2/22/24

Lecture 4: Introduction to MOOS Programming

Web: http://oceanai.mit.edu/2.680

Email:
Mike Benjamin, mikerb@mit.edu

2.681 Spring 2024 — Marine Autonomy — “Programming MOOS Applications” by s L SIS Photo by Arjan Vermeij, CMRE

== T

Big Picture Preview
of Today’s Lecture and Lab

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

2/22/24

I MITMECHE

Adding an Odometry MOOS App

MOOS
Classes

Michael Benjamin, Spring 2024

alpha.moos I
: P! alpha.bhv DESIRED_HEADING x

DESIRED_SPEED NODE_REPORT 3

DESIRED_HEADING
DESIRED_SPEED

pMarinePID

DESIRED_RUDDER
! DESIRED_THRUST

: DESIRED_RUDDER (]
DESIRED_THRUST

P >
! NAV_X, NAV_Y L imMari J L, d ter | ;
: NAV_HEADING v :
: NAV_SPEED NAV_X NAV_HEADING NAV_X NAV_HEADING NODE_REPORT :
i NAV_Y NAV_SPEED NAV_Y NAV_SPEED H
i NODE_REPORT ;
p N
NAV_X
- pOdometry ODOMETRY_DIST
NAV_Y L J

In today’s lab we will write our first MOOS App, to calculate odometry distance
» We will then use this MOOS app to be involved in the Helm’s decision-making

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

I MITMVIECHE

Adding an Odometry MOOS App

alpha.moos
alpha.bhv

DESIRED_HEADING
DESIRED_SPEED

DESIRED_RUDDER
DESIRED_THRUST
NAV_X, NAV_Y
NAV_HEADING

(pMarinePID) .
= ™~ MOOSDB

uSimMarine

The Alder Mission

MIT 2.680

pNodeReporter

NAV_SPEED NAV_X NAV_HEADING NODE_REPORT
NAVLY NAV_SPEED
NODE_REPOR
NAV_X Odometi T
NAV_Y P ry ODOMETRY_DIST

MOOS
Classes

Michael Benjamin, Spring 2024

Running the Alder Mission (in your moos-ivp-extend tree)

$ cd moos-ivp-extend/missions/alder
$ pAntler alder.moos —-MOOSTimeWarp=10

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

2/22/24

I MITMECHE

Adding an Odometry MOOS App Ilrl-

alpha.moos
alpha.bhv

DESIRED_HEADING
DESIRED_SPEED

)
pMarinePID v\ r

2]

The Alder Mission

with Odometry

MIT 2.680

MOOSDB

MOOS
Classes

Michael Benjamin, Spring 2024

XY uSimMarine pNodeReporter
NAV_HEADING
NAV_SPEED X NAV_H NAV_X NAV_HEADING
AV NAVLY NAV_SPEED
NAV_X Odomet YDOMETRY_DI
NAV_Y P! ry ODOMETRY_DI

» The Odometry App will publish odometry distance
The Helm will transition to return home after a certain distance has been achieved.

MOOS
Conventions

AppCasting
MOOS Apps

MOOS App éerialization
Time Warp

Functions
Dept of Mechanical Engineering

MOOS
Messages

I MITMVIECHE

Adding an Odometry MOOS App Ilrl-

MOOS
Classes

The Alder Mission
with Odometry

MIT 2.680

The Alder Mission

MIT 2.680

The Odometry App will publish odometry distance
achieved.

The Helm will transition to return home after a certain distance has been

MOOS
Conventions

MOOS App éerialization AppCasting
Time Warp MOOS Apps

Functions
= Dept of Mechanical Engineering

MOOS MOOS
Messages Mail

Michael Benjamin, Spring 2024

2/22/24

e Intro to MOOS Programming Outline Illil-

»- MOOS App Class Hierarchy
Part 1: General * MOOS Messages and Posting to the MOOSDB
M&ageApE)sp « Registering for and Publishing Mail
» Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()
* Serializing and De-Serializing Messages

* Time Warp
Part 2: » Motivation and How to use Appcasting
Appeasting « How to convert an existing MOOSApp to an AppCastingMOOSApp
Part 3 Good : » Command-Line Switches
MOOS App * Documentation
CATIHERS * Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

| LS MOOS Applications and Inheritance i

* In general, MOOS applications are a subclass of the MOOSApp superclass.
» The parent class implementation does most of the work behind the scenes.

messages subclass

Your

Application Application Application

Process Process

A B

Each application:
- Publishes certain messages
- Subscribes for certain messages

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

2/22/24

.ll MITMECHE

The MOOSApp Superclass

Each MOOS application has the option of overriding key parent class virtual functions.

Michael Benjamin, Spring 2024

CMOOSApp: :Run ()

{ Startup HOnNewMailH Iterate J

@

D @ D @ D

::0OnStartUp () ::0OnNewMail () ::Iterate()

{
}

{ {
} }

Key overridden virtual functions in a derived application

Subscribe Handle Mail Process/Publish

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

]I MITMECHE

Example Class Definition

The Relayer class definition is in:
moos-ivp-extend/
trunk/src/pXRelayTest/

O Joy U WwWNE O

e el e e
U WN RO

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer : public CMOOSApp
{
public:
Relayer () ;
virtual ~Relayer() {};:

bool OnNewMail (MOOSMSG LIST &NewMail) ;
bool OnStartUp() ;

bool Iterate();

bool OnConnectToServer () ;

void RegisterVariables() ;

protected:
// Local member variables

}:

Include CMOOSApp
definition and subclass

Declare the constructor
Declare and define the
destructor.

Declare the CMOOSApp
superclass virtual
functions for
overloading

Declare a utility
function where
registrations happen

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

2/22/24

LS MOOS Messages Nr

* The form of the data passed between clients is constrained by MOOS:

Name | The name of the data
StringVal | Data in string format
DoubleVal | Numeric double float data
Source | Name of client that sent this data to the MOOSDB
SourceAux = Optional additional information about the source client
Time = Time at which the data was written
DataType = Type of data (STRING or DOUBLE or BINARY)
MessageType = Type of message (usually NOTIFICATION)

Community | The community to which the source process belongs

» Typically, the data type is either a string or a double.
» Binary data may be packed into the string field (images or other data structures etc)

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

LS Posting MOOS Messages |I|i|'

(from with an application)

Messages are posted with the Notify () function.

string moos var = “WELCOME MESSAGE”;
string moos msg = “Hello World!”;
Notify (moos var, moos msgq);

Name | The name of the data
StringVal | Data in string format
DoubleVal | Numeric double float data
ISGErEEl Name of client that sent this data to the MOOSDB
SourceAux | Optional additional infor about the source client
Time at which the data was written
Type of data (STRING or DOUBLE or BINARY)
Type of message (usually NOTIFICATION)
The community to which the source process belongs

Caller
specified

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

2/22/24

L Posting MOOS Messages Illil-

(from with an application)

Messages are posted with the Notify () function.

string moos_var = “WELCOME MESSAGE”;
string moos msg = “Hello World!”;
Notify (moos var, moos msgq);

Name | The name of the data
StringVal | Data in string format
DoubleVal'| Numeric double float data
ISGUrGEl Name of client that sent this data to the MOOSDB
SourceAux | Optional additional infor about the source client
Time at which the data was written
Type of data (STRING or DOUBLE or BINARY)
Type of message (usually NOTIFICATION)
The community to which the source process belongs

Caller
specified

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

Michael Benjamin, Spring 2024

| LS Posting MOOS Messages Nr

More examples

Posting Literals (string)

Notify ("WELCOME MESSAGE”, “Hello World”);

Posting Literals (double)

Notify (“TEMPERATURE”, 98.6);

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

2/22/24

MOOS Message Names Illil-

By convention, MOOS message names are all UPPER CASE letters with
numbers and underscores. A further convention is that that begin with a letter.

Good Examples:

TEMP

CURRENT VAL
COMPONENT 1
COMPONENT 278
TIME TO COLLISION

Meh:

Bad-idea
7854
_HELLO?

That being said, MOOS will let almost anything through, even white space. Why?

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions
Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

LA Posting MOOS Messages

I I I .
Message Source Information I I

* When a message is posted to the MOOSDB, the source field is automatically filled in.

If Application pFooBar posts a message:

Notify (“WELCOME MESSAGE”, “Hello World”);

1 4

Received by another app:

MOOSMsg msg;

cout << “Wariable:
cout << “Walue:
cout << “Source:

V" << msg.GetKey () << endl;
W << msg.GetString() << endl;
Y << msg.GetSource () << endl;

The output would be:

Variable: WELCOME MESSAGE
Value: Hello World
Source: pFooBar

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions
Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

2/22/24

T Posting MOOS Messages Illil-

Specifying the Auxiliary Source

*« When a message is posted to the MOOSDB, the auxiliary source field is typically left empty.

If Application pFooBar posts a message:

‘Notify(“WELCOME_MESSAGE”, “Hello World”, “Special Greeter”); ‘

2
Received by another app:
MOOSMsg msg;
cout << “Wariable: “ << msg.GetKey() << endl;
cout << “Walue: " << msg.GetString () << endl;
cout << “Source: Y << msg.GetSource () << endl;
cout << “SrcAux: W << msg.GetSourceAux () << endl;

The output would be:

Variable: WELCOME MESSAGE
Value: Hello World
Source: pFooBar

SrcAux: Special Greeter

MOOS

MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions
Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

e Posting MOOS Messages Mir

Timestamps

* The timestamp of a message posted to the MOOSDB, is the time when the message was posted.
* Not the time received by the MOOSDB. Not the time received by the receiving application.

If Application pFooBar posts a message:
‘Notify(“WELCOME_MESSAGE", “Hello World”); ‘

Received by another app:

MOOSMsg msg;

cout << “NowTime: “ << MOOSTime () << endl;
cout << “Wariable: “ << msg.GetKey () << endl;

cout << “WValue: Y << msg.GetString() << endl;
cout << “MsgTime: “ << msg.GetTime () << endl;

The output would be:

NowTime: 1.39273e+09
Variable: WELCOME_ MESSAGE
Value: Hello World
MsgTime: 1.39273e+09

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions
Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

2/22/24

]I U MOOQOS Message Functions |||i|-

(nearly) full list

A summary of functions defined on MOOS messages:

MOOSMsg msg;

string msg.GetKey () // Get the MOOS variable name
string msg.GetName () // Get the MOOS variable name
bool msg.IsString() // true if message type is string
bool msg.IsDouble () // true if message type is double
string msg.GetString () // Get the message string contents
String msg.GetDouble () // Get the message double contents
string msg.GetSource () // Get the sender information

string msg.GetSourceBAux () // Get further sender information
string msg.GetCommunity () // Get the sender community information
double msg.GetTime () // Get the time message was posted

There’s more. If you want to see for yourself, take a look at:

$ cd moos-ivp/MOOS/MOOSCore/Core/1ibMOOS/Comms/include/MO0OS/1ibMOOS/Comms /
$ emacs MOOSMsg.h

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

]ﬂ e Intro to MOOS Programming Outline Illil-

* MOOS App Class Hierarchy
Part 1: General * MOOS Messages and Posting to the MOOSDB
MOQOS App . otar - .
Concepts » Registering for and PubI!shlng Mail .
« Key Overloadable Functions: OnNewMail(), OnStartUp(), lterate()
* Serializing and De-Serializing Messages

* Time Warp
Part 2: » Motivation and How to use AppCasting
HppEEsiig « How to convert an existing MOOSApp to an AppCastingMOOSApp
Bt 3 G - * Command-Line Switches
MOOS App * Documentation
CETIIE S * Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

10

2/22/24

T Registering for MOOS Mail Messages Mir

(from within an application)

* Messages are registered with the Register () function.

bool Register (string, double);

T 1

Name of the Min time interval
MOQOS Variable between notifcations

Register ("WELCOME MESSAGE”, 0);
Register (“"GOODBYE MESSAGE”, 0.5);

* Incoming mail for WELCOME_MESSAGE will be received each time
another client posts to this variable.

* Incoming mail for GOODBYE_MESSAGE to be received at most twice per
second.

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

e More on Registering for MOOS Mail |||i|-

(In case you were wondering....)

Q: How is mail read by an application?
A: In the OnNewMail() function. (We'll get to that shortly)

Q: What are legal variables names?

A: Anything but an empty string allowed. By convention, variables consist
solely of uppercase letters, numbers, and the underscore character.

Q: Are there any ill effects from registering for a variable twice?

A: No. The 2nd registration is just ignored. Even if the min-interval arg is
different!

Q: Can an application send mail to itself?
‘ A: Yes, but the app still must register for it like other apps.

Q: Is it possible to un-register for a variable? (Why would one want to?)

| A: Yes, the call is UnRegister(VARNAME); |

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

11

2/22/24

1 1L i Intro to MOOS Programming Outline Illil-

* MOOS App Class Hierarchy
Part 1: General * MOOS Messages and Posting to the MOOSDB
M&ageApi’sp « Registering for and Publishing Mail
»- Key Overloadable Functions: OnNewMail(), OnStartUp(), lterate()
« Serializing and De-Serializing Messages

* Time Warp
Part 2: » Motivation and How to use AppCasting
Appeasting « How to convert an existing MOOSApp to an AppCastingMOOSApp
Part 3 Good : * Command-Line Switches
MOOS App * Documentation
CATIHERS » Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

| LS Our Old Friend pXRelay Nir

The pXRelay application works as follows:
* It registers for mail on a given variable (e.g., “APPLES”).
* When it receives mail for the variable, it increments a local “received” counter.
* For every mail received, it publishes on another given variable (e.g., “PEARS”).

Initial state:
(No activity)
pXRelay_Apples pXRelay_Pears
tally recd = 0 tally recd = 0O
tally sent = 0 tally sent = 0
incoming var=“APPLES” incoming var=“PEARS”
outgoing var=“PEARS” outgoing var=“APPLES”

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

12

2/22/24

[l Triggering the pXRelay Example i

(1) Someone publishes to “APPLES”
(2) pXRelay_Apples receives the mail, increments its “tally received” counter.

uPokeDB

APPLES=0

APPLES=0

pXRelay_Apples pXRelay_Pears
tally recd = 1 e tally recd = 0
tally sent = 0 tally sent = 0O
incoming var=“APPLES” incoming var=“PEARS”
outgoing var=“PEARS” outgoing var=“APPLES”

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

=" Triggering the pXRelay Example i

(5) pXRelay_Pears notes that tally_sent is less than tally_received.
(6) pXRelay_Pears publishes APPLES=1, and increments its tally_sent counter.

APPLES=1 APPLES=1
pXRelay_Apples pXRelay_Pears
tally recd = 2 e tally recd = 1 &
tally sent =1 tally sent =1 e
incoming var=“APPLES” incoming var=“PEARS”
outgoing var=“PEARS” outgoing var=“APPLES”

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

13

2/22/24

Our Old Friend pXRelay Illil-

What’s happening inside
» OnStartUp(),

* OnNewMail(),

* lterate()?

incoming var=“APPLES”
outgoing var=“PEARS”

Initial state:

(No activity)
pXRelay_Apples pXRelay_Pears
tally recd = 0 tally recd = 0
tally sent = 0 tally sent = 0

incoming var=“PEARS”
outgoing var=“APPLES”

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

.ll MITMECHE

The “Relayer” Class Definition

moos-ivp-extend/trunk/

src/pXRelayTest/

The Relayer class definition is in:

W Joy U W N EFEO

{

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer : public CMOOSApp <j

public:

protected:

Include CMOOSApp definition
and subclass it

Relayer();

virtual ~Relayer() {}; Declare the constructor
Declare and define the
destructor.

bool OnNewMail (MOOSMSG LIST &NewMail);

bool OnStartUp() ;

. Declare the CMOOSApp
bool Iterate(); superclass virtual
bool OnConnectToServer () ; functions for overloading

Declare a utility function
where registrations happen

void RegisterVariables();

Keep track of received and
outgoing message counts

unsigned long int m tally recd;

unsigned long int m tally sent;

Store the user’s choice for
incoming and outgoing

std::string m incoming var; variables.

std::string m_outgoing var;

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

14

2/22/24

]I MITMECHE

The “Relayer” Class Definition

The Relayer class definition is in:

moos-ivp-extend/trunk/

src/pXRelayTest/

MOOS
Classes

Michael Benjamin, Spring 2024

W ~Joy U W N EFEO

S N el e e e
OV WJo T WN RO W

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer public CMOOSApp
{
public:
Relayer();
virtual ~Relayer() {}:

bool OnNewMail (MOOSMSG LIST &NewMail);
bool OnStartUp () ;

bool Iterate();

bool OnConnectToServer () ;

void RegisterVariables();

protected:
unsigned long int m tally recd;
unsigned long int m tally sent;

std::string
std::string
}i

m_incoming_varj;
m_outgoing_var;

G

MOOS
Messages

MOOS MOOS App Serialization AppCasting MOOS
Mail Functions Time Warp MOOS Apps Conventions

Include CMOOSApp definition
and subclass it

Declare the constructor
Declare and define the
destructor.

Declare the CMOOSApp
superclass virtual
functions for overloading

Declare a utility function
where registrations happen

Keep track of received and
outgoing message counts

Store the user’s choice for
incoming and outgoing
variables.

Dept of Mechanical Engineering

.ll MITMECHE

The “Relayer” Class Definition

The Relayer class definition is in:

moos-ivp-extend/trunk/

src/pXRelayTest/

MOOS
Classes

Michael Benjamin, Spring 2024

W Joy U W N EFEO

S N e el el e e
CwW WJo T WN RO W

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer public CMOOSApp
{
public:
Relayer();
virtual ~Relayer() {};

bool OnNewMail (MOOSMSG LIST &NewMail);
bool OnStartUp() ;

bool Iterate();

bool OnConnectToServer () ;

void RegisterVariables();

protected:
unsigned long int m tally recd;
unsigned long int m tally sent;

std::string
std::string
bi

m_incoming var;
m_outgoing var;

G

Include CMOOSApp definition
and subclass it

Declare the constructor
Declare and define the
destructor.

Declare the CMOOSApp
superclass virtual
functions for overloading

Declare a utility function
where registrations happen

Keep track of received and
outgoing message counts

Store the user’s choice for
incoming and outgoing
variables.

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

15

2/22/24

]I MITMECHE

The “Relayer” Class Definition

The Relayer class definition is in:

moos-ivp-extend/trunk/

src/pXRelayTest/

MOOS
Classes

Michael Benjamin, Spring 2024

W ~Joy U W N EFEO

S N el e e e
OV WJo T WN RO W

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer public CMOOSApp
{
public:
Relayer();
virtual ~Relayer() {}:

bool OnNewMail (MOOSMSG LIST &NewMail);
bool OnStartUp () ;

bool Iterate();

bool OnConnectToServer () ;

void RegisterVariables();

protected:
unsigned long int m tally recd;
unsigned long int m tally sent;

std::string
std::string
}i

m_incoming_varj;
m_outgoing_var;

MOOS
Messages

MOOS MOOS App Serialization AppCasting MOOS
Mail Functions Time Warp MOOS Apps Conventions

Include CMOOSApp definition
and subclass it

Declare the constructor
Declare and define the
destructor.

Declare the CMOOSApp
superclass virtual
functions for overloading

Declare a utility function
where registrations happen

Keep track of received and
outgoing message counts

Store the user’s choice for
incoming and outgoing
variables.

Dept of Mechanical Engineering

.ll MITMECHE

The “Relayer” Class Definition

The Relayer class definition is in:

moos-ivp-extend/trunk/

src/pXRelayTest/

MOOS
Classes

Michael Benjamin, Spring 2024

W Joy U W N EFEO

S N e el el e e
CwW WJo T WN RO W

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer public CMOOSApp
{
public:
Relayer();
virtual ~Relayer() {};

bool OnNewMail (MOOSMSG LIST &NewMail);
bool OnStartUp() ;

bool Iterate();

bool OnConnectToServer () ;

void RegisterVariables();

protected:
unsigned long int m tally recd;
unsigned long int m tally sent;

std::string
std::string
bi

m_incoming var;
m_outgoing var;

@

Include CMOOSApp definition
and subclass it

Declare the constructor
Declare and define the
destructor.

Declare the CMOOSApp
superclass virtual
functions for overloading

Declare a utility function
where registrations happen

Keep track of received and
outgoing message counts

Store the user’s choice for
incoming and outgoing
variables.

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

16

2/22/24

.ll MITMECHE

The “Relayer” Class Definition

The Relayer class definition is in:
moos-ivp-extend/trunk/

src/pXRelayTest/

W ~Joy U W N EFEO

S N el e e e
OV WJo T WN RO W

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer : public CMOOSApp
{
public:
Relayer();
virtual ~Relayer() {}:

bool OnNewMail (MOOSMSG LIST &NewMail);
bool OnStartUp () ;

bool Iterate();

bool OnConnectToServer () ;

void RegisterVariables();

protected:
unsigned long int m tally recd;
unsigned long int m tally sent;

std::string m_incoming var;
std::string m outgoing_var;

}i

and subclass it

Include CMOOSApp definition

Declare the constructor
Declare and define the
destructor.

Declare the CMOOSApp
superclass virtual

functions for overloading

Declare a utility function
where registrations happen

outgoing message counts

Keep track of received and

Store the user’s choice
incoming and outgoing
variables.

for

MOOS MOOS
Classes Messages

Michael Benjamin, Spring 2024

MOOS MOOS App Serialization AppCasting MOOS
Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

]I MITMECHE

The “Relayer” Class Definition

The Relayer class definition is in:
moos-ivp-extend/trunk/

src/pXRelayTest/

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

W Joy U W N EFEO

#include ”MOOS/1ibMOOS/MOOSLib.h”
class Relayer : public CMOOSApp
{
public:
Relayer();
virtual ~Relayer () {};

bool OnNewMail (MOOSMSG LIST ewMail) ;
bool OnStartUp() ;

bool Iterate();

bool OnConnectToServer () ;

void RegisterVariables();

protected:

CONVENTION:

Functions declared before
member variables

unsigned long int m tally recd;
unsigned long int m tally sent;

std::string m incoming var;
std::string m_outgoing var;

CONVENTION:

Class member variables
begin with m_

Dept of Mechanical Engineering

17

2/22/24

.ll MITMECHE

The pXRelay OnStartUp() Method

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay —

The INCOMING_VAR and
OUTGOING_VAR

MOOS
Classes

Michael Benjamin, Spring 2024

O Joy bW NE O

bool Relayer::0nStartUp () {
{

STRING_LIST sParams;
m_MissionReader.GetConfiguration (GetAppName (), sParams);

STRING LIST: :iterator p;
for (p = sParams.begin(); p!=sParams.end(); p++) {

string line = *p;
string param = MOOSChomp (line, "=");
string value = line;

if (MOOSStrCmp (param, "INCOMING VAR"))
m_incoming var = value;

else if (MOOSStrCmp (param,
m outgoing var = value;

"OUTGOING_VAR"))

}

RegisterVariables();
return (true);

Declare
function

Get the list of
parameters from
the .moos file

Iterate through
the list of
param=value
pairs

If param matches,
store value in
local member var

If param matches,
store value in
local member var

Now that incoming
var is known,
register for it!

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

]I MITMECHE

The pXRelay OnStartUp() Method

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay —

The INCOMING_VAR and
OUTGOING_VAR

MOOS
Classes

Michael Benjamin, Spring 2024

O Joy b W N E O

S e el el e e
O W WJo U™ WNRF O W

bool Relayer::0nStartUp ()
{
STRING_LIST sParams;

m MissionReader.GetConfiguration (GetAppName (), sParams);

STRING_LIST::iterator p;
for(p = sParams.begin(); p!=sParams.end(); p++) {

string line = *p;
string param = MOOSChomp (line, "=");
string value = line;

if (MOOSStrCmp (param, "INCOMING VAR"))
m_incoming var = value;

else if (MOOSStrCmp (param,
m_outgoing var = value;

"OUTGOING_VAR"))

}

RegisterVariables () ;
return (true);

]

Declare
function

Get the list of
parameters from
the .moos file

Iterate through
the list of
param=value
pairs

If param matches,
store value in
local member var

If param matches,
store value in
local member var

Now that incoming
var is known,
register for it!

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

18

2/22/24

.ll MITMECHE

The pXRelay OnStartUp() Method

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay —

The INCOMING_VAR and
OUTGOING_VAR

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

O Joy bW NE O

bool Relayer::0nStartUp ()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration (GetAppName (), sParams);

STRING LIST: :iterator p;
for (p = sParams.begin(); p!=sParams.end(); p++) {

string line = *p;
string param = MOOSChomp (line, "=");
string value = line;

if (MOOSStrCmp (param, "INCOMING VAR"))
m_incoming var = value;

else if (MOOSStrCmp (param, "OUTGOING VAR"))
m outgoing var = value;

}

RegisterVariables();
return (true);

Declare
function

Get the list of

parameters from
the .moos file

Iterate through
the list of
param=value
pairs

If param matches,
store value in
local member var

If param matches,
store value in
local member var

Now that incoming
var is known,
register for it!

Dept of Mechanical Engineering

]I MITMECHE

The pXRelay OnStartUp() Method

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay —

The INCOMING_VAR and
OUTGOING_VAR

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

O Joy b W N E O

S e el el e e
O W WJo U™ WNRF O W

bool Relayer::0nStartUp ()
{
STRING_LIST sParams;

m MissionReader.GetConfiguration (GetAppName (), sParams);

STRING_LIST::iterator p;
for(p = sParams.begin(); p!=sParams.end(); p++) {

string line = *p;

string param = MOOSChomp (line, "=");

string value = line;

if (MOOSStrCmp (param, "INCOMING VAR")) <j

m_incoming var = value;

else if (MOOSStrCmp (param, "OUTGOING VAR"))
m_outgoing var = value;

}

RegisterVariables () ;
return (true);

Declare
function

Get the list of

parameters from
the .moos file

Iterate through
the list of
param=value
pairs

If param matches,
store value in
local member var

If param matches,
store value in
local member var

Now that incoming
var is known,
register for it!

Dept of Mechanical Engineering

19

2/22/24

.ll MITMECHE

The pXRelay OnStartUp() Method

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay —

The INCOMING_VAR and
OUTGOING_VAR

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

O Joy bW NE O

bool Relayer::0nStartUp ()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration (GetAppName (), sParams);

STRING LIST: :iterator p;
for (p = sParams.begin(); p!=sParams.end(); p++) {

string line = *p;
string param = MOOSChomp (line, "=");
string value = line;

if (MOOSStrCmp (param, "INCOMING VAR"))
m_incoming var = value;

else if(MOOSStrCmp (param, "OUTGOING VAR")) <$j
m_outgoing var = value;

}

RegisterVariables();
return (true);

Declare
function

Get the list of
parameters from
the .moos file

Iterate through
the list of
param=value
pairs

If param matches,
store value in
local member var

If param matches,
store value in
local member var

Now that incoming
var is known,
register for it!

Dept of Mechanical Engineering

]I MITMECHE

The pXRelay OnStartUp() Method

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay —

The INCOMING_VAR and
OUTGOING_VAR

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

O Joy b W N E O

S e el el e e
O W WJo U™ WNRF O W

bool Relayer::0nStartUp ()
{
STRING_LIST sParams;

m MissionReader.GetConfiguration (GetAppName (), sParams);

STRING_LIST::iterator p;
for(p = sParams.begin(); p!=sParams.end(); p++) {

string line = *p;
string param = MOOSChomp (line, "=");
string value = line;

if (MOOSStrCmp (param, "INCOMING VAR"))
m_incoming var = value;

else if (MOOSStrCmp (param, "OUTGOING VAR"))
m_outgoing var = value;

}

RegisterVariables () ;
return (true);

{mmm

Declare
function

Get the list of
parameters from
the .moos file

Iterate through
the list of
param=value
pairs

If param matches,
store value in
local member var

If param matches,
store value in
local member var

Now that incoming
var is known,
register for it!

Dept of Mechanical Engineering

20

2/22/24

.'I MITMECHE

The pXRelay OnNewMail() Method

The OnNewMail ()

method is called on each application

iteration. If there is no mail, it simply returns true.

0 | bool Relayer::OnNewMail (MOOSMSG LIST &NewMail)
1 {

2 MOOSMSG_LIST::reverse_iterator p;

3 for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
4 CMOOSMsg &msg = *p;

5

6 string key = msg.GetKey();

7

8 if (key == m incoming var)

9 m tally recd++;

10 }

11

12 return (true);

13 1}

< ‘Declare function

MOOS
Classes

Michael Benjamin, Spring 2024

Iterate through the
MOOS messages

GetKey () returns
the MOOS variable

If the key matches
the user-specified
incoming key,
increment the tally

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

]I MITMECHE

The pXRelay OnNewMail() Method

The OnNewMail ()

method is called on each application

iteration. If there is no mail, it simply returns true.

0 || bool Relayer::0OnNewMail (MOOSMSG LIST &NewMail)
1 {

2 MOOSMSG_LIST::reverse iterator p;

3 for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
4 CMOOSMsg &msg = *p;

5

6 string key = msg.GetKey () ;

7

8 if (key == m_incoming var)

9 m tally recd++;

10 } B B

11

12 return (true) ;

13 1}

(=

MOOS
Classes

Michael Benjamin, Spring 2024

‘Declare function

Iterate through the
MOOS messages

GetKey () returns
the MOOS variable

If the key matches
the user-specified
incoming key,
increment the tally

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

21

2/22/24

.'I MITMECHE

The pXRelay OnNewMail() Method

The onNewMail () method is called on each application
iteration. If there is no mail, it simply returns true.

0 | bool Relayer::OnNewMail (MOOSMSG LIST &NewMail)
1 {
2 MOOSMSG LIST::reverse iterator p;
3 for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
4 CMOOSMsg &msg = *p;
5
6 string key = msg.GetKey () ; <i:::::::::::]
7
8 if (key == m incoming var)
9 m tally recd++;
10 }
11
12 return (true);
13 ||}

Declare function

Iterate through the
MOOS messages

GetKey () returns
the MOOS variable

If the key matches
the user-specified
incoming key,
increment the tally

MOOS
Classes

Michael Benjamin, Spring 2024

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

]I MITMECHE

The pXRelay OnNewMail() Method

The onNewMail () method is called on each application
iteration. If there is no mail, it simply returns true.

0 || bool Relayer::0OnNewMail (MOOSMSG LIST &NewMail)
1 {

2 MOOSMSG_LIST::reverse iterator p;

3 for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
4 CMOOSMsg &msg = *p;

5

6 string key = msg.GetKey () ;

7

8 if (key == m incoming var) <:|
9 m tally recd++;

10 } B B

11

12 return (true) ;

13 ||}

Declare function

Iterate through the
MOOS messages

GetKey () returns
the MOOS variable

If the key matches
the user-specified
incoming key,
increment the tally

MOOS
Classes

Michael Benjamin, Spring 2024

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

22

2/22/24

Lo The pXRelay lterate() Method nir

The I1terate () method is called on each application iteration — after onNewMail () is called.

bool Relayer::Iterate() <:|

0

1 { : :

2 unsigned deficit = m tally recd - m tally sent; RSB S e A

- - - - sent less than we’ve

3 received

4

5 for (unsigned int i=0; i<deficit; i++) { Make N postings

6 m _tally sent++; where N is the
St - q deficit

7 Notify(m outgoing var, m tally sent);

8 }

9

10 return (true);

11 |}

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

L The pXRelay lterate() Method mir

The Iterate () method is called on each application iteration — after OnNewMail () is called.

0 | bool Relayer::Iterate ()

1 |{

2 unsigned deficit = m tally recd - m tally sent; DHEeEHRe E wefwe

- - - - sent less than we’ve

8 received

4

5 for (unsigned int i=0; i<deficit; i++) { Make N postings

6 m tally sent++; uhere I 4g Ehe
L3 —- q deficit

7 Notify(m outgoing var, m tally sent);

8 }

9

10 return (true) ;

11 1}

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

23

2/22/24

Lo The pXRelay lterate() Method nir

The I1terate () method is called on each application iteration — after onNewMail () is called.

bool Relayer::Iterate ()

0

1 |{

2 unsigned deficit = m tally recd - m tally sent; betermine 1f we’ve
- - - - sent less than we’ve

3 received

4

5 for (unsigned int i=0; i<deficit; i++) { Make N postings

6 m tally sent++; <:] whe.re.N is the

7 Notify(m outgoing var, m tally sent); CIEEEE

8 }

9

10 return (true);

11 |}

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

| L OnStartup() and RegisterVariables() Methods INir

Variable registration is done both at the end of OnConnectToServer () and OnStartUp ()

0 bool Relayer::0nConnectToServer () Deelare frmeitien
14

2 RegisterVariables() ; Register here in

3 return (true) ; case not done in

4 } OnStartUp ()

0 | void Relayer::RegisterVariables () beclare function
14

2 if(m_incoming_var I= "") Just register for

3 Register (m incoming var, 0); the ene Taer-eiines
4 } — — incoming variable

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

24

2/22/24

1L Intro to MOOS Programming Outline Illir

* MOOS App Class Hierarchy

Part 1: General * MOOS Messages and Posting to the MOOSDB
M&ageApi’sp + Registering for and Publishing Mail
 Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

» « Serializing and De-Serializing Messages

* Time Warp
Part 2: » Motivation and How to use AppCasting
Appeasting « How to convert an existing MOOSApp to an AppCastingMOOSApp
Part 3 Good : * Command-Line Switches
MOOS App * Documentation
CATIHERS » Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App B Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

e General MOOS App Concepts |||i|'

Message Serialization

* AMOOS Message data type is either a string or a double

* |t is common to want to pass a data structure

» For example, if we want to pass a point in 3D space, we could pass MY_POINT = “22,87,95”
* The recipient would be responsible for parsing this string back into a 3D points.

Ways of handling this:

Poorest way: Passing the string “22,87,95” and just have an informal agreement that
the first field is X, second field is Y, third field is Z.

Better way: Passing the string “x=22, y=87, z=95".
The fields are self-labelled and the message is easily extendable. Still have to
have an informal agreement on the field labels.

Even Better way: Create a Class or Structure for holding this information.

Class implements an instance-to-string function.
Class implements a string-to-instance function.

Best(?) way: Use a general-purpose scheme like Google Protocol Buffers to define
your data structure in a meta-file and auto-generate the class.

MOOS MOOS MOOS MOOS App B Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

25

2/22/24

1 1L i Intro to MOOS Programming Outline Illil-

* MOOS App Class Hierarchy

Part 1: General * MOOS Messages and Posting to the MOOSDB
M&ageﬁsp + Registering for and Publishing Mail
 Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

« Serializing and De-Serializing Messages

»- Time Warp
Part 2: » Motivation and How to use AppCasting
Appeasting « How to convert an existing MOOSApp to an AppCastingMOOSApp
Part 3 Good : * Command-Line Switches
MOOS App * Documentation
CATIHERS » Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App B Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

]" E— General MOOS App Concepts Illil-

Time Warp

* MOOS implements a function called MOOSTime ().

It returns the number of seconds since the start of Jan 1st, 1970.
* MOOS simulations may be run with TimeWarp
* In your .moos configuration file:

‘MOOSTimeWarp = 20 ‘

* From the command-line:

‘ pAntler --MOOSTimeWarp=20 ‘

* From within your app, MOOS implements GetMOOSTimeWarp ()
You may want to slow down any terminal debug output at high time warps.
» TimeWarp accepts values less than 1, if you want to actually slow things down.

“Time Warp Compliance”:

Your app may be “time warp compliant” if it only gets its time from MOOSTime()

MOOS MOOS MOOS MOOS App B Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

26

2/22/24

I MITMECHE

Intro to MOOS Programming Outline

Part 1: General
MOQOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOQOS App
Conventions

* MOOS App Class Hierarchy

* MOOS Messages and Posting to the MOOSDB

* Registering for and Publishing Mail

» Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()
« Serializing and De-Serializing Messages

* Time Warp

»- Motivation and How to use AppCasting
» How to convert an existing MOOSApp to an AppCastingMOOSApp

Command-Line Switches
Documentation
Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App Serialization | AppCasting
Classes Messages Mail Functions Time Warp MOOS Apps

Michael Benjamin, Spring 2024

MOOS

Conventions

Dept of Mechanical Engineering

III MITMECHE

Life Before AppCasting

MOOS Application:

10 windows

MOOS MOOS MOOS MOOS App
Classes Messages Mail Functions

Michael Benjamin, Spring 2024

* One window for each

BHO 3 WD O G S Thio

1 v iz
I8 CURSE:

"~ uidScope as MOOSName "uFldScope’ ame:[ene x0T | Lao[easas S0 | Osmftc Tmefeis | _Relmwr | pemov
Vipef | VoS | Lo[Toa o@D | AT wem[|
(S Ca— 2 Voo e

Do e s UL Foe
[% AL

Serialization [AppCasting MOOS
Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

27

2/22/24

1L S AppCasting in MOOS i

AppCasting was motivated by a few observations:

* The biggest headache of users new to MOOS (students in MIT 2.680) was the derailment of a mission
due to an unnoticed configuration or runtime error.

» Debugging typically involves re-launching with app terminal windows open and analyzing expected vs.
observed output.

* Deploying multiple vehicles each with multiple MOOS Apps means a lot of terminal windows are open.
» On a remotely deployed vehicle, one cannot ssh in and see any application terminal output at all!

« Since terminal output is rarely viewable for the above practical reasons, apps are rarely designed with
much thought put into their terminal output.

... Introducing AppCasting in MOOS

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

LA With AppCasting T

pMarineViewer (MIT Version 13.1)

1

)
) (pcs=6) (cpu=0.14) (upd=0/0)
)

0

©

- @
waypt_return|a:
Behaviors Comple

Behavior

survey

vy

oy 14
veypt_survey
Vaypt_survey

[14.59] : var=MOOS_MANUAL OVERIDE:matter=true, skew:

VName: ana Xm):[502 Lat: 43524985 Spa:[20 Dep(m:[00 RETURNF DEPLOY.

Viype: kayak Y(m):[358 Lon:[-70.329768 Hag:[113.3 Age(s):[0.02 Warp:[7 RETURN:T

Variable:[RETURN Tm:[1205 Value: [atso

MOOS MOOS MOOS MOOS App Serialization ' AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

28

2/22/24

I MITMECHE

L AppCasting |||I-

Without With Appasting

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

||I e MOOS Application 1/0 III :

* A typical MOOS application interacts by way of mail and the MOOSDB.

MOOS Application

: lgﬁ?grg::g m::: mail OO

- Status Report

Standard Output

Terminal

» Most applications also produce debugging/status info to the terminal.
« Often this format is an afterthought.
 Often this content is out of sight, if a terminal is not open.

MOOS MOOS MOOS MOOS App Serialization ' AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

29

2/22/24

e="" Typical Terminal Output T

Typical terminal output of a MOOSApp will show:
» Startup summary and health status,
* A simple heartbeat character or other simple health indicator.

Terminal — pLogger — 87x22 — 34

pLogger

This is MOOS Client
c. P Newman 2001

* * x ¥
* % * ¥

pLogger
——mmeeeeeeeeee=M00S CONNECT--——=—=—e—e——ee————————
contacting a MOOS server localhost:9000 - try 00001
Contact Made
Handshaking as "pLogger"
Handshaking Complete
Invoking User OnConnect() callback...ok

Warning:
neither "::GlobalLogPath" or "Path" are specified
Will Log to ./
pLogger is Running:
AppTick @ 4.0 Hz
CommsTick € 4 Hz

0

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

| L Introducing AppCasting T

MOOS Application

AppCast MOOSDB
AppCast

(serialized)
Standard Output

Terminal

An AppCast-Enabled MOOS App:

» Generates an AppCast representing its status report.
» The AppCast is sent to the terminal standard output.

(From the user’s perspective it looks like any other MOOS application.)
* The AppCast is also serialized and sent to the MOOSDB.

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

30

2/22/24

1] U An Example AppCast |||i|-

From the uProcessWatch MOOSApp

uProcessWatch henry App“?atlon
— 5 5 o Iteration
Counter
pBasicContactMgr, pHelmIvP, pHostInfo, pLogger, pMarinePID
pNodeReporter, pShare, uFldMessageHandler, uF1ldNodeBroker
uSimMarine, uXMS
LISF of Watch Reason Status
Strings —
pBasicContactMgr
pHelmIvP
pHostInfo
pLogger
pMarinePID
pNodeReporter
pShare
SRS uFldMessageHandler
uFldNodeBroker
. uSimMarine ANT WATCH DB
LlSt Of Most Recent Events (8)
Events -y S
. Resurrected: [uFldMessageHandler]
(lelted) “ : PROC_WATCH_EVENT: Process [uFldMessageHandler] is missing.
: Noted to be present: [pShare]

: Noted to present: [pLogger]

: Noted to present: [pBasicContactMgr]

: Noted to present: [pHostInfo]

: Noted to present: [uFldNodeBroker]

: Noted to present: [uFldMessageHandler]

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

I | Lo AppCast Viewing |||i|-

» A separate MOOS utility application may be run to view AppCasts from
any AppCast-enabled application.

MOOS Application

AppCast MOOSDB
AppCast

Standard Output

Terminal

MOOS Application

AppCast Viewer

» Now a user can see application output even if an application terminal output is
otherwise suppressed (e.g., no open terminal or I/O re-directed to /dev/null).

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

31

2/22/24

I | L AppCast Viewing |||i|-

AppCast

MOOSDB

AppCast

MOOS Application

AppCast Viewer

* The AppCast viewer may “connect” to multiple applications.
» The AppCast viewer can switch between “channels”.

* The AppCast viewer brings Config alerts and RunTime alerts to the
user’s attention even when not monitoring that channel.

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

| L AppCast Viewing Mir

Shoreside

MOOSDB

MOOSDB

MOOS Application

AppCast Viewer

MOO0sDB

*The AppCast viewer may connect to multiple vehicles, diving down to the
vehicle and application it selects.

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

32

2/22/24

1| LS AppCast Viewing Nir

MOQOS Application

| AppCast Viewer |

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

T AppCast Viewers Illil-

What does an AppCast Viewer do?

» Sends AppCast requests to clients.

* Renders received AppCasts.

» Allows the user to select/switch between different MOOSApps and vehicles

Currently there are three AppCast Viewer applications:

(1) uMAC (2) uUMACView (3) pMarineViewer

Terminal
(good for ssh’ing into a

remote vehicle) GUI (ﬂtk) GUI (ﬂtk)

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

i]
™ O o O
e w—

Dept of Mechanical Engineering

33

2/22/24

AppCast Viewing

with the uMACView Tool

MOOS
Classes

MOOSDB

Shoreside

MOO0sDB

MOOSDB

MOOS App

AppCast

* UMACView is a stand-alone, GUI-Based Viewer
* Launch from the command-line or with pAntler.

Michael Benjamin, Spring 2024

67

MOOSDB

View the =——

MOOS MOOS MOOS App Serialization (AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Select the
Vehicle/Node

Select the
MOOSApp

\
A)

(506)
Present

Antler List: pBasicContactMgr,pHelmIvP,pHostInfo, pLogger, pMarinePID
PodeReporter, pShare, uFldMessageHandler, uFldNodeBroker
uSinMarine

Watch Reason Status

uFldMessageHandler
uFldNodeBroker.
uSinMarine

lavessageRandler]
ted: [pShare]
CH_EVENT: Process [pshare] is missing.
NT: Process [pHostInfo] is missing.
EVENT: Process [uFldNodeBroker] is missing.
C_WATCH_EVENT: Process [uFldMessagefandler] is missing.

Dept of Mechanical Engineering

with uMAC

AppCast Viewing

MOOS
Classes

13.02]:

(3.02]:

MOOSDB [1.01]:
1.01]:

MOOS App

AppCast

E Terminal — uMAC — 72x35 — %82
F, |d Sh d pAntler uMAC
WMAC_9842: Nodes (7) (5) EEES
MOOSDB |~ uProcesswatch (6627)
S Summary: All Present
AN Antler List: HostInfo,pL
Share, uF: uF:
usimearine
ProcName Watch Reason
pBasicContactMgr ANT DB
pHelmIve ANT WATCH DB
pHostInfo ANT DB
Moosne) pLogger ANT WATCH DB
pMarinePID ANT WATCH DB
/’ pNodeReporter ANT WATCH DB
L pshare ANT DB
e uFldMessageHandler ANT DB
L7 uFldNodeBroker ANT DB
7 usimMarine ANT WATCH DB
L Most Recent Events (8):
. [3.02]: Resurrected: [pHostInfo]

Resurrected: [uFldNodeBroker]

Resurrected: [uFldMessageHandler]

Resurrected: [pBasicContactigr]

Resurrected: [pShare]

PROC_WATCH_EVENT: Process [pBasicContactMgr] is missing.
PROC_WATCH_EVENT: Process [pShare] is missing.
PROC_WATCH_EVENT: Process [pHostInfo] is missing.

» Terminal interface provides most of what the GUI tools provide.
 Primary advantage: When a remote vehicle is not sending AppCasts to
a shoreside, user can ssh into the vehicle and launch uMAC to debug.

MOOS MOOS MOOS App Serialization (AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024

Dept of Mechanical Engineering

34

2/22/24

I L The AppCast Structure Illil'

AppCast Config Warnings

. . uProcessWatch gilda 1/1 (150)
» AnAppCast is an instance of the S
AppCast C++ class. Config Warnings { [1 of 1]: Unhandled config line: foobar=abracadabra

. Runtime Warnings: 1
. Run Warnings { [1]: Process [pNodeReporter] is missing.
* It contains:

gl Sutmary: AWOL: pNodeReporter

Antler List: pBasicContactMgr,pHelmIvP,pHostInfo,plogger,pMarinePID
pNodeReporter, pShare, uFldMessageHandler, uFldNodeBroker

. . uSimMarine, uxXMs

Configuration warnings:

Watch Reason Status

* Usually created at App startup time. General
 Unlimited in quantity. messages

uFldMessageHandler
uFldNodeBroker
uSimMarine ANT WATCH DB

Most Recent Events (8)
[120.15]: PROC_WATCH_EVENT: Process [pNodeReporter] is missing.
.00]: Noted to be present: [pShare]
: Noted to be present: [pLogger]
Events .00]: Noted to be present: [pBasicContactMgr]

: Noted to be present: [pHostInfo]
: Noted to be present: [uFldNodeBroker]
: Noted to be present: [uFldMessageHandler]
: Noted to be present: [uSimMarine]

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

l’l MiTEcne The AppCast Structure |||i|'

AppCast Run Warnings

. . uProcessWatch gilda 1/1 (150)
* AnAppCast is an instance of the o : s -
AppCast C++ class. Config Warnings { ey :guﬁ‘:lg:ha:;?::gzonfig line: foobarmabracadabra

R Runtime Warnings: 1
. Run Warnings { [1]: Process [pNodeReporter] is missing.
* It contains:

‘gl Sutmary: AWOL: pNodeReporter

Antler List: pBasicContactMgr,pHelmIvP,pHostInfo,plogger,pMarinePID
pNodeReporter, pShare, uFldMessageHandler, uFldNodeBroker
uSimMarine, uxMs

Run warnings: Watch Reason Status
. G | asicContactMgr
+ Created typically well after messnges - [CSTR NN
launch time when something LR
goeS Wrong' pNodeReporter MISSING
pShare OK
* Limited in quantity.(don’t want e sagelandier o
the size of an appcast to grow usinmarine WATCH DB OK
unbounded) B e ——————————
Most Recent Events (8)
* Provisions are made in AppCast) . wATCH e e
Viewers to ensure RunWarnings : present:[oshase))
come to the user’s attention. Events : present: [pBasicContactigr]
present: [pHostInfo]

present: [uFldNodeBroker]
present: [uFldMessageHandler]
present: [uSimMarine]

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

35

2/22/24

l] MITMECHE

The AppCast Structure

AppCast Messages

* AnAppCast is an instance of the
AppCast C++ class.

* |t contains:

Messages:

* Free in format. Up to the
user to pick the
information and layout.

* Typically “cleared” on each
generation of an appcast.

* Just a list of strings.

« Tables, columns etc. done
by the user.

MOOS
Classes

Michael Benjamin, Spring 2024

Config Warnings {

Run Warnings {

General
messages

Events

MOOS MOOS MOOS App Serialization
Messages Mail Functions Time Warp

uProcessWatch gilda

1/1 (150)

Configuration Warnings: 1
[1 of 1]: Unhandled config line: foobar=abracadabra

Runtime Warnings: 1
[1]: Process [pNodeReporter] is missing.

Summary: AWOL: pNodeReporter

Antler List: pBasicContactMgr,pHelmIvP,pHostInfo,plogger,pMarinePID
pNodeReporter, pShare, uFldMessageHandler, uFldNodeBroker
uSimMarine, uxMs

Watch Reason

ProcName Status
pBasicContactMgr
pHelmIvP

pHostInfo

pLogger

pMarinePID
pNodeReporter
pShare
uFldMessageHandler
uFldNodeBroker
uSimMarine

Most Recent Events (8
PROC_WATCH_EVENT: Process [pNodeReporter] is missing.
: Noted to be present: [pShare]
: Noted to be present: [pLogger]
: Noted to be present: [pBasicContactMgr]
: Noted to be present: [pHostInfo]
: Noted to be present: [uFldNodeBroker]
: Noted to be present: [uFldMessageHandler]
: Noted to be present: [uSimMarine]

MOOS
Conventions

AppCasting
MOOS Apps

Dept of Mechanical Engineering

e

The AppCast Structure

AppCast Events

* AnAppCast is an instance of the
AppCast C++ class.

* |t contains:

Events:

* Created typically after launch time
when something “notable” happens.

* Limited in quantity.(don’t want the size
of an appcast to grow unbounded)

» Each event is just a string with a
timestamp.

MOOS
Classes

Michael Benjamin, Spring 2024

Config Warnings {

Run Warnings {

General
messages

Events

uProcessWatch gilda

1/1 (150)
Configuration Warning:
[1 of 1]: Unhandled config line: foobar=abracadabra

Runtime Warnings: 1
[1]: Process [pNodeReporter] is missing.

Summary: AWOL: pNodeReporter

Antler List: pBasicContactMgr,pHelmIvP,pHostInfo,plogger,pMarinePID
pNodeReporter, pShare, uFldMessageHandler, uFldNodeBroker
uSimMarine, uXMs

Watch Reason

Status
pBasicContactMgr
pHelmIvP

pHostInfo

plogger

pMarinePID
pNodeReporter
pShare
uFldMessageHandler
uFldNodeBroker
uSimMarine

Most Recent Events (8
[120.15
.00]: Noted to be present:

: Noted to be present:

: Noted to be present:

: Noted to be present:

: Noted to be present:

: Noted to be present:

: Noted to be present:

PROC_WATCH_EVENT: Process [pNodeReporter] is missing.

[pShare]
[pLogger]
[pBasicContactMgr]
[pHostInfo)
[uFldNodeBroker]
[uFldMessageHandler]
[uSimMarine]

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

36

2/22/24

1| LS The AppCast Structure Illil'

AppCast Events

An APPCAST message:

proc=pHelmIvP!@#iter=5!@#node=alpha!@#iter=5!@#messages= Comms Policy: open!@ Helm
Iteration: O0!@ IvP Functions: 0!@ Pieces (Formed): 0!@ Pieces (Cached):
0!'@ Mode(s): !'@ SolveTime: 0.00 (max=0.00) !'@ Create

Time: 0.00 (max=0.00)'Q@ LoopTime: 0.00 (max=0.00) '@ Halted: false (0
warnings) !@ Active Goal: false!@Helm Decision: []!@Behaviors Spawnable: --—-—---—-—-
(0) !@Behaviors Active: ————-——-———- (0) !@Behaviors Running: —--—-—--—-—-— (0) !'@Behaviors
Tellgy ===—=======s (0) !'@!@Behaviors Completed: --—--—--- (0) '@Hold-On-Apps:

none!@!@!@vVariable Behavior Time Iter Value!@-----—--- -—-—-—-——- ——— === ————-
!@!@#!@fevents total=0!@#!@#run warning total=0!@#

(Still more or less human readable)

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

{1 L The AppCast Structure Illil'

AppCast Events

An APPCAST message: pHelnIvP iter=5
Comms Policy: open
proc=pHelmIvP!@#iter=5!@#node=alpha!@#iter=5!@#mess ?eémFIter?tiO“: 0
= i . ! v unctions:
ages .Comms Policy: open.(.@ Helm ' Picces (Formed): 0
Iteration: 0!@ TIvP Functions: 0!@ Pieces Pieces (Cached): 0
(Formed) : 0!Q@ Pieces (Cached): 0!@ Mode(s): Mode (s) :
'@ SolveTime: 0.00 (max=0.00) !@ Create SolveTime: 0.00 (max=0.00)
Time: 0.00 Create Time: 0.00 (max=0.00)
(max=0.00) '@ LoopTime: 0.00 (max=0.00) '@ Hal LoopTime: D00 (aee=0o00)
ted: false (0 warnings) !@ Active Hal.te‘j: false (0 warnings)
Goal: false!@Helm Decision: []!@Behaviors AeiEive G?a;: Fallse
Spawnable: --——————-—-— (0) '@Behaviors Active: --—----—- BRI DEsileiiens
P ° ° ° Behaviors Spawnable:
--- (0) !@Behaviors Running: --------- | (0)
(0) !@Behaviors Idle: ---—-—------- (0) !@!@Behaviors Behaviors Active:
Completed: ------- (0) '@Hold-On-Apps: | | =mmmmm———— (0)
none!@!@!@Variable Behavior Time Iter Value!@-- Behaviors Running: ---------
______________ el oo Behaviors Idle: —--------
'@!@#!Q#events total=0!@#!Q@#run warning total=0!@# OEeviens Complotetl
— — — Hold-On-Apps: none

Variable Behavior Time Iter Value
events_total=0!
run_warning_total=0

(Still more or less human readable)

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

Michael Benjamin, Spring 2024

37

2/22/24

MITMECHE . . N .
1 Intro to MOOS Programming Outline L
* MOOS App Class Hierarchy
Part 1: General * MOOS Messages and Posting to the MOOSDB
Mgggeﬁsp « Registering for and Publishing Mail
 Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

« Serializing and De-Serializing Messages
* Time Warp

Part 2: » Motivation and How to use AppCasting
AppCasting » « How to convert an existing MOOSApp to an AppCastingMOOSApp

Part 3 Good : ¢ Command-Line Switches
MOOS App * Documentation
Conventions

» Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

= T

How do you make an
“AppCast-Enabled”
MOOS application?

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

38

2/22/24

1 | LS On-Demand AppCasting Illil-

To implement on-demand appcasting, a few things need to be done in each application.

http://oceanai.mit.edu/ivpman/appcast_enable

* Apps must register for APPCAST_REQ mail.
An AppCast request will renew a token for some number of seconds
Until the token expires, the app generates an appcast repeatedly.

CMOOSApp

Subclass

» Even while appcasting, the app only generates an AppCast every N secs.
The app keeps track of the last real-time appcast generation.

Subclass

 Each app handles a config setting indicating whether an xterm is open. Your MOOSApp
This setting is a global variable in the .moos config file.

So, a new generic “AppCastingMOOSApp” class is used:

Minimizes boilerplate in individual apps.

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

T Using the AppCastingMOOSApp Superclass Illil-

Six Steps

Step 1: Subclass the AppCastingMOOSApp Superclass

Step 2: Invoke two superclass methods in your Tterate () method.

Step 3: Invoke a superclass method when you register variables. Trivial, 1-2 line
Step 4: Invoke a superclass method during OnNewMail (). changes in each

case

Step 5: Invoke a superclass method during OnStartUp ().

Step 6: Implement your buildReport () function. This is where you
get to be creative

about what your
app reports.

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

39

2/22/24

e Using the AppCastingMOOSApp Superclass Illil-

Your Class Definition

Step 1: Subclass the AppCastingMOOSApp Superclass

#include
“MOOS/1ibMOOS/Thirdparty/AppCasting/AppCastingMOOSApp.h”
class YourMOOSApp : public AppCastingMOOSApp

{

// All your normal class declaration stuff

bool buildReport();
}i

~N oUW NP O

The buildReport () function is a
virtual function in the
superclass. It is where you can
do the work of constructing an
AppCast.

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

mT Using the AppCastingMOOSApp Superclass M

Modifying Your Iterate() and Registrations

Step 2: Invoke two superclass methods in your Tterate ()

bool YourMOOSApp::Iterate()
{ . Updates the current
AppCastingMOOSApp: :Iterate () ; MOOSTime, and # of
iterations.

// Do all your normal Iterate stuff

Determines if an AppCast

AppCastingMOOSApp: : PostReport () ; ig warranted, and imveles
return (true) ; buildReport () if so.

}i

‘ooqmuw.bwmp—-o‘

Step 3: Invoke a superclass method when you register variables.

void YourMOOSApp: :registerVariables ()
{ The superclass will
register for APPCAST REQ,
indicating another app,
like uMAC, is interested
in appcasts from this app.

AppCastingMOOSApp: :RegisterVariables () ;

// Do all your other registrations

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

o U W N O

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

40

2/22/24

e Using the AppCastingMOOSApp Superclass mir

Modifying Your OnNewMail() and OnStartUp()

Step 4: Invoke a superclass method when you handle mail.

bool YourMOOSApp: :OnNewMail (MOOSMSG_LIST
&NewMail) The superclass will handle
{ the APPCAST_REQ mail.

AppCastingMOOSApp: :OnNewMail (NewMail) ;

// Do all your other normal mail handling.

}

o U WN O

Step 5: Invoke a superclass method during OnStartUp ()

0 | void YourMOOSApp::0OnStartUp () e gupezelags il
1 { .

) register for
2 AppCastingMOOSApp: :OnStartUp () ; APPCAST REQ, indicating
3 another app, like uMAC,
4 // Do all your other startup stuff is interested in
51 appcasts from this app.

MOOS MOOS MOOS MOOS App Serialization [AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

{1 L Intro to MOOS Programming Outline Mir

* MOOS App Class Hierarchy
Part 1: General * MOOS Messages and Posting to the MOOSDB
M&(ggeApE’Sp « Registering for and Publishing Mail
» Key Overloadable Functions: OnNewMail(), OnStartUp(), lterate()
* Serializing and De-Serializing Messages
* Time Warp

Part 2: » Motivation and How to use AppCasting
AppCasting « How to convert an existing MOOSApp to an AppCastingMOOSApp

Part 3 Good : » « Command-Line Switches
MOOS App Documentation
Conventions * Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

41

2/22/24

LR Good Conventions for MOOS Programming |||i|-

Command-Line Switches

* Most MOOS apps are launched from pAntler, but a number of common command-
line switches a common, good practice.

* Add these to your own apps — Remember they are there for the apps you use.

-V, --version: « Provides the version information for the given app
* Always provide this when/if submitting a bug report.

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

LS Good Conventions for MOOS Programming |||i|-

Command-Line Switches

» Most MOOS apps are launched from pAntler, but a number of common command-line
switches a common, good practice.

» Add these to your own apps — Remember they are there for the apps you use.

-V, --version: « Provides the version information for the given app
* Always provide this when/if submitting a bug report.

Terminal — tcsh — 83x10
ptsur:moos-ivp-doc/memo_ivphelm(12.2mit)% uTimerScript --version
AR AR AR AR AR AR A A AR AR A AR A AR A AR A AR A AR A A AR AR AR AR AR AR AR AT *
* uTimerScript - Part of the MOOS-IVP Release Bundle
* Version 12.2, Released Feb 6th, 2012
* M.Benjamin, H.Schmidt and J.Leonard (MIT), P.Newman (Oxford)
* Copyright (C) 2008 Free Software Foundation, Inc.
*

This is free software; see the source for copying conditions.
A A A A A A A A A A A A A AR A AR A AR AR A AR A AR A AT A AT A A AT AT A AT A AT A A AT AT *

* ok ¥ ¥ ¥

ptsur:moos-ivp-doc/memo_ivphelm(12.2mit)% |:|

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

42

2/22/24

LR Good Conventions for MOOS Programming |||i|-

Command-Line Switches

* Most MOOS apps are launched from pAntler, but a number of common command-
line switches a common, good practice.

» Add these to your own apps — Remember they are there for the apps you use.
-V, --version:
-h, --help: « Short synopsis of what the app is intended to do.

* Other command line switches are available
« Other usage tips

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

MITMECHE Terminal — tcsh — 75x39 v
] I ptsur:moos-ivp-doc/memo_ivphelm(12.2mit)% uTimerScript -h

Usage: uTimerScript file.moos [OPTIONS]

Command Line Switches

Allows the user to script a set of pre-configured pokes to a
MOOSDB with each entry in the script happening after a speci-
fied amount of time. Script may be paused or fast-forwarded.
Events may also be configured with random values and happen
randomly in a chosen window of time.

‘5 uTimerScript --help ‘ Options:

~--alias=<ProcessName>
Launch uTimerScript with the given process
name rather than uTimerScript.
--example, -e
Display example MOOS configuration block
--help, -h
Display this help message.
--interface, -i
Display MOOS publications and subscriptions.
--shuffle=Boolean (true/false)
If true, script is recalculated on each reset. If event
times configured with random range, the ordering may
change after a reset. The default is true.
--verbose=Boolean (true/false)
Display script progress & diagnostics if true.
The default is true.
--version,-v
Display the release version of uTimerScript.

Note: If argv[2] does not otherwise match a known option,
then it will be interpreted as a run alias. This is
to support pAntler launching conventions.

ptsur:moos-ivp-doc/memo_ivphelm(12.2mit)% D

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

43

2/22/24

LR Good Conventions for MOOS Programming |||i|-

Command-Line Switches

* Most MOOS apps are launched from pAntler, but a number of common command-
line switches a common, good practice.

» Add these to your own apps — Remember they are there for the apps you use.

-v, --version:

-h, --help:

-i, —-interface: + Short synopsis of what the app is intended to do.
« The variables to which this app subscribes, and example values
* The variables to which this app publishes, and example values

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

MITMECHE Terminal — tcsh — 70x32]
]I ptsur:moos-ivp-doc/memo_ivphelm(12.2mit)$% uTimerScript --interface

uTimerScript INTERFACE

SYNOPSIS:

Command Line Switches , ‘
Allows the user to script a set of pre-configured pokes to a

_— inte rface MOOSDB with each entry in the script happening after a speci-

fied amount of time. Script may be paused or fast-forwarded.
Events may also be configured with random values and happen
randomly in a chosen window of time.

SUBSCRIPTIONS:
. . . UTS_NEXT = next
$ uTimerScript --interface e R
UTS_FORWARD = 10
UTS_PAUSE = true
PUBLICATIONS:

The primary publications are the events configured by the
user-defined scripts.

UTS_STATUS = name=RND_TEST, elapsed time=2.00, posted=1,
pending=4, paused=false, conditions_ok=true,
time warp=3, start delay=0, shuffle=false,
upon_awake=reset, resets=0/4

ptsur:moos-ivp-doc/memo_ivphelm(12.2mit)$% D

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

44

2/22/24

{1 L Good Conventions for MOOS Programming

Command-Line Switches

* Most MOOS apps are launched from pAntler, but a number of common command-line
switches a common, good practice.

» Add these to your own apps — Remember they are there for the apps you use.

-v, --version:

-h, --help:

-i, --interface:

-e, --example: « An example MOOS configuration block.
* Description of MOOS parameter meanings
» Example values and default values

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

Te i - — 74
I MITMECHE erminal — tcsh — 74x49 2 I -
] uTimerScript Example MOOS Configuration I I

Blue lines: Default configuration

ProcessConfig = uTimerScript
{

. AppTick = 4
Command Line i
// Logic condition that must be met for script to be unpaused
- condition = WIND_GUSTS = true
SWItCh e S // Seconds added to each event time, on each script pass
delay_reset =0

// Seconds added to each event time, on first pass only
-- exam ple delay start =0
// Event(s) are the key components of the script
event = var=SBR_RANGE_REQUEST, val="name=archie", time=25:35
// A MOOS variable for taking cues to forward time
forward_var = UTS_FORWARD // or other MOOS variable
// If true script is paused upon launch
paused = false // or {true}
// A MOOS variable for receiving pause state cues
. . pause_var = UTS_PAUSE // or other MOOS variable
$ uTimerScr lpt == exampl e // Declaration of random var macro expanded in event values
randvar = varname=ANG, min=0, max=359, key=at_reset
// Maximum number of resets allowed
reset_max = nolimit // or in range [0,inf)
// B point when the script is reset
reset_time = none // or {all-posted} or range (0,inf)
// A MOOS variable for receiving reset cues
reset_var = UTS_RESET // or other MOOS variable
// If true script will complete if conditions suddenly fail
script_atomic = false // or {true}
// A hopefully unique name given to the script
script name = unnamed
// If true timestamps are recalculated on each script reset
shuffle = true
// If true progress is generated to the console
verbose = true // or {false}
// Reset or restart script upon conditions being met after failure
upon_awake = n/a // or {reset,resstart}
// B MOOS variable for posting the status summary
status_var = UTS_STATUS // or other MOOS variable
// Rate at which time is accelerated in execuing the script
time_warp =1

}

ptsur:moos-ivp-doc/memo_ivphelm(12.2mit)% []

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

45

2/22/24

.'I MITMECHE

MOOS-IivP
Documentation

Command Line

Switches
--we b , Or -w ::viMcos Toalbox

pLogger
pAntier
iRemote

moos-ivp.org IvP ManPages.
IvP Helm | Utils | Labs | Help

™ One big PDF

Autonomy Toolbox Intro

pMarineviewer

‘S uTimerScript ——web‘

pDeadManPost
isay

pRealm
pSearchGrid
UTermCommand
uSimCurrent

Alog Toolbox Intro

“The alogview Utility

© & oceanaimit.edufvpmanfprwikjpmwiki php2n=lvPTools UTime: @

MIT2680 Pavisb LAMSS Gaby
uTimerScript: Scripting Events to the MOOSDB

Maintained by: mikerb@mitedu - Get POFE
1 Overview
2 Using uTimerScript
2.1 Configuring the Event List
2.2 Setting the Event Time or Range of Event Times.
2.3 Resetting the Script
3 Script Flow Control
3.1 Pausing the Timer Script
3.2 Conditional Pausing of the Timer Seript and Atomic Seripts
3.3 Fest-Forwarding the Timer Seript
3.4 Quitting the Timer Script
4 Macro Usage in Event Postings
4.1 Built-In Macros Available
4.2 User Configured Macros with Random Variables
4.3 Support for Simple Arithmetic Expressions with Macros
5 Time Warps, Random Time Warps, and Restart Delays
5.1 Random Time Warping
5.2 Random Intial Start and Reset Delays
5.3 Status Messages Posted to the MOOSDB by uTimerScript
6 Terminal and AppCast Output
7 Configuration Parameters for uTimerScript
8 Publications and Subscriptions for uTimerScript
5.1 Variables Published by uTimerScript
8.2 Variables Subscribed for by uTimerScript
8.3 An Example MOOS Configuration Block
9 Examples
9.1 A Script for Generating 100 Random Numbers.
9.2 A Script Used as Proxy for an On-Board GPS Unit
9.3 A Script as a Proxy for Simulating Random Wind Gusts

1 Overview

The uTimerScript @ application allows the user to script a set of pre-configured posts to a MOOSDB. In its most basic
8, and immediately terminate tself if a quit event is

form, it may be used to initialize a set of variables to the MOOSD!

1 14005-1p FTools - U Time

Ea

Il-
h+ 0 II

Alog Command Line Utils included. The following configuration black, If placed in the alpha example mission, would mimic the posts to the

s MOOSDB behind the DEPLOY button, simply disabling manual control, deploying the vehicle and quitting the script:
Usting 1. 1.1,

UMAC Utilities

Enabling Appcasting

On Demand Appcasting

Uisting 1.1 - A Simple Timer Script

T ProcessContly = uTimerscript

UField Toolbox Intro
S_MANUAL_OVERIDE, val=false
UFldNodeBroker 0¥, val-true

UFldShoreBroker

MOOS MOOS MOOS App Serialization AppCasting MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Dept of Mechanical Engineering

MOOS
Classes

Michael Benjamin, Spring 2024

1 | L Intro to MOOS Programming Outline

* MOOS App Class Hierarchy
Part 1: General * MOOS Messages and Posting to the MOOSDB
M&ageApE’Sp Registering for and Publishing Mail
» Key Overloadable Functions: OnNewMail(), OnStartUp(), lterate()
Serializing and De-Serializing Messages
* Time Warp

Part 2: .
Appcasting

Motivation and How to use Appcasting
* How to convert an existing MOOSApp to an AppCastingMOOSApp

* Command-Line Switches
Documentation
* Pros and Cons of Branching, How to Branch

Part 3 Good :
MOOS App
Conventions

¥

MOOS
Classes

MOOS MOOS MOOS App Serialization AppCasting [MOOS
Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

46

2/22/24

1L Good Conventions for MOOS Programming Illil-

Documentation (Why and How)

 Types of documentation for your MOOS App:
» Document your code, inside your code with comments, or Doxygen tags
» Document your application with command-line switches
» Document your application with a manual-like PDF, with example missions.

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

LERE Good Conventions for MOOS Programming |||i|-

Documentation (Why and How)

* Types of documentation for your MOOS App:
» Document your code, inside your code with comments, or Doxygen tags
» Document your application with command-line switches
» Document your application with a manual-like PDF, with example missions.
» Why do we document our code and application. Three Reasons:
* So users know what it does and how to use it effectively.
» So developers may continue development someday when you're not around.
» What is the third reason? (Perhaps the most important)

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

47

2/22/24

e Good Conventions for MOOS Programming |||i|-

Documentation (Why and How)

 Types of documentation for your MOOS App:
» Document your code, inside your code with comments, or Doxygen tags
» Document your application with command-line switches
» Document your application with a manual-like PDF, with example missions.
* Why do we document our code and application. Three Reasons:
» So users know what it does and how to use it effectively.
» So developers may continue development someday when you're not around.
» What is the third reason? (Perhaps the most important)
= Answer: So that YOU write better code!

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

LERE Good Conventions for MOOS Programming |||i|-

Documentation (Why and How)

* Types of documentation for your MOOS App:
» Document your code, inside your code with comments, or Doxygen tags
» Document your application with command-line switches
» Document your application with a manual-like PDF, with example missions.
» Why do we document our code and application. Three Reasons:
* So users know what it does and how to use it effectively.
» So developers may continue development someday when you're not around.
» What is the third reason? (Perhaps the most important)
» Answer: So that YOU write better code!
» Don’t leave documentation until the end.
» By documenting as you go along, you will write better code.
» By documenting as you go along, you are less likely to “run out of time”

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

48

2/22/24

L Good Conventions for MOOS Programming Illil-

Documentation (Why and How)

 Types of documentation for your MOOS App:
» Document your code, inside your code with comments, or Doxygen tags
» Document your application with command-line switches
» Document your application with a manual-like PDF, with example missions.
* Why do we document our code and application. Three Reasons:
» So users know what it does and how to use it effectively.
» So developers may continue development someday when you're not around.
» What is the third reason? (Perhaps the most important)
= Answer: So that YOU write better code!
» Don’t leave documentation until the end.
» By documenting as you go along, you will write better code.
» By documenting as you go along, you are less likely to “run out of time”
» For MOOS Apps, document:
* What it does
* The publish-subscribe interface
* An example app configuration
» An example mission using the application

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engin

e Intro to MOOS Programming Outline Illil-

* MOOS App Class Hierarchy
Part 1: General * MOOS Messages and Posting to the MOOSDB
M&(ggeApE’Sp « Registering for and Publishing Mail
» Key Overloadable Functions: OnNewMail(), OnStartUp(), lterate()
* Serializing and De-Serializing Messages

* Time Warp
Part 2: » Motivation and How to use Appcasting
HppEEsiig « How to convert an existing MOOSApp to an AppCastingMOOSApp
Bt 3 G - * Command-Line Switches
MOOS App * Documentation
CETIIE S » * Pros and Cons of Branching, How to Branch

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

49

2/22/24

LS. Branching - Why and When? Nr

» A powerful feature of MOOS and Open Source code: If you don’t like what the
application does, you have options.

* Branching here refers to (a) copying an existing module (b) modify for a different or
augmented use, (c) making it available for others to use.

* Pros of Branching:
* You are free to innovate! (From a decent baseline case)
» Authors are motivated to maintain their code (or else it will be replaced)
» Authors have limited liability — (hey, if you don’t like it, build your own!)
» Cons of Branching:
« Lots of choices between trivially different modules is confusing for other users.

MOOS MOOS MOOS MOOS App Serialization AppCasting (MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

e The Etiquette of Branching Nir

« If you have a minor bug fix or feature request, give the maintainer
a chance to maintain the code. Don’t branch trivially.

« If you do branch, definitely, absolutely, give it a different name!

* Give credit where credit is due to the original author.

MOOS MOOS MOOS MOOS App Serialization AppCasting [MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

100

50

2/22/24

]I MITVECHE III.-

MOOS MOOS MOOS MOOS App Serialization AppCasting MOOS
Classes Messages Mail Functions Time Warp MOOS Apps Conventions

Michael Benjamin, Spring 2024 Dept of Mechanical Engineering

101

51

