Lab 3 - Introduction to MOOS

2.680 Unmanned Marine Vehicle Autonomy, Sensing and Communications

February 15th, 2024

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering
MIT, Cambridge MA 02139

1 Overview and Objectives
1.1 Preliminaries o L e e e e e e
1.2 MOOS vs. MOOS-IVP o e e e
1.3 More MOOS / MOOS-IVP ReSoUrces v v v vttt ettt e e e e
1.4 The MOOS Architecture o . o 0 e e e
1.5 Launching the MOOSDB e
1.6 Scoping the MOOSDB e
1.7 Poking the MOOSDB e e e e
1.8 Launching a Mission with pAntler L
1.9 Scripted Pokes to the MOOSDB o e

2 A Simple Example with pXRelay
2.1 Basic pXRelay Usage e e e e e
2.2 A Simple Example with pXRelay o L o e

3 First Experiments in Modifying MOOS App Code
3.1 Download a Template Tree for Extending MOOS
3.2 Building Your Tree L e e e e e
3.3 Exercises in Modifying the pXRelayTest Code

1 Overview and Objectives

This lab will introduce MOOS to new users. It assumes nothing regarding MOOS background.
The goals of this lab are to (a) understand the publish-subscribe architecture, (b) get comfortable
launching and interacting with the MOOSDB, (c) understand how to generate scripted interactions
with the MOOSDB, (d) understand how the logger operates and basic tools for examining log files.

e MOOS Preliminaries: MOOS vs. MOOS-IvP, the MOOS Architecture
e Launching, Scoping, and Poking the MOOSDB

Launching a Mission with pAntler

Scripted Pokes the to the MOOSDB

A Simple Example with pXRelayTest

Modify the pXRelayTest Code

1.1 Preliminaries

This lab assumes you have a working MOOS-IvP tree checked out and built on your computer. To
verify this make sure that the following executables are built and findable in your shell path:

$ which MOOSDB

/Users/you/moos-ivp/bin/M0O0SDB (or /home/you/moos-ivp/bin/MO0SDB on Linux)
$ which pHelmIvP

/Users/you/moos-ivp/bin/pHelmIvP

If unsuccessful with the above, return to the steps in Lab 1:
http://oceanai.mit.edu/ivpman/labs/machine_setup

1.2 MOOS vs. MOOS-1IvP

What is the relationship between MOOS and MOOS-IvP? MOOS-IvP is a superset of MOOS. The
additional components include another architecture, the IvP Helm behavior-based architecture, and
several additional MOOS applications. This is the nested repository concept depicted in Figure 1.

http://oceanai.mit.edu/ivpman/labs/machine_setup

MIT:

Oxford:

MOOS Architecture | IvP Helm Architecture Hesiisctis
MOOS Applications / 1vP Helm Behaviors ocules
MOOS Applications
Oxford MOOS tree MIT MOOS-IvP tree
+ MOOSDB + pHelmIvP + alogsplit - iSay « UFIdCollisionDetect + uLoadWatch
« pLogger « alogcat « alogtest « pBasicContactMgr « uFldContactRangeSensor * UMAC
« iRemote « aloged « alogview « pDeadManPost « uFldMessageHandler * UMACView
* pScheduler « alogcheck « fiview « pEchoVar « uFIdNodeBroker + uMemWatch
* pShare « alogclip « gen_hazards « pEvalLoiter « uFIdNodeComms « uPlotViewer
* PMOOSBridge - alogeplot - gen_obstacles « pHostinfo « uFIdObstacleSim < uPokeDB
©umm « aloggrep * geoview « pMarinePID « uFldPathCheck « uProcessWatch
*uMs « aloghelm + manifest_test « pMarineViewer « uFIdShoreBroker * uQueryDB
* iMatlab - alogiter « nsplug « pMovingSurvey « UFIdWrapDetect * uSimMarine
: E?Inaﬂeh; k celegflert s pickpos * pNodeReporter « uFunctionVis * uTermCommand
Y « alogpare * zaic_hdg « pObstacleMgr « uHelmScope « uTimerScript
« alogrm « zaic_peak « uCommand « UMACView « UXMS
« alogscan « zaic_spd « uFldBeaconRangeSensor « uFunctionVis
+ alogsort * zaic_vect * uFldCollObDetect

Figure 1: Nested Repositories: The MOOS-IvP tree contains the Oxford MOOS tree and additional modules from
MIT including the Helm architecture, Helm behaviors and further MOOS applications.

1.3 More MOOS / MOOS-IvP Resources
We will only just touch the MOOS basics today. A few further resources are worth mentioning for

following up this lab with your own exploration.

e The 2.680 lecture covers much of the material for today’s lab:
http://oceanai.mit.edu/2.680/docs/2.680-03-intro_to_moos_2024.pdf

e The ”Very Brief Overview of MOOS” page on the course documentation page:
http://oceanai.mit.edu/ivpman/chap/moos_overview

e Follow the links to the documentation on the Oxford MOOS github website.
https://github.com/themoos

1.4 The MOOS Architecture

The main idea explored today is that MOOS is a publish-subscribe architecture. A single M00SDB
serves multiple MOOS applications by essentially handling the mail published and subscribed for by
each app. A MOOS community is a collection of applications connected to a single MOOSDB.

http://oceanai.mit.edu/2.680/docs/2.680-03-intro_to_moos_2024.pdf
http://oceanai.mit.edu/ivpman/chap/moos_overview
https://github.com/themoos

MOOSDB

Publish /

Subscribe Subscribe \‘

Publish

MOOQOSApp MOOSApp

Figure 2: The MOOS Architecture: MOOS is a publish-subscribe architecture. The MOOSDB serves a number of
clients, handling mail for each client as new information is posted. A MOOSDB with connected clients constitutes a
MOOS community. There may be multiple MOOS communities on a single machine, and a single MOOS community
may be distributed over more than one machine.

For typical autonomous vehicle implementations, there is a MOOS community on board each vehicle.
When simulating multiple vehicles on a single machine, there is also a single community associated
with each vehicle. A MOOS community consists of a single MOOSDB with one or more connected clients
(i.e. apps). The communications discussed in today’s lab concern how a single app communicates
with another app via the MOOSDB in the publish-subscribe architecture. Later labs will address how
vehicles communicate with each other, essentially bridging two or more MOOS communities with
one another.

For today, the focus is on the M00SDB and connected applications. The MO0SDB, unlike an actual
database, does not contain a full history of information that has passed through it. At most, it
stores the latest value for any given MOOS variable published to the M00SDB. When a new app
connects to the MOOSDB it must register for the mail it needs. On startup, an app can expect to get
a mail message containing the latest value for any variable it registers for, even if that mail reflects
a posting to the M00SDB long ago. Anything happening prior to that will be unknown to the newly
connected app.

1.5 Launching the MOOSDB

Here we describe how to launch the MO0SDB from the perspective of the first-time user. The MO0OSDB
application is a server that runs on the robot or unmanned vehicle computer, or simply on your
laptop during simulation. It may be launched from the command line, assuming it is in your path.
Two minimalist methods are described here, starting with the most bare-bones.

1.5.1 A Bare-Bones Launching of the MOOSDB

In a bare-bones manner, the MOOSDB may be launched from the command line without any arguments.
Normally the MO0SDB needs to know at least two pieces of configuration information, (a) the machine
IP address on which to run, and (b) the port number on which to serve clients.

(Recall an IP address is comprised of four numbers in the range of [0,255] separated by a period. IP
addresses are used for finding a particular machine on the Internet. For example, the oceanai class
server resides at 18.18.38.22. The term ”localhost” acts as a stand-in IP address when refering to
one’s own machine. The port number refers to a channel of sorts on a computer. It’s fair to think
of the IP address like the street address of an apartment building, and the port number as the unit
number within the building where a particular resident resides.)

When launching the M00SDB with no command line arguments, it will default to running on the
localhost and port 9000:

$ MOOSDB

------------------- MOOSDB V10 ---——--———————————-
Hosting community "H1

Name look up is off

Asynchronous support is on

Connect to this server on port 9000

network performance data published on localhost:9020
listen with "nc -u -1k 9020"

At this point the MO0SDB is running on the local machine, serving clients on port 9000. A few
variables are already being published, by the 1M00SDB itself. You can open a scope with uXls in
another terminal window:

$ uXMS DB_CLIENTS DB_TIME DB_UPTIME --serverhost=localhost --serverport=9000
uXMS_581 0/0(154)

VarName (S)ource (T)ime (C) VarValue (SCOPING:EVENTS)

DB_CLIENTS MOOSDB_#1 38.14 "uXMS_581,"

DB_TIME MOOSDB_#1 38.14 1387380731.414707

DB_UPTIME MOOSDB_#1 38.14 39.00859

The Source and Time columns may be expanded by hitting the "s" and "t" keys respectively after

it launches, or you can add --show=source,time as a command line argument to uXVs, to launch
with these two columns expanded.

Alternatively you can scope with the umm tool:

$ umm --spy

The umm tool is part of the MOOS project at Oxford, while uxus tool is part of the MOOS-IvP
project at MIT. Overlap between toolset functions can often be found.

1.5.2 A More Civilized Launching of the MOOSDB

Virtually all MOOS applications are launched with a ”mission configuration” file, a.k.a. a ”dot-moos”

file. The below mission file, moosdb_alpha.moos, provides the minimal configuration parameters the
MOOSDB likes to see upon starting.

// (wget http://oceanai.mit.edu/2.680/examples/moosdb_alpha.moos)
ServerHost = localhost

ServerPort = 9000

Community = alpha

Passing the moosdb_alpha.moos file as a command line argument produces the below output.

$ MOOSDB moosdb_alpha.moos

------------------- MOOSDB V10 ---—-—————————————-
Hosting community "alpha"
Name look up is off
Asynchronous support is on
Connect to this server on port 9000

network performance data published on localhost:9020
listen with "nc -u -1k 9020"

Try this. Either copy and paste the above .moos file, or use wget as shown on the first line above in
the example file. If you haven’t installed wget or similar (e.g., curl), you should pause here and do
that.

$ sudo apt install wget
$ brew install wget
$ sudo port install wget

(On Linux)
(On MacO0S using Homebrew)
(On MacOS using MacPorts)

1.6 Scoping the MOOSDB

A MOOS scope is a tool for examining the state of the M00SDB. The M00SDB does not keep a history
of prior values for a given variable, but rather just the most recent value posted. This means that
the state of the MO0OSDB may be regarded as the set of current MOOS variables, their values, and
who made the last posting to the variable and when. Scoping allows a view into the current state
(or even recent history) of the M00sDB. There are multiple tools for scoping the DB, each providing
conveniences of one kind or another. Here we describe the uxis, uMs, and pRealm tools, the three
favorites of our own lab.

More info on these two tools can be found at:

e uXMS: http://oceanai.mit.edu/ivpman/apps/uXMS
e pRealm: http://oceanai.mit.edu/ivpman/apps/pRealm

You can also navigate to the above two web pages by launching the app with the --web or -w option.

$ uXMS --web
$ pRealm -w

Most MOOS-IvP distributed apps support this command-line option.

1.6.1 Scoping the MOOSDB with uXMS

Your goals in this part are:

1. Open a terminal window and launch the MO0OSDB as done at the end of the previous exercise:

$ MOOSDB
MOOSDB V10
Hosting community "HL"
Name look up is off
Asynchronous support is on
Connect to this server on port 9000
network performance data published on localhost:9020
listen with "nc -u -1k 9020"

The M00SDB is normally launched with a mission file specifying the ServerHost and ServerPort
parameters. When launched from the command line as above with no command line arguments,
these two parameters default to localhost and 9000.

2. Open a second terminal window and launch uxMs, passing it the --all command line switch.
Just hit ENTER when prompted for the IP address and Port number, accepting the defaults of
localhost and 9000. It should look something like:

http://oceanai.mit.edu/ivpman/apps/uXMS
http://oceanai.mit.edu/ivpman/apps/pRealm

$ uxXMs --all
Enter IP address: [localhost]
Enter Port number: [9000]
Kok ook ok oK oK o oK ok oK oK o oK ok oK oK o oK ok o oK o K ok o oK o K ok oK ok K ok ook ok K ok o oK ok K ok o oK ok oK o
* uXMS_632 starting ...
sk ok sk ok ok sk ok ok sk ok sk ok sk ok sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok sk sk sk ok sk ok sk ok sk ok ok ok o
uXMS_632 is Running:

|-Baseline AppTick @ 5.0 Hz

| -—Comms is Full Duplex and Asynchromnous

-Iterate Mode O :

|-Regular iterate and message delivery at 5 Hz

After the above initial standard MOOSApp output, you should see a sequence of uxls reports
similar to:

uXMS_443 0/0(31)
VarName (8) (T) (C) VarValue (SCOPING:EVENTS)
DB_CLIENTS "uXMS_443,"
DB_EVENT "connected=uXMS_443"
DB_QOS "uXMS_443=0.448942:0.573874:0.364065:0.490189,"
DB_TIME 1424028179 .877422
DB_UPTIME 16.741557
UXMS_443_ITER_GAP 1.019045
UXMS_443_ITER_LEN 0.00024
-- displaying all variables --

Notice the number in parentheses on the second line is incrementing. This indicates that the
report has been refreshed to your terminal. If you launched as above, the scope should come
up in a mode that refreshes the report any time a scoped variable changes values. In this case,
the MO0SDB is updating DB_TIME and DB_UPTIME about once per second. By default, uxus only
scopes on the variables named on the command line. In the above case, the —-all option was
used to tell uxMS to scope on all variables known to the MOOSDB.

The five variables shown beginning with DB_ are all published by the M00SDB. The user may choose
whether or not to show the variable (S)ource, (T)ime of post, or (C)ommunity from where the post
was made. A key feature of uXls vs. uMs is the ability to specify on the command-line exactly which
subset of variables to scope, possibly with color-coding. This is helpful when there are hundreds of
variables in the DB.

1.6.2 More Suggested Tinkering with uXMS

Try a few other things:

1. Hit the *h’ key to see some keyboard interaction options that are available anytime the scope

is running. Hit ’h’ again any time to return to the previous mode.

2. Hit the space-bar to pause the stream of reports. This is useful if numbers are changing

rapidly and you just need to take a close look at something. Return to the previous mode by
hitting ’e’.

3. Hit the ’s’ key to expand the (S)ource column. This column tells you which app made the
last posting. Try the same for the (T)ime and (C)ommunity columns.

4. The whole purpose of a scope is to give you the key information you’re looking for, without
needing to sift through a lot of unwanted information, with as little effort as possible. In this
step we’ll pretend to be interested in focusing our attention on the DB_UPTIME variable. Try
launching uxMs with an additional command line argument:

$ uXMS --all --colormap=DB_UPTIME,blue

This may seem unnecessary when there are only three variables, but in real applications there
may be hundreds of variables. In fact, the variable you’re looking for may have scrolled off
the window!

5. A similar way to focus on a single variable is to only scope on the one variable we’re looking
for:

[$ uXMS DB_UPTIME

6. uxs only shows you the current snapshot of the variables in the M00sSDB. What if you would
like to see how a variable is changing? In our case, we know how the DB_UPTIME variable is
changing, but for the sake of showing this feature, try:

$ uXMS --history=DB_UPTIME

1.6.3 Scoping with uMS

The ulis scope is a graphical MOOS scope, often preferred by those inclined to like GUIs vs.
command line tools. It has some other advantages over ux\s as well.

Your goals in this part are:

1. If you don’t still have a MOOSDB running, open a terminal window and launch the MOOSDB as
done previously:

\ $ MOOSDB

2. Open a second terminal window and launch uMS, passing it the same mission file as an
argument:

‘ $ uMs

You should see a window open and, after clicking on the Connect button, you should see
something similar to:

10

o Nl uhkls

Unnamed
2 Processes 3 Variables =
Name Tima Typa Freq Sowrce | Community | Walue |
DE_UPTIME 18,004 0 06 100SDB aph apha 1003381
DE_TIME 10,034 N} 06 WOOSDE aiph BipFa 1 30ES036 TRATD
DB_CLIENTS 18,032 £ 02 00508 aph apra pMS[ecaanda caall s edi] DEWenSaves
[7 DfwWabSaner -
|."I whl S lecranda canl = eyl —I
Procesans Subscribes Publishes
Agd Community Ramave Community Save Layout Ranamea

Figure 3: The uMS MOOS Scope

1.6.4 Pros/Cons of uXMS vs uMS

The choice of uxMs vs ulMs is often just a matter of taste. A couple of differences are noteworthy
however.

e 1S allows for connections to multiple MOOSDBSs, on perhaps multiple vehicles, simultaneously.
The user may select the vehicle with the tab at the top of the screen.

e uXls allows the user to scope on as few as one single variable, or to name the variable scope
list explicitly. uMS scopes on all variables all the time, with a few mechanisms for reducing the
scope list based on process name.

e uXlS may be a better choice if one is scoping on a remote M0O0SDB, perhaps on a robot with
a poor connection. It is a low-bandwidth client compared to uMs. If running on a remote
terminal, its bandwidth back to the user is zero in the paused mode.

e uxMs has provisions for at least limited scoping on a variable history.

e uxMs will display a variable’s ”auxiliary source” information. This is a secondary field associated

with each posting describing the source of the posting. This is key when using the [IvPHelm.
Variables posted by helm behaviors will have a source of pHelnIvP and an auxiliary source
showing the behavior responsible for the posting.

1.6.5 Scoping with pRealm

Realmcasting is a feature first introduced in 2021. It complements Appcasting, which is the default
set of windows open to the left of the GUI when running pMarineViewer in say the Alpha mission.
If you are running a mission with pMarineViewer, it may be the only scoping tool you need. You
can scope on selected vehicle (MOOS community), and selected app, as shown in Figure 4.

11

‘e PMarineViewer (MIT Version 19.8.2 trunk)
Flo_BackViow _GooAtr_Vabices _nfoCasing_MOOS Scope_Acton_Mouse Contxt

Wode RC 3 RC
100508 _alpha 224
pHelmrve 3

progger

parinepID

o
0
ineviewer 0 5
pg-fm_nm o
uMac_4900
uprocess:

comn Value

UMAC_ 4900 node=all, app=all,duration=3.0,key=uMAC_49

IVPHELM_ALLSTOP phelmIvP 1598.34 alpha
IVPHELM_STATE phelmve 1631.33 alpha DRIVE
pHelmIvP 163133 alpha iter=6423,utc_time=1613610322.07

never -
1631.23 alpha 0

163123 alpha 176.795452
1631:23 alpha 176.43656
1631123 alpha 43.824744
1631.23 alpha -70.329636
1631.23 alpha 0

ne 1631.23 alpha
e 1631.23 alpha
never -

Subscriptions —

2.82
2.822455

:
-
=
|ve 0787, 130.3m
H H o 2.34 alp
Publications
i HHte dhm
Kl i}
50 | com| urc | vwame:[o X [rox tatfs o
sues | wask | vy Vimy[ez0 Lenf703295%
WP | [TRUNG | veiase e o v an o[

Figure 4: The RealmCasting interface in pMarineViewer is the lefthand side of the GUI comprising the three panels
shown. Toggling between AppCasting and RealmCasting is done with the ’a’ key.

The realmcasting pane on the lower-left is the primary output. It is split into two parts. On the top
is a scope on all variables subscribed for by the selected application. The bottom half is a scope on
all variables published by teh application.

If you are running pMarineViewer and do not see any content in this window, it is most likely due
to the omission of running pRealm in both the shoreside and vehicle communities. It is enabled by
default in the Alpha mission. Most other example missions also have realmcasting enabled.

12

1.7 Poking the MOOSDB

Poking refers to the idea of publishing a variable-value pair to the M00SDB. Many apps publish to
the M00SDB during the course of normal operation. Poking implies a publication that perhaps was
not planned, or outside the normal mode of business. It is often very useful for debugging. Here we
describe the uPokeDB tool.

Where to get more information:
e uPokeDB: http://oceanai.mit.edu/ivpman/apps/uPokeDB

Or simply:

‘$ uPokeDB --web

1.7.1 Poking the MOOSDB with uPokeDB

uPokeDB is a command-line tool for poking the M00SDB with one or more variable-value pairs. Poking
the MOOSDB requires knowing where the MOOSDB is running in terms of its IP address, (ServerHost
parameter), and port number, (ServerPort parameter). These may be specified on the command
line to uPokeDB, but for our purposes here we assume the existence of a mission file, alpha.moos with
this information:

// (wget http://oceanai.mit.edu/2.680/examples/alpha.moos)
ServerHost = localhost

ServerPort = 9000

Community = alpha

Your goals in this part are:

1. Open two terminal windows and launch the M00SDB and uXVs as done previously:

$ MOOSDB alpha.moos
$ uXMS alpha.moos --all

Now open a third terminal window for poking the M00SDB as follows:

$ uPokeDB DEPLOY=true SPEED=2 alpha.moos

Note the two new variables, DEPLOY and SPEED, appearing in the ux¥s window. It should look
something like:

13

http://oceanai.mit.edu/ivpman/apps/uPokeDB

uXMS_655 0/0(204)
VarName (S) (T) (C) VarValue (SCOPING:EVENTS)
DB_CLIENTS "uXMS_655,"

DB_TIME 1386249435.276804

DB_UPTIME 46.213629

DEPLOY "true"

SPEED 2

2. Note the variable values in uxMS. DEPLOY has the value "true" with double quotes, indicating
that it is a string. The variable SPEED is of type double, indicated by the lack of quotes. The
types were inferred by uPokeDB by heuristically checking whether the arguments are numerical
or not. But sometimes you do want to publish a string with a numerical value. Try posting
the variable HEIGHT with the string value of "192", noting the colon-equals instead of equals:

$ uPokeDB HEIGHT:=192 alpha.moos

Note the new variable, HEIGHT, appearing in the uXMs window. It should look something like
the below output, where in this case, the (S)ource column is expanded to show the source of
the postings.

uXMS_655 0/0(347)
VarName (S)ource (T) (C) VarValue (SCOPING:EVENTS)
DB_CLIENTS MOOSDB_alpha "uXMS_655,"

DB_TIME MOOSDB_alpha 1386250092.847527
DB_UPTIME MOOSDB_alpha 703.784353

DEPLOY uPokeDB "true"

HEIGHT uPokeDB "192"

SPEED uPokeDB 2

1.7.2 Further things to try Using uPokeDB
Here’s some other things to consider and try:

1. Trying poking the DEPLOY variable to the MOOSDB a second time, this time with:

$ uPokeDB DEPLOY=100 alpha.moos

Does the value of DEPLOY change? If not, why not?

2. Create a simple script of pokes on the command line as follows:

$ uPokeDB APPLES=1 alpha.moos; sleep 5; uPokeDB APPLES=2 alpha.moos;

If you're new to the command line environment, the semicolon above separates successful
command line invocations. The sleep command is a common shell utilitity that will simply
pause a given number of seconds before completing.

14

3. Another way to execute the same simple script as above is to store the above three commands
in a file named, for example, myscript:

uPokeDB APPLES=1 alpha.moos
sleep 5
uPokeDB APPLES=2 alpha.moos

With the above file you can make the two successive pokes to the M00SDB, with five seconds in
between, with:

$ source myscript

There are many other ways of poking the M00SDB. All MOOS apps that publish anything are examples.
Of course many MOOS applications publish a fixed set of variables that are not easily changeable
without re-coding. But certain apps like uTimerScript and pMarineViewer have built-in configuration
file parameters for poking the M00SDB in user configurable ways.

15

1.8 Launching a Mission with pAntler

In theory a set of N MOOS applications may be launched from N terminal windows, but this is
cumbersome in practice. The pAntler tool allows this to be done from a single mission file. In this
file, a block of lines declares all the apps to be launched with one invocation of pAntler.

Where to get more information:

e pAntler: http://oceanai.mit.edu/ivpman/apps/pAntler

1.8.1 Basic pAntler Usage

The Antler block is typically the first configuration block in a .moos file, declared with ProcessConfig
= ANTLER as below. The MSBetweenLaunches parameter specifies the number of milliseconds between
launching processes. Each line thereafter specifies an app to be launched and whether a dedicated
console window should be opened for the application.

ProcessConfig = ANTLER

{
MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = true/false

Run = AnotherApp @ NewConsole = true/false

Run = AnotherApp @ NewConsole = true/false
}

Further options exist beyond the vanilla launch configuration described above, including (a) the
ability to launch a given app under an aliased name, (b) specifying command-line arguments to an
app at launch time and more. See the documentation.

1.8.2 An Example: Launching the MOOSDB along with uXMS

In the example below we use pAntler to launch the MOOSDB and the uXMs scope from a single mission
file. The user preferences for uxMs are provided in its configuration block. Type uXMS --example on
the command line for further options if you’re curious.

Note: in this example, the launch process should result in a new xterm window opening. If you are
running on GNU /Linux, the xterm should be available by default. If you are running MacOS, you
may need to install xterm. If you type xterm on the MacOS Terminal command line and you receive
a "command not found" error, then you may need to install xterm.

https://www.xquartz.org
You may need to log out and log back in for this to take effect.
Your goals in this part are:

1. Create a copy of the example mission file shown in Listing 1 below and save it locally as
db_and uxms.moos. (hint: the easiest way to do this is to just invoke the wget expression on the
top line of this file. This will pull the file down from the server into your current directory.)

16

http://oceanai.mit.edu/ivpman/apps/pAntler
https://www.xquartz.org

The mission may be launched from the command-line with:

$ pAntler db_and_uxms.moos

This should open a new console window for uxlis displaying the variables posted by the DB,
with the (S)ource and (T)ime columns expanded, but not the (C)ommunity column.

2. Modify the uxis configuration block in the .moos file to configure ux¥s to keep a history of
the DB_UPTIME variable. To see configuration options for uxus, type:

$ uXMS --example

Once you have launched uxVs with the new configuration, type ’z’ to toggle in and out of
history mode.

3. Modify the db_and uxms.moos file to launch a new terminal window for the M00SDB in addition
to the uxs application.

Listing 1.1: A simple mission file.

// (wget http://oceanai.mit.edu/2.680/examples/db_and_uxms.moos)
ServerHost = localhost

ServerPort = 9000

Community = alpha

ProcessConfig = ANTLER

{
MSBetweenLaunches = 200
Run = MOOSDB @ NewConsole = false
Run = uXMS @ NewConsole = true
}
ProcessConfig = uXMS
{
AppTick = 4
CommsTick = 4
VAR = DB_CLIENTS, DB_UPTIME, DB_TIME
DISPLAY_SOURCE = true
DISPLAY_TIME = true
COLOR_MAP = DB_CLIENTS, red
}

17

1.9 Scripted Pokes to the MOOSDB

Here we cover how to have a script of pre-arranged pokes to the M00SDB. This may be useful for a
number of reasons besides debugging. The primary tool described here is the uTimerscript MOOS
application. It is capable of (a) scripted pokes at a pre-defined times after launch, (b) pokes having
a poke-time specified to fall randomly within a specified interval, (c) pokes having numerical values
falling with a uniformly random interval, and several other features including conditioning the
running of the script based on other MOOS variables.

Where to get more information:

e uTimerScript: http://oceanai.mit.edu/ivpman/apps/uTimerScript

Or simply:

$ uTimerscript --web

1.9.1 Basic uTimerScript Usage

uTimerScript is configured with its own block in the MOOS configuration file. The general format
is below. The primary entries are the events themselves, defined by a MOOS variable, value, and
time or time-range when the event is to occur. There are many options for configuring the script.
These options are described in the documentation, but a quick look at the options can be seen by
typing uTimerScript --example on the command line.

ProcessConfig = uTimerScript

{
event var=<M00SVar>, val=<value>, time=<value>
event = var=<M00SVar>, val=<value>, time=<value>

event = var=<M00SVar>, val=<value>, time=<value>

[OPTIONS]

18

http://oceanai.mit.edu/ivpman/apps/uTimerScript

1.9.2 A Simple Example with uTimerScript

The below mission file contains a uTimerScript script for repeatedly posting the variable COUNTER_A
with values 1-10 in ascending order roughly once every half second. The last event in the script is
posted at time chosen from a random five second interval.

Listing 1.2: A simple counter example with uTimerScript.

// (wget http://oceanai.mit.edu/2.680/examples/utscript.moos)
ServerHost = localhost

ServerPort = 9000

Community = alpha

ProcessConfig = ANTLER

{
MSBetweenLaunches = 200
Run = MOOSDB @ NewConsole = false
Run = uXMS @ NewConsole = true
Run = uTimerScript @ NewConsole = false

}

ProcessConfig = uXMS

{
VAR = COUNTER_A, DB_CLIENTS, DB_UPTIME
COLOR_MAP = COUNTER_A, red
HISTORY_VAR = COUNTER_A

}

ProcessConfig = uTimerScript

{
paused = false
event = var=COUNTER_A, val=1, time=0.5
event = var=COUNTER_A, val=2, time=1.0
event = var=COUNTER_A, val=3, time=1.5
event = var=COUNTER_A, val=4, time=2.0
event = var=COUNTER_A, val=5, time=2.5
event = var=COUNTER_A, val=6, time=3.0
event = var=COUNTER_A, val=7, time=3.5
event = var=COUNTER_A, val=8, time=4.0
event = var=COUNTER_A, val=9, time=4.5
event = var=COUNTER_A, val=10, time=5:10
reset_max = nolimit
reset_time = all-posted

}

The mission may be launched from the command-line with:

$ pAntler utscript.moos

This should open a new console window for uxlis displaying the variables COUNTER_A variable repeatedly

19

incrementing from 1 to 10. Note that reaching 10 happens somewhere between 0.5 and 5.5 seconds
after reaching 9.

1.9.3 Exercises

Your goals in this part are:

1

[\

Create a copy of the example mission file in Listing 2 above and save it locally.

Launch the mission. It should open a uxMs window. Follow the progress of the counter script.

$ pAntler utscript.moos

. Take a look at the uTimerScript documentation linked from the web page. In particular,

Section 3 Script Flow Control. Configure the script such that is paused when uTimerScript is
launched. Launch the same mission and confirm that the script is initially not running. Then
use uPokeDB to un-pause the script, and confirm it is running. Hint: to un-pause the script
with uPokeDB, you’ll need to know which variable to poke, and this also can be found in the
uTimerScript documentation or by typing uTimerScript -i on the command line.

. This is a bit of a pAntler exercise. Configure your mission to launch two versions of the script,

the second version publishing to COUNTER_B. Note you will need two configuration blocks, each
with a unique name. And you will need to launch uTimerScript twice within the Antler block,
each with an alias. Hint: see the pXRelay example at the end of Lab 3.

. Confirm your new mission launches and executes the two separate scripts and both counters

are incrementing.

. Configure the second script with a condition parameter. See Section 3.2 of the uTimerScript

documentation. Use a condition such as "condition = COUNTER_A > 5". Re-launch your mission.
Confirm that the second script is paused periodically based on the state of the first script.

Add the pLogger application to your mission. You will need to add a pLogger entry to your
ANTLER configuration block, and add the following pLogger configuration block at the end
of your file.

ProcessConfig = pLogger

{
AsyncLog = true
WildCardLogging = true
WildCardOmitPattern = *_STATUS

}

Re-run the mission. Confirm that you see the pLogger application listed in the DB_CLIENTS
variable in the uXMs scope.

. Verify that a log file has been created. Since we didn’t specify a name for the log file, by

default it should be in a subdirectory of where you launched the mission, looking something
like MOOSLog 1123 2016_____ 11.31.13/. Enter the directory and confirm that you see an .alog
file.

. Take a look a the file by typing more filename.alog. Then take at look at the COUNTER variables

using aloggrep (substituting of course the name of your .alog file:

20

$ aloggrep COUNTER_A COUNTER_B MOOSLog_11_23_2016 11_31_13.alog

21

2 A Simple Example with pXRelay

pXRelay is a simple MOOS app designed solely to illustrate basic functions of a MOOS app. It
registers for a single variable, and upon receiving mail for that variable, it publishes another variable
incremented by 1. It provides a framework for illustrating a few other introductory topics.

2.1 Basic pXRelay Usage

pXRelay is configured with its own block in the MOOS configuration file. It is configured with (a)
an incoming variable, the variable it will register for incoming mail, and (b) an outgoing variable, a
variable it will post an incremented integer each time it receives mail on the incoming variable. The
basic form is:

ProcessConfig = pXRelay
{
outgoing_var
incoming_var

}

<MOOSVar>
<M0O0SVar>

2.2 A Simple Example with pXRelay

The below mission file contains a configuration for two instances of the pXRelay application. All
MOOS apps must have a unique name to connect to the MOOSDB, so we launch them with an
alias with pAntler using the pXRelay PEARS alias for example. The two apps each register for what
the other produces, and each produces what the other registers for.

Listing 2.3: Example Code.

0 // (wget http://oceanai.mit.edu/2.680/examples/xrelay.moos)
1 ServerHost = localhost

2 ServerPort = 9000

3 Community = alpha

4

5 ProcessConfig = ANTLER

6 {

7 MSBetweenLaunches = 200

8

9 Run = MOOSDB @ NewConsole = false

10 Run = pXRelay @ NewConsole = false “pXRelay_PEARS
11 Run = pXRelay @ NewConsole = false “pXRelay_APPLES
12}

13

14 ProcessConfig = pXRelay_APPLES

15 {

16 AppTick =10

17 CommsTick =10

18 incoming_var = APPLES

19 outgoing_var = PEARS

20 }

21

22 ProcessConfig = pXRelay_PEARS

22

23
24
25
26
27
28

AppTick = 10
CommsTick = 10
incoming_var = PEARS
outgoing_var = APPLES

Upon launch, the two pXRelay apps are in a stalemate, each waiting for the other to make the first
posting. We can break this stalemate with uPokeDB:

‘ $ uPokeDB xrelay.moos PEARS=1 ‘

This should get things going. Now it would be good to see it all running by launching a scope:

‘ $ uXMS xrelay.moos --all --show=time ‘

Your goals in this part are:

1.

Create a copy of the example mission file shown in Listing 3 above and save it locally as
pxrelay.moos. (hint: use wget!)

Launch the mission. Open up uX¥s in another Terminal window with the parameters of your
choosing. I recommend

$ uXMS pxrelay.moos --colorany=APPLES,PEARS --all

Kick off the activity by poking one of the APPLES or PEARS variables with an initial value.
Confirm that things are working as they should.

. Add uTimerScript to your mission file, with a simple script to kick off the pXxRelay handshaking

at some point after launch (say 10 secs), as an alternative way to kicking off the activity
instead of uPokeDB. You'll need to add uTimerScript to your ANTLER configuration block, and
add a simple script (a uTimerScript configuration block) to your .moos file.

. Change your uTimerScript script to be the ascending counter script from Section 1.9, incre-

menting COUNTER_A 1 to 10. Configure it with paused=false, but add a condition to your script
(condition = APPLES == $(PEARS). Re-launch the revised mission. Since APPLES is equal to
PEARS periodically, the condition will periodically be met. (You will still need to kick things
off with either an initial poke from the command line, or re-use the script from the previous
item as a second script to kick things off.)

Try changing the AppTick in one of the pXRelay configurations to 0.1. You should note that
the script is now mostly in the state where its conditions are not met. Can you explain why?

23

3 First Experiments in Modifying MOOS App Code

Next we will take the first steps toward extending the MOOS-IvP code. This is done by creating
your own ”third-party” tree, with your own MOOS apps.

3.1 Download a Template Tree for Extending MOOS

In writing MOOS apps and later helm behaviors in this class, you’ll need your own software folder.
This folder will need a bit of structure and CMake files for compiling the source code. To make
this a bit easier, a template for this is available. Follow the instructions in the separate Version
Control with Git document alongside the other lab documents, linked from the Labs section on
the course website. Follow these instructions before proceeding to Section 3.2.

This folder has an example MOOS app and example helm behavior and the CMake files for building
the code. We will use this as starting point for writing code in the class. And our first exercise
below, involves trying to make some simple modifications of the example app.

The name of your tree should be moos-ivp-janedoe, where janedoe is your MIT Athena name.
Hereafter we will simply refer to this tree generically as the moos-ivp-extend tree.

3.2 Building Your Tree

Verify that you can build your moos-ivp-extend tree by:

$ cd moos-ivp-extend
$./build.sh

It should add the executable, pXRelayTest, in moos-ivp-extend/bin/.

Add the above directory to your shell path. Replacing extend with your username in all of the
above.

3.3 Exercises in Modifying the pXRelayTest Code

The moos-ivp-extend tree contains an app very similar to pXRelay from the moos-ivp tree. This
app is call pXRelayTest. We will attempt to modify some of the behavior of the pXRelay application
while putting our modifications in the new moos-ivp-extend tree, in pXRelayTest.

1. Take a look at the pXRelayTest source code. It is inside moos-ivp-extend/src/pXReleayTest.
Look inside Relayer.cpp. Check out the OnNewMail () and Iterate() loops.

2. Can you modify this code to make it increment by ten instead of one?

3. Can you modify this code such that it takes {wo incoming variables, and does its thing if
either of the two variables is written to?

24

	Overview and Objectives
	Preliminaries
	MOOS vs. MOOS-IvP
	More MOOS / MOOS-IvP Resources
	The MOOS Architecture
	Launching the MOOSDB
	Scoping the MOOSDB
	Poking the MOOSDB
	Launching a Mission with pAntler
	Scripted Pokes to the MOOSDB

	A Simple Example with pXRelay
	Basic pXRelay Usage
	A Simple Example with pXRelay

	First Experiments in Modifying MOOS App Code
	Download a Template Tree for Extending MOOS
	Building Your Tree
	Exercises in Modifying the pXRelayTest Code

