supported marker shapes:

5

Figure 2: Supported Marker Types: Any of these types may be used to render the flags in the flag manager.

4.4 Changing the Default Values of Optional Parameters

It may be convenient, in cases of many flags to be configured, to simply change the default values
globally for the optional parameters. The following uFldFlagManager parameters allow this:

default_flag_width = 4 // Default is 5

default_flag_range = 12 // Default is 10

default_flag_color = beige // Default is white

default_flag_type = diamond // Default is circle

The flag color refers to the ”ungrabbed” color of the flag. The ”grabbed” cannot be overridden and
is determined by the grabbed color parameter.

5 Operation of uFldFlagManager

5.1 Handling Node Reports

The flag manager needs to know both the flag positions and the vehicle positions. The former
is provided via the configuration file, the latter is derived from node reports, in the NODE REPORT

MOOS variable. An example node report:

NODE_REPORT = NAME=alpha,X=16.79,Y=-16.55,SPD=1.98,HDG=120.75,DEP=0,LAT=43.82515342,

LON=-70.33018799,TYPE=kayak,MODE=MODE@ACTIVE:SURVEYING,ALLSTOP=clear,

INDEX=102,YAW=-0.5367054,TIME=7250613964.12,LENGTH=3

Typically this variable is generated locally on the vehicle as NODE REPORT LOCAL by the pNodeReporter

application and shared to the shoreside via the pShare application. In the shoreside community, the
variable is renamed to NODE REPORT. In some simple example missions, having only a single MOOS
community serving both the vehicle and the viewer, you may only see NODE REPORT LOCAL.

5.2 Handling Flag Grab Requests

A flag grab request is handled through the receipt of the MOOS variable FLAG GRAB REQUEST. This
variable is typically generated by one of the field nodes, e.g., robots, and sent by pShare to the
shoreside MOOS community in which uFldFlagManager is running. The format of this variable
simply contains the name of the grabbing vehicle:

FLAG_GRAB_REQUEST = vname=henry

6

Upon this request, a couple checks are performed. First, the vehicle name is checked against the
community associated with the incoming message. This is to ensure that one vehicle cannot make a
flag grab request on behalf of another vehicle. Typically the vehicle (MOOS) community and the
vehicle name are configured to be the same.

The second check performed is the range (linear distance) between the requesting vehicle and
the flag location. Each flag has a range associated with it, provided in the configuration block
(Section 4.3). If the vehicle is not within this range, the flag grab is rejected. If multiple flags are
within range of the vehicle when the request is made, all flags are considered to be grabbed by the
vehicle. Note: this may change, perhaps with a configuration option to only grab the closest.

When a flag is grabbed, the rendered color will change to the color specified in the grabbed color

parameter, which has the default value of white.

5.3 Handling Flag Resets

Once a flag has been grabbed by a vehicle, it is possible to reset the flag, i.e., return it to the state
where is is not associated/grabbed by any vehicle. This is done through the FLAG RESET variable.
When the flag manager receives this variable, flags may be set in one of three ways. First, a flag
may be reset by naming a particular flag label, resulting in only that flag being reset. For example:

FLAG_RESET = label=one

Second, flag(s) may be reset by naming a particular vehicle and releasing all flags held by that
vehicle:

FLAG_RESET = vname=henry

Lastly, the complete list of flags can be reset by posting FLAG RESET=all.

5.4 Posting Flag Grab Reports

Each time a flag grab request has been received (FLAG GRAB REQUEST), a report is compiled and
posted to the MOOS variable FLAG GRAB REPORT. Typically this variable is shared back out to at least
the requesting vehicle, to inform the vehicle of the result of its request. The variable has the form:

FLAG_GRAB_REPORT = grabbed=one,grabbed=seven

FLAG_GRAB_REPORT = nothing_grabbed

5.5 Posting Flag Grab Summary Reports

A flag summary is posted upon application start-up and each time the status of a flag is changed.
The summary is posted to the FLAG SUMMARY variable. For example:

FLAG_SUMMARY = x=2,y=-4,width=5,range=10,type=circle,label=three #

x=4,y=27,width=5,range=10,type=circle,owner=alpha,label=two #

x=7,y=23,width=8,range=10,type=square,owner=alpha,label=one

If a flag does not indicate an owner, then the flag is currently ”ungrabbed”.

7

5.6 Posting Flag Markers

The flag manager publishes to the MOOS variable VIEW MARKER to indicate the location and status of
flags it is managing. Markers are object types known to the pMarineViewer app and their rendering
can be turned on and off and resized within the viewer. Each marker is published once upon startup,
and re-published whenever it changes state between ungrabbed and grabbed. An example posting
will look something like:

VIEW_MARKER = x=147,y=-43,width=5,range=10.00,primary_color=red,

secondary_color=black,type=circle,label=five"

5.7 User-Configurable Event Postings

The flag manager may be configured to make one or more MOOS posting tied to one of several
events:

• When a flag has been grabbed (with the grab post parameter)

• When a flag has been reset, i.e., a vehicle loses control of the enemy flag, (with the lose post

parameter)

• When a vehicle comes comes sufficiently near, i.e., within grabbing range of, an enemy flag to
enable grabbing (with the near post parameter)

• When a vehicle leaves, i.e., goes away from, the grabbing range of an enemy flag (with the
away post parameter)

• When a flag grab request has been denied (with the deny post parameter)

• When a goal has been scored, i.e., a flag has successfully be returned to home base (with the
goal post parameter)

Each of these postings has a set of macros available in either the MOOS variable or the value being
posted to the MOOS variable.

5.7.1 Macros Available in MOOS Variable Names

The following macros are available, as part of the MOOS variable name used in an event posting:

• $VNAME: the name of the vehicle involved in the event.

• $UP VNAME: the upper case name of the vehicle involved in the event.

• $FLAG: the name of the flag involved in the event.

• $VTEAM: the name of the team involved in the event.

• $UP VTEAM: the upper case name of the team involved in the event.

The following are valid examples:

grab_post = var=FLAG_GRAB_STATE_$UP_VNAME, sval={grabbed}

deny_post = var=FLAG_DENY_INDEX_$UP_VNAME, dval=22

away_post = var=LEAVING_$FLAG, sval={true}

8

5.7.2 Macros Available in MOOS Variable Values

The following additional macros are available, as part of the MOOS variable message in an event
posting:

• $REASON: the reason, if there exists one, involved in the event.

• $TIME: the current time (as string value) when the event occurred.

The following are valid examples:

grab_post = var=SAY_MOOS, sval={say={$VNAME has $FLAG flag}}

lose_post = var=SAY_MOOS, sval={say={$FLAG flag is reset}}

near_post = var=SAY_MOOS, sval={file=sounds/shipbell.wav}

away_post = var=SAY_MOOS, sval={file=sounds/buzzer.wav}

deny_post = var=SAY_MOOS, sval={file=sounds/sf-no-soup.wav}

6 Terminal and AppCast Output

The uFldFlagManager application produces some useful information to the terminal on every iteration
of the application. An example is shown in Listing 3 below. This application is also appcast enabled,
meaning its reports are published to the MOOSDB and viewable from any uMAC application or
pMarineViewer. The counter on the end of line 2 is incremented on each iteration of uFldFlagManager,
and serves a bit as a heartbeat indicator. The "0/0" also on line 2 indicates there are no configuration
or run warnings detected.

The output in the below example comes from the example described in Section 7.

Listing 6.3: Example terminal or appcast output for uFldFlagManager.

1 ===

2 uFldFlagManager alpha 0/0(447)

3 ===

4 Configuration Summary:

5 ======================================

6 default_flag_range: 10

7 default_flag_width: 5

8 default_flag_type: circle

9

10 Node Report Summary

11 ======================================

12 Total Received: 451

13 ALPHA: 451 (0.0)

14

15 Vehicle Summary

16 ======================================

17 VName Grabs Flags InFlagZone

18 ----- ----- ----- ----------

19 ALPHA 2 2 false

20

21 Flag Summary

22 ======================================

23 Flag Range Owner Spec

9

24 ----- ----- ----- --

25 five 10 x=147,y=-43,width=5,range=10,type=circle,label=five

26 four 40 x=183,y=-93,width=5,range=40,type=circle,label=four

27 three 10 x=152,y=-164,width=5,range=10,type=circle,label=three

28 two 10 alpha x=64,y=-157,width=5,range=10,type=circle,owner=alpha,label=two

29 one 10 alpha x=57,y=-43,width=10,range=10,type=square,owner=alpha,label=one

The first few lines (6-8) show the configuration settings for uFldFlagManager. The status of
uFldFlagManager is shown in Lines 10-29. The first status block, lines 10-13, simply confirm
the number of node reports received in total and from each vehicle. The second status block, lines
15-19, indicate the number of flag grab requests received from each vehicle, and the total number
flags successfully granted to to each vehicle. The latter number represents the total number of
granted flags ever. So if flags are reset, it’s possible that this number could be greater than the total
number of flags in the flag manager. The last column in this block indicates whether the vehicle
presently is within striking distance of an enemy flag. The last status block, lines 21-29, summarizes
both the flag configuration and the status of each flag, under the owner column.

7 A Simple Example

The s1 alpha ufmgr example mission distributed with moos-ivp-pavlab provides a simple working
example. More explanation to come...

10

	Overview
	Configuration Parameters for uFldFlagManager
	Publications and Subscriptions of uFldFlagManager
	Variables Published by uFldFlagManager
	Variables Subscribed for by uFldFlagManager

	Configuration of uFldFlagManager
	Basic Flag Configuration
	Configuring the Grabbed and UnGrabbed Colors
	Optional Flag Configuration Parameters
	Changing the Default Values of Optional Parameters

	Operation of uFldFlagManager
	Handling Node Reports
	Handling Flag Grab Requests
	Handling Flag Resets
	Posting Flag Grab Reports
	Posting Flag Grab Summary Reports
	Posting Flag Markers
	User-Configurable Event Postings
	Macros Available in MOOS Variable Names
	Macros Available in MOOS Variable Values

	Terminal and AppCast Output
	A Simple Example

