
The OpRegionV24 Behavior
Michael Benjamin, MIT Dept of Mechanical Engineering, mikerb@mit.edu

Contents

1 The OpRegionV24 Behavior 1
1.1 Intended Mission Use . 2
1.2 The Core Algorithm . 2
1.3 Configuration and Operation Mechanics . 5
1.4 IvP Function Formulation . 7
1.5 Configuration Parameters and Examples . 10
1.6 Flags and Macros . 13

1 The OpRegionV24 Behavior

The OpRegionV24 behavior was created to combine and replace the OpRegion and OpRegionRecover

behaviors. The former was simply a pass-fail check to ensure operating constraints are not exceeded,
resulting in an all-stop if they were. No attempt was made in the OpRegion behavior to influence the
vehicle to avoid exceeding the operating constraints. On the other hand, in the OpRegionRecover

behavior, the goal is indeed to influence the vehicle to return to an the operation area once it has
exited. The OpRegionV24 behavior can perform both functions of the older behaviors. It works with
the notion of three polygons, the core, save and halt polygons shown in Figure 1 below.

Figure 1: OpRegionV24 Behavior Regions: The operation area is defined by the core polygon. The buffer region
is defined by the save polygon. The all-stop region is the area outside the halt polygon.

The core polygon is the main operation area, presumably where the mission will be contained under
normal circumstances. The save polygon extends the core polygon and once the vehicle is outside

1

this polygon buffer zone, this behavior will begin to produce an objective function influencing the
the vehicle back into the save polygon. The halt polygon extends the buffer region even further. If
the vehicle breaches the halt polygon, an all-stop will be enforced.

1.1 Intended Mission Use

The OpRegionV24 behavior is typically running in every helm mode of a mission, to guard against
exceeding certain safety boundaries. The operation area is one, but there are three other bounds:
(1) maximum depth, (2) maximum altitude, and (3) maximum mission time. The first two are only
relevant for underwater vehicles, but the maximum mission time is another way to ensure that, if all
other safeguards fail, the mission can be halted after a certain duration. For an underwater vehicle
that has disappeared, the maximum time can significantly reduce the search box area.

Defining and constraining operation area is the most visual aspect of the OpRegionV24 behavior. As
shown in Figure 1, three regions or polygons are supported. The core, save, and, halt polygons.
The former is simply the area declared to be the intended operation area. Even if there are no
hazards around this area, this conveys an important element of the mission plan to the operators
and others observing a deployment. The save polygon usually subsumes the core polygon by some
buffer distance. This conveys the degree to which deviation from the core area may be tolerated.
For vessels that breach the save polygon, the OpRegionV24 behavior will produce an IvP Function to
influence the vehicle back within the save polygon. The halt polygon is a final boundary, beyond
which the behavior will produce an all-stop message. Figure 2 shows the effects of breaching the
save and halt polygons.

Figure 2: OpRegionV24 Behavior: Left: A vehicle exits the operating area and save polygon buffer zone, and
amends its course to return to the the buffer zone. Right: A vehicle exits the buffer zone and is unable to complete a
turn before breaching the halt polygon. An all-stop state results.

1.2 The Core Algorithm

The OpRegionV24 behavior may be configured to use none or all of the possible constraints, e.g., (1)
max time, (2) max depth, (3) min altitude, (4) halt polygon, or (5) save polygon. The onRunState()

algorithm will first check for all the constraints that would result in an all-stop condition. If it
passes these, then the vehicle is checked for containment of the save polygon. An IvP function is
only generated if the behavior is attempting to return the vehicle to the save polygon.

2

OnRunState() Flow Chart

Figure 3: OpRegionV24 Behavior Loop Flow Chart: Each iteration of the OpRegionV24 behavior will proceed
through the steps shown, with branching determined by sensed events and the behavior configuration. Details of each
step are discuss in their own sections as indicated.

OnRunState() Pseudo Code

Algorithm 1: OpRegionV24 Behavior Main Loop

1: procedure OnRunState()
2: V ← updatePositions() ▷ Step 1
3: if (max time > 0) and (time elapsed > max time) then ▷ Step 2
4: postBreachedTimeFlags() ▷ Step 3
5: all stop ← true
6: else if (max depth > 0) and (depth > max depth) then ▷ Step 4
7: postBreachedDepthFlags() ▷ Step 5
8: all stop ← true
9: else if (min altitude > 0) and (altitude < min altitude) then ▷ Step 6

10: postBreachedAltitudeFlags() ▷ Step 7

3

11: all stop ← true
12: else if halt poly.isConvex() and (xos, yos ̸∈ halt poly) then ▷ Step 8
13: postBreachedPolyFlags() ▷ Step 9
14: all stop ← true
15: end if
16: if (all stop = true) then ▷ Step 10
17: postInactiveFlags()
18: return 0
19: end if
20: if save poly.isConvex() and (xos, yos ∈ save poly) then ▷ Step 11
21: postRunFlags() ▷ Step 12
22: return 0
23: end if
24: if first save iteration then ▷ Step 13
25: postSaveFlags()
26: end if
27: ipf ← buildIvPFunction(xos, yos, θos,save poly) ▷ Step 14
28: postRunFlags() ▷ Step 15
29: postActiveFlags() ▷ Step 15
30: return ipf
31: end procedure

In Step 1, ownship information is updated, including the ownship local x-y position, heading, speed,
and depth if the vehicle is an underwater vehicle, and altitude if the underwater vehicle is equipped
with an altitude sensor.

In Step 2, if a maximum mission time is set, with the parameter max time, the duration of the
mission is checked against this maximum. The duration clock is started on the first helm iteration,
i.e., when the helm first enters the drive state. More discussion on this topic in Section 1.3.3.
If the maximum time is exceeded, in Step 3, any flags tied to the timeout event, set with the
breached time flag parameter, are posted.

In Step 4, if a maximum depth is set, with the parameter max depth, the current depth of the
vehicle is checked against this maximum. More discussion on this topic in Section 1.3.3. If the
maximum depth is exceeded, in Step 5, any flags tied to the breached depth event, set with the
breached depth flag parameter, are posted.

In Step 6, if a minimum altitude is set, with the parameter min altitude, the current altitude of
the vehicle is checked against this minimum. More discussion on this topic in Section 1.3.3. If the
minimum altitude is exceeded, in Step 7, any flags tied to the breached altitude event, set with the
breached altitude flag parameter, are posted.

In Step 8, if a halt polygon is set, the current position of the vehicle is checked for containment in
the polygon. If the vehicle is outside the polygon, in Step 9, any flags tied to the breached halt
polygon event, set with the breached poly flag parameter, are posted. Two further notes: (1) the
halt polygon can be set either by explicitly defining a convex polygon with the halt poly parameter,
or relative to the core polygon with the halt dist parameter. See Section 1.3.1. (2) a breach of the
halt polygon is typically not possible until the vehicle has first been within the halt polygon, and
typically the breach will not be declared until some time has passed being continually outside the

4

polygon. The defaults and configuration options for these aspects are described in Section 1.3.2.

In Step 10, if any of the four constraints on time, depth, altitude or halt polygon have been breached,
the behavior will post any defined inactive flags, post an all-stop indicator, and return without
providing an IvP function. This will normally result in the helm entering an all-stop state and will
be the last iteration of this behavior.

In reaching Step 11, all dire halt conditions have been checked against. If a valid convex save
polygon has been provided, and the current position of the vehicle is contained in the polygon, then
Step 12 will be invoked. In this step, any configured run flags will be posted and the function will
return without providing an IvP function.

Reaching Step 13 means the vehicle has breached a valid convex save polygon. If this is the first
iteration of a breach, then any configured save flags will be posted. Finally, in Step 14, an IvP
function will be generated to influence the vehicle on a trajectory back toward the save polygon.
The formation algorithm for this IvP function is discussed in Section 1.4. In Step 15 any savex
flags, run flags or active flags are posted before finally returning the generated IvP function. The
savex flags are published on every iteration when the behavior detects the vehicle to be outside the
save poly. The save flags are only published on the first such iteration.

1.3 Configuration and Operation Mechanics

1.3.1 Configuring the Polygon Regions

The three operation areas are the core polygon, the save polygon, and the halt polygon. They are
configured with the following parameters and examples, from Figure 1.

core_poly = pts={-70.38,-49.97:56.12,10:90.39,-62.28:-36.11,-122.25}

save_poly = pts={-74.9,-52.1:-75.4,-49.6:-74.5,-47.1:-72.5,-45.5:54,14.5: \

56.5,15:60.6,12.1:94.9,-60.1:95.4,-62.7:94.5,-65.1: \

92.5,-66.8:-34,-126.8:-36.5,-127.2:-40.6,-124.4}

halt_poly = pts={-79.4,-54.3:-80.3,-49.2:-78.6,-44.3:-74.7,-40.9:51.8,19: \

56.9,20:65.2,14.3:99.4,-58:100.4,-63.1:98.6,-68:94.7,-71.3: \

-31.8,-131.3:-36.9,-132.2:-45.1,-126.5}

These three polygons, in this case, are more or less evenly concentric, and the same configuration
could have been achieved with:

core_poly = pts={-70.38,-49.97:56.12,10:90.39,-62.28:-36.11,-122.25}

save_dist = 5

halt_dist = 10

If the save dist parameter is provided, then (a) the core poly parameter must be provided and be a
convex polygon, (b) the contents of the save poly parameter will be ignored if it was provided, and
(c) the value of the save dist parameter must not be negative. If it is zero, then the save polygon is
essentially the same as the core polygon.

If the halt dist parameter is provided, then (a) the core poly parameter must be provided and be a
convex polygon, (b) the contents of the halt poly parameter will be ignored if it was provided, and
(c) the value of the halt dist parameter must not be negative. If it is zero, then the halt polygon is

5

essentially the same as the core polygon.

Both the save dist and halt dist parameters are distances relative to the core polygon. If both
the save dist and halt dist parameters are provided, but the value of the save dist parameter is
larger, then it will be automatically reduced to the value of the halt dist parameter, without a
posted warning.

1.3.2 Halt Polygon Triggers

By default, the halt polygon is not enabled until the vehicle has first entered the halt polygon. This
feature can be reversed by setting:

trigger_on_poly_entry = false

By requiring the vehicle to first enter the halt poly, this allows a vehicle to be launched and transit
to the operation area, before regarding a halt poly breach as an all-stop event.

Due to the relatively common occurrence in early years of a spurious navigation solution, there
is also a requirement that the vehicle enter the halt polygon for some duration of time before it
is considered entered. By default this is 1 second. Likewise the vehicle must be outside the halt
polygon for a duration of 0.5 seconds before a halt poly breach is declared. These values can be
changed with:

trigger_entry_time = 2 // Default is 1

trigger_exit_time = 3 // Default is 0.5

1.3.3 Mission Time, Depth, and Altitude Operation Envelope

While the most outwardly visible component of the OpRegionV24 behavior relates to its position in
the x-y plane relative to the containment polygons, it also supports operational constraints on overall
mission time, depth and altitude. On most commercial platforms where MOOS-IvP is running
in the backseat of a mature front-seat computing system, these aspects are also monitored and
constrained on the front-seat. Use of the OpRegionV24 behavior not only provides a redundancy,
but also an option for the mission planner to configure the backseat operating envelope within the
front-seat envelope. This could allow the backseat MOOS-IvP autonomy the opportunity to make a
last-ditch effort to correct the vehicle trajectory before a front-seat all-stop is triggered.

The three relevant parameters are: max time: The maximum allowable time (in seconds) that the
helm is allowed to run. The clock starts when the pHelmIvP process first takes control, i.e., enters
the DRIVE state. If no maximum time is specified, then no time checks are made. max depth: The
maximum allowable depth of the vehicle (in meters). If no depth is provided, no depth checks are
made. min altitude: The minimum allowable altitude of the vehicle (in meters). If no altitude is
provided, no altitude checks are made.

For any of the operation envelope constraints, a corresponding macro is supported for conveying
status. These are, ALT LEFT, DEPTH LEFT, and TIME LEFT. For example, the following configuration
would enable the remaining depth to be published on each behavior iteration:

6

runx flag = REMAINING DEPTH=$[DEPTH LEFT]

The choice of the runx flag ensures that it is published on every iteration while in the run state, not
just when the behavior enters the run state. Note also that the * LEFT flags publish as integer values
unless within 10 meters or seconds, in which case they are published with floating point values.

1.3.4 Resetting a Breach Condition

The behavior may be configured to accept a reset after one of the breach conditions occur. This is
done by publishing to the MOOS variable configured with the behavior’s updates parameter. If this
variable is say OPR UPDATES, then the following would accomplish the reset:

OPR RESET = reset = true

This configuration parameter is somewhat non-sensical as an initial configuration parameter. Typ-
ically it would be sent mid-mission by an operator when or if there has been a breach and the
operator deems it safe to reset the behavior.

1.4 IvP Function Formulation

Once the vehicle has been detected within the save polygon, a subsequent exit from the save
polygon will result in the production of an IvP function designed to return the vehicle to the
polygon. The IvP function created for the BHV OpRegionV24 behavior is comprised of an independent
utility function related to desired speed, and one related to desired heading. In a typical mission
configuration, the OpRegionV24 behavior may be the only behavior running while recovering to the
save polygon, and thus the formulation of the IvP function may be overkill. However, this behavior,
like most if not all IvP behaviors, assumes there may be other behaviors vying for influence, e.g.,
collision or obstacle avoidance while recovering. Therefore the OpRegionV24 behavior produces the
IvP function described here.

Speed Utility

When the behavior is in the mode of recovering, and returning back to the save polygon, the
presumption is that a moderation of safe speed is called for while turning the vehicle around back
to the polygon. This speed is configurable with the parameter save speed with a default of 1 meter
per second. Speeds a bit higher or lower are tolerated up to a point, as the IvP function described
below indicate. Another consideration is to allow enough speed for the vehicle to turn effectively
since some vehicles experience a ”bare steerage” effect of not having sufficient ability to turn a low
speeds.

For the speed utility function, the OpRegion behavior uses the ZAIC PEAK utility, a MOOS-IvP C++
defined class (in lib ivpbuild) that accepts a few parameters and will produce a valid IvP function
defined over a single domain, in this case desired speed. The utility function, is given by:

u(v) =


|vp−v|

vp
· (100− umed) + umed | v − v̂ |≤ vp

|vb−v|
vb
· umed | v − v̂ |≤ vb

0 otherwise

(1)

7

Term ZAIC Param Behavior Config Meaning

u(v) n/a n/a Utility of candidate speed v

v̂ summit save spd Set speed, with top utility=100

vp peak width hard-coded ZAIC off-peak range

vb base width hard-coded ZAIC next off-peak range

umed summit delta hard-coded Utility at ZAIC off-peak range

Table 1: The terms for the speed utility function of the OpRegionV24 behavior.

Term Meaning

u(θ) Utility of candidate ownship heading θ

r(θ, poly) Range from ownship to save poly in direction θ. Range is -1 if no poly intersection in direction θ

rmax Max range for all possible θ values, excluding non intersection values

rmin Min range for all possible θ values, excluding non intersection values

Table 2: The terms for the heading utility function of the OpRegionV24 behavior.

The terms of the above equation are provided in the table below. The only term that is configurable
as behavior parameter is save spd which by default is 1.0 meters per second. This value will likely
need to be adjusted based on the particular vehicle in a mission.

The peak width, base width are set at 0.3 m/s. The summit delta is set to the value of 20.

Heading Utility

When the behavior is in the mode of recovering, a heading utility function is used, independently
to complement the speed utility function described above. The heading utility function is given
below. It utilizes a directional range calculation, the range from ownship to the save polygon,
given a candidate heading maneuver. If the trajectory along a given heading does not result in the
intersection of the polygon, it is given a value -1.

u(θ) =

{
rmax−r(θ,poly)

rmax−rmin
· 100 r(θ, poly) ≥ 0

0 otherwise
(2)

The remaining terms of the above equation are provided in the table below.

The Heading and Speed IvP Function

The independent speed and utility functions are combined into a single utility function over heading
and speed:

8

u(θ, v) = wθ · u(θ)⊕ wv · u(v) (3)

The construction of this IvP function is achieved through a MOOS-IvP C++ class called an
OF Coupler, which accepts the two one-variable functions, and a weight for each function. A two-
variable IvP function is produced. This coupling utilizes two weights, for each component utility
function. Five examples of different relative weights, and the resulting couple IvP function are
shown in Figure 4 below.

Figure 4: Five Couplings with Different weights: The heading-speed IvP function is created from a weighted
combination of the individual heading and speed functions. Five examples are shown. In the left, the function
primarily influences the desired speed, and on the right influences desired heading. In the middle, there is a balance
on both heading and speed influence.

When the vehicle is not heading toward the save polygon, e.g., when it has first exited the save
polygon, then the weights are 50-50. When the vehicle’s current heading is on an intersection course
with the save polygon, the weights are 95-5. These two cases are highlighted in Figure 4. The
motivation for this is to have an IvP function that is more influential about ownship speed initially,
to enhance safety when heading away from the save polygon. Once the vehicle is on a course to
return to the save polygon, the influence on speed is reduced, while the influence on heading is
retained.

An Example with IvP Function Output

In the example below in Figure 5, the vehicle has just exited the save polygon. Prior to exiting the
save polygon, the behavior produces no IvP function. On initial exit, the produced IvP function is
structured to prefer headings that would result in a trajectory returning to the polygon. Once the
vehicle has turned and its current heading is pointed toward the save polygon, the shape of the IvP
function is based on coupling with a weighting like the example shown on the far right in Figures 4.

9

Figure 5: OpRegionV24 IvP Function in Save Mode: The vehicle has breached the save polygon and is producing
an objective function to influence the vehicle to turn to the starboard to return to the save polygon.

1.5 Configuration Parameters and Examples

The following configuration parameters are supported for the OpRegionV24 behaviors, in addition
to the parameters support for all IvP behaviors.

Listing 1.1: Configuration Parameters for the OpRegion Behavior.

Parameter: Description

breached altitude flag: A MOOS variable-value pair to be posted when or if the vehicle breaches the
altitude limit set by this behavior. Section 1.6.

breached depth flag: A MOOS variable-value pair to be posted when or if the vehicle breaches the depth
limit set by this behavior. Section 1.6.

breached poly flag: A MOOS variable-value pair to be posted when or if the vehicle breaches the convex
polygon op area limit set by this behavior. Section 1.6.

breached time flag: A MOOS variable-value pair to be posted when or if the vehicle breaches the time
limit set by this behavior. Section 1.6.

core poly: The nominal operation area, a convex polygon. Section 1.3.1.

draw halt status: If true, a small (by default red) polygon is drawn around the vehicle when or if it
exits the halt polygon, following the vehicle until it returns to the within the halt
polygon. The default is true. Section 1.5.

draw save status: If true, a small (by default yellow) polygon is drawn around the vehicle when or if
it exits the save polygon, following the vehicle until it returns to the within the
save polygon. The default is true. Section 1.5.

halt poly: A convex polygon area, outside of which the behavior will generation an all-stop
indicator to the helm. Section 1.3.1.

max time: The max allowable time in seconds.

max depth: The max allowable depth in meters.

min altitude: The min allowable altitude in meters.

save poly: A convex polygon area, outside of which the behavior will generation an IvP
function to return within the polygon. Section 1.3.1.

reset: If set to true, and the behavior is currently in a mode where one of the operating
envelopes (time, depth, altitude or position) has been breached, the behavior will
be reset to original launch state. Section 1.3.4.

10

trigger entry time: The time required for the vehicle to have been within the halt polygon before
triggering the halt polygon requirement. Section 1.3.2.

trigger exit time: The time required to have been outside the polygon before declaring a polygon
containment failure. Section 1.3.2.

trigger on poly entry: If true, the vehicle must first be in the halt polygon before the halt polygon
constraint is enabled. The default is true. Section 1.3.2.

visual hints: Hints for visual properties in variables posted intended for rendering. See Section
1.5.

Example Configuration (Minimal)

Below is an minimal configuration block example, accepting default values for all other missing
parameters:

Listing 1.2: Example Minimal Config Block.

Behavior = BHV_OpRegionV24

{

name = opr24

pwt = 300

core_poly = pts={-80,-50:-30,-175:150,-100:95,25}

save_dist = 5

halt_dist = 15

}

Example Configuration (Full)

The below configuration shows all configuration parameters with defaults indicated where appropri-
ate:

Listing 1.3: Example Configuration Block.

11

Behavior = BHV_OpRegionV24

{

// General Behavior Parameters

// ---------------------------

name = opr24 // example

pwt = 300 // example

updates = OPREGION_UPDATES // example

// Params specific to this behavior

// --------------------------------

max_time = 0 // default (seconds)

max_depth = 0 // default (meters)

min_altitude = 0 // default (meters)

trigger_entry_time = 1 // default (seconds)

trigger_exit_time = 0.5 // default (seconds)

core_poly = pts={-80,-50:-30,-175:150,-100:95,25}

save_dist = 5

halt_dist = 15

breached_altitude_flag = SAY_MOOS = min altitude has been exceeded

breached_depth_flag = SAY_MOOS = max depth has been exceeded

breached_poly_flag = SAY_MOOS = halt region has been violated

breached_time_flag = SAY_MOOS = max mission time has been exceeded

save_flag = SAY_MOOS = save region has been violated

savex_flag = RECOVER_POSITION=$[OSX],$[OSY]

visual_hints = vertex_size = 0 // default

visual_hints = edge_color = aqua // default

visual_hints = edge_size = 1 // default

}

Visual Configuration Options

The visual artifacts generated by the OpRegionV24 behavior are related to the (a) the polygon regions
and (b) small polygon indicators drawn around the vehicle to indicate state. The polygon regions
are shown in Figure 1. The polygon indicators drawn around the vehicle are shown in Figure 2. The
rendering style shown in these figures is the default, but the visual artifacts can be either turned off,
or rendered in different colors or sizes.

There are five polygon renderings that can be modified: (1) the core polygon, (2) the save polygon,
(3) the halt polygon, (4) the save status and (5) halt status polygons. There are also five visual
aspects for each polygon that may be modified: (a) the vertex size, (b) the edge size, (c) the vertex
color, (d) the edge color, (e) the label color.

By setting edge color=green, this sets the default edge color for all five polygons. This can be
overruled for say the core polygon by setting core edge color=white. If the latter is left unspecified,
the default aspects are used. In the example lines below, the first five lines are the default aspects
for all polygons. The vertex color is moot since the vertex size is zero. The middle three lines
overrule the default edge colors for the three region polygons with the colors shown in Figure 1.
The last two lines below override the edge colors for the save and halt status polygons to yellow and
red as shown in Figure 2. All lines below represent the defaults used by the OpRegionV24 behavior if

12

no visual hints were provided in the behavior configuration.

visual_hints = vertex_size = 0

visual_hints = edge_size = 1

visual_hints = vertex_color = gray50

visual_hints = edge_color = gray50

visual_hints = label_color = off

visual_hints = core_edge_color = gray30

visual_hints = save_edge_color = gray50

visual_hints = halt_edge_color = pink

visual_hints = save_status_edge_color = yellow

visual_hints = halt_status_edge_color = red

The posting of the save status and halt status polygons (Figure 2) can be disabled simply with:

draw_save_status = false

draw_halt_status = false

1.6 Flags and Macros

The OpRegionV24 behavior supports the below set of event flags in addition to the standard
behavior flags, e.g., endflags, runflags. These are:

� breached altitude flag: If the minimum altitude constraint is enabled, this flag or flags are
posted once, when or if the vehicle altitude first becomes lower than the limit.

� breached depth flag: If the maximum depth constraint is enabled, this flag or flags are posted
once, when or if the vehicle depth first becomes greater than the limit.

� breached poly flag: If the halt polygon is specified, this flag or flags are posted once, when or
if the vehicle exits the polygon, and has been outside the polygon for the duration specified
by the trigger exit time.

� breached time flag: If the maximum time constraint is enabled, this flag or flags are posted
once, when or if the vehicle first exits the maximum time limit.

� save flag: If the save polygon is enabled, this flag is posted once, when or if the vehicle first
exits the save polygon.

� savex flag: If the save polygon is enabled, this flag is posted when or if the vehicle first exits
the save polygon, and on each iteration thereafter so long as the vehicle remains outside the
save polygon.

The following macros are supported in the OpRegionV24 behavior. These macros will be expanded in
any event flag, including event flags defined for all IvP behaviors as well as event flags defined only
for the OpRegionV24 behavior.

� $[CORE POLY]: The specification of the polygon representing the core operation area.

13

� $[SAVE POLY]: The specification of the polygon representing the operation area, outside which
the vehicle will actively attempt to return to.

� $[HALT POLY]: The specification of the polygon representing the halt area, outside which the
vehicle will post an emergency all-stop message.

� $[ALT LEFT]: If a minimum altitude is enabled, this is the number of meters remaining before
the minimum altitude has been breached.

� $[DEPTH LEFT]: If a maximum depth is enabled, this is the number of meters remaining before
the maximum depth has been breached.

� $[TIME LEFT]: If a maximum mission time is enabled, this is the number of seconds remaining
before the maximum mission time has been breached.

� $[SECS IN HALT POLY]: The number of seconds the vehicle has been inside the halt polygon.

� $[SECS OUT HALT POLY]: The number of seconds the vehicle has been outside the halt polygon
(once it has been inside).

� $[SECS OUT SAVE POLY]: The number of seconds the vehicle has been outside the save polygon
(once it has been inside).

� $[DIST TO CORE]: Distance in meters of the vehicle to the boundary of the core polygon.

� $[TRAJ DIST TO CORE]: Distance in meters of the vehicle to the boundary of the core polygon,
in the direction of the current vehicle trajectory.

� $[ETA TO CORE]: Estimated time of arrival (ETA), in seconds, of the vehicle if it were to
instantaneously change direction and drive directly to the closest point of exit of the core
polygon at the top vehicle speed.

� $[TRAJ ETA TO CORE]: ETA of the vehicle on its current heading and speed reaching the boundary
of the core polygon.

� $[DIST TO SAVE]: Distance in meters of the vehicle to the boundary of the save polygon.

� $[TRAJ DIST TO SAVE]: Distance in meters of the vehicle to the boundary of the save polygon,
in the direction of the current vehicle trajectory.

� $[ETA TO SAVE]: Estimated time of arrival (ETA), in seconds, of the vehicle if it were to
instantaneously change direction and drive directly to the closest point of exit of the save
polygon at the top vehicle speed.

� $[TRAJ ETA TO SAVE]: ETA of the vehicle on its current heading and speed reaching the boundary
of the core polygon.

� $[DIST TO HALT]: Distance in meters of the vehicle to the boundary of the halt polygon.

� $[TRAJ DIST TO HALT]: Distance in meters of the vehicle to the boundary of the halt polygon,
in the direction of the current vehicle trajectory.

� $[ETA TO HALT]: Estimated time of arrival (ETA), in seconds, of the vehicle if it were to
instantaneously change direction and drive directly to the closest point of exit of the halt
polygon at the top vehicle speed.

� $[TRAJ ETA TO HALT]: ETA of the vehicle on its current heading and speed reaching the boundary
of the halt polygon.

14

	The OpRegionV24 Behavior
	Intended Mission Use
	The Core Algorithm
	Configuration and Operation Mechanics
	IvP Function Formulation
	Configuration Parameters and Examples
	Flags and Macros

