
2/16/23

1

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

MIT 2.680

UNMANNED MARINE VEHICLE AUTONOMY,

SENSING, AND COMMUNICATIONS

Lecture 4: Introduction to MOOS Programming

February 16th, 2023

2.681 Spring 2023 – Marine Autonomy – “Programming MOOS Applications” Photo by Arjan Vermeij, CMRE

Web: http://oceanai.mit.edu/2.680

Email:
Mike Benjamin, mikerb@mit.edu

1

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Big Picture Preview

of Today’s Lecture and Lab

2

2/16/23

2

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Alpha Mission

DESIRED_HEADING
DESIRED_SPEED

DESIRED_RUDDER
DESIRED_THRUST

DESIRED_RUDDER
DESIRED_THRUST

NAV_X, NAV_Y
NAV_HEADING

NAV_SPEED NAV_X NAV_HEADING
NAV_Y NAV_SPEED

NAV_X NAV_HEADING
NAV_Y NAV_SPEED

DESIRED_HEADING
DESIRED_SPEED

NODE_REPORT

NODE_REPORT

NODE_REPORT

$ cd moos-ivp/ivp/missions/s1_alpha

$./launch.sh 10

3

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Adding an Odometry MOOS App

pOdometryNAV_X
NAV_Y

ODOMETRY_DIST

• In today’s lab we will write our first MOOS App, to calculate odometry distance
• We will then use this MOOS app to be involved in the Helm’s decision-making

4

2/16/23

3

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Adding an Odometry MOOS App

$ cd moos-ivp-extend/missions/alder

$ pAntler alder.moos –MOOSTimeWarp=10

Running the Alder Mission (in your moos-ivp-extend tree)

5

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Adding an Odometry MOOS App

• The Odometry App will publish odometry distance
• The Helm will transition to return home after a certain distance has been achieved.

6

2/16/23

4

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use Appcasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

MOOS
Classes

7

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

MOOS Applications and Inheritance

Application
Process

A

Application
Process

B

• In general, MOOS applications are a subclass of the MOOSApp superclass.

• The parent class implementation does most of the work behind the scenes.

messages

MOOSApp MOOSApp

MOOSDB

Each application:
- Publishes certain messages
- Subscribes for certain messages

Your
Application

MOOSApp

subclass

MOOS
Classes

8

2/16/23

5

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The MOOSApp Superclass

Each MOOS application has the option of overriding key parent class virtual functions.

CMOOSApp::Run()

Startup OnNewMail Iterate

::OnStartUp()
{
}

::OnNewMail()
{
}

::Iterate()
{
}

Key overridden virtual functions in a derived application

Subscribe Handle Mail Process/Publish

MOOS
Classes

9

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Example Class Definition

The Relayer class definition is in:

moos-ivp-extend/

trunk/src/pXRelayTest/

#include ”MOOS/libMOOS/MOOSLib.h”
class Relayer : public CMOOSApp
{

public:
Relayer();
virtual ~Relayer() {};

bool OnNewMail(MOOSMSG_LIST &NewMail);
bool OnStartUp();

bool Iterate();
bool OnConnectToServer();

void RegisterVariables();

protected:

// Local member variables
};

0
1
2

3
4
5

6
7
8

9
10
11

12
13
14

15
16

Include CMOOSApp

definition and subclass

Declare the constructor

Declare and define the

destructor.

Declare the CMOOSApp

superclass virtual
functions for

overloading

Declare a utility

function where
registrations happen

MOOS
Classes

10

2/16/23

6

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

MOOS Messages

Name

StringVal

DoubleVal

Source

SourceAux

Time

DataType

MessageType

Community

The name of the data

Data in string format

Numeric double float data

Name of client that sent this data to the MOOSDB

Optional additional information about the source client

Time at which the data was written

Type of data (STRING or DOUBLE or BINARY)

Type of message (usually NOTIFICATION)

The community to which the source process belongs

• The form of the data passed between clients is constrained by MOOS:

• Typically, the data type is either a string or a double.

• Binary data may be packed into the string field (images or other data structures etc)

MOOS
Messages

11

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Posting MOOS Messages
(from with an application)

Name

StringVal

DoubleVal

Source

SourceAux

Time

DataType

Msg Type

Community

The name of the data

Data in string format

Numeric double float data

Name of client that sent this data to the MOOSDB

Optional additional infor about the source client

Time at which the data was written

Type of data (STRING or DOUBLE or BINARY)

Type of message (usually NOTIFICATION)

The community to which the source process belongs

Messages are posted with the Notify() function.

string moos_var = “WELCOME_MESSAGE”;
string moos_msg = “Hello World!”;
Notify(moos_var, moos_msg);

Caller

specified

Automatically

Filled-in

Left

Empty

MOOS
Messages

12

2/16/23

7

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Name

StringVal

DoubleVal

Source

SourceAux

Time

DataType

Msg Type

Community

The name of the data

Data in string format

Numeric double float data

Name of client that sent this data to the MOOSDB

Optional additional infor about the source client

Time at which the data was written

Type of data (STRING or DOUBLE or BINARY)

Type of message (usually NOTIFICATION)

The community to which the source process belongs

Caller

specified

Automatically

Filled-in

Left

Empty

Messages are posted with the Notify() function.

string moos_var = “WELCOME_MESSAGE”;
string moos_msg = “Hello World!”;
Notify(moos_var, moos_msg);

MOOS
Messages

Posting MOOS Messages
(from with an application)

13

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Posting MOOS Messages

Posting Literals (string)

Notify(“WELCOME_MESSAGE”, “Hello World”);

Notify(“TEMPERATURE”, 98.6);

Posting Literals (double)

MOOS
Messages

More examples

14

2/16/23

8

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

MOOS Message Names

By convention, MOOS message names are all UPPER CASE letters with

numbers and underscores. A further convention is that that begin with a letter.

Good Examples:

TEMP
CURRENT_VAL
COMPONENT_1

COMPONENT_278
TIME_TO_COLLISION

Bad-idea
7854
_HELLO?

Meh:

That being said, MOOS will let almost anything through, even white space. Why?

MOOS
Messages

15

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Posting MOOS Messages
Message Source Information

Notify(“WELCOME_MESSAGE”, “Hello World”);

• When a message is posted to the MOOSDB, the source field is automatically filled in.

MOOSMsg msg;
cout << “Variable: “ << msg.GetKey() << endl;
cout << “Value: “ << msg.GetString() << endl;

cout << “Source: “ << msg.GetSource() << endl;

If Application pFooBar posts a message:

Received by another app:

Variable: WELCOME_MESSAGE
Value: Hello World
Source: pFooBar

The output would be:

MOOS
Messages

16

2/16/23

9

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Posting MOOS Messages
Specifying the Auxiliary Source

• When a message is posted to the MOOSDB, the auxiliary source field is typically left empty.

Notify(“WELCOME_MESSAGE”, “Hello World”, “Special Greeter”);

MOOSMsg msg;
cout << “Variable: “ << msg.GetKey() << endl;

cout << “Value: “ << msg.GetString() << endl;
cout << “Source: “ << msg.GetSource() << endl;
cout << “SrcAux: “ << msg.GetSourceAux() << endl;

If Application pFooBar posts a message:

Received by another app:

Variable: WELCOME_MESSAGE
Value: Hello World

Source: pFooBar
SrcAux: Special Greeter

The output would be:

MOOS
Messages

17

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Posting MOOS Messages
Timestamps

• The timestamp of a message posted to the MOOSDB, is the time when the message was posted.

• Not the time received by the MOOSDB. Not the time received by the receiving application.

Notify(“WELCOME_MESSAGE”, “Hello World”);

MOOSMsg msg;
cout << “NowTime: “ << MOOSTime() << endl;

cout << “Variable: “ << msg.GetKey() << endl;
cout << “Value: “ << msg.GetString() << endl;
cout << “MsgTime: “ << msg.GetTime() << endl;

If Application pFooBar posts a message:

Received by another app:

NowTime: 1.39273e+09
Variable: WELCOME_MESSAGE

Value: Hello World
MsgTime: 1.39273e+09

The output would be:

MOOS
Messages

18

2/16/23

10

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

MOOS Message Functions
(nearly) full list

A summary of functions defined on MOOS messages:

MOOSMsg msg;
string msg.GetKey() // Get the MOOS variable name
string msg.GetName() // Get the MOOS variable name

bool msg.IsString() // true if message type is string
bool msg.IsDouble() // true if message type is double
string msg.GetString() // Get the message string contents

String msg.GetDouble() // Get the message double contents
string msg.GetSource() // Get the sender information
string msg.GetSourceAux() // Get further sender information

string msg.GetCommunity() // Get the sender community information
double msg.GetTime() // Get the time message was posted

There’s more. If you want to see for yourself, take a look at:

$ cd moos-ivp/MOOS/MOOSCore/Core/libMOOS/Comms/include/MOOS/libMOOS/Comms/
$ emacs MOOSMsg.h

MOOS
Messages

19

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use AppCasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

MOOS
Mail

20

2/16/23

11

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Registering for MOOS Mail Messages
(from within an application)

• Messages are registered with the Register() function.

Register(“WELCOME_MESSAGE”, 0);
Register(“GOODBYE_MESSAGE”, 0.5);

bool Register(string, double);

Name of the

MOOS Variable

Min time interval

between notifcations

• Incoming mail for WELCOME_MESSAGE will be received each time

another client posts to this variable.

• Incoming mail for GOODBYE_MESSAGE to be received at most twice per

second.

MOOS
Mail

21

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

More on Registering for MOOS Mail
(In case you were wondering….)

Q: How is mail read by an application?

A: In the OnNewMail() function. (We’ll get to that shortly)

Q: What are legal variables names?

A: Anything but an empty string allowed. By convention, variables consist
solely of uppercase letters, numbers, and the underscore character.

Q: Are there any ill effects from registering for a variable twice?

A: No. The 2nd registration is just ignored. Even if the min-interval arg is
different!

Q: Can an application send mail to itself?

A: Yes, but the app still must register for it like other apps.

Q: Is it possible to un-register for a variable? (Why would one want to?)

A: Yes, the call is UnRegister(VARNAME);

MOOS
Mail

22

2/16/23

12

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use AppCasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

MOOS
Mail

23

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Our Old Friend pXRelay

The pXRelay application works as follows:

• It registers for mail on a given variable (e.g., “APPLES”).

• When it receives mail for the variable, it increments a local “received” counter.

• For every mail received, it publishes on another given variable (e.g., “PEARS”).

MOOSDB
Initial state:
(No activity)

pXRelay_Apples

tally_recd = 0
tally_sent = 0
incoming_var=“APPLES”

outgoing_var=“PEARS”

pXRelay_Pears

tally_recd = 0
tally_sent = 0
incoming_var=“PEARS”

outgoing_var=“APPLES”

MOOS
Mail

24

2/16/23

13

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Triggering the pXRelay Example

(1) Someone publishes to “APPLES”

(2) pXRelay_Apples receives the mail, increments its “tally received” counter.

pXRelay_Apples

tally_recd = 1
tally_sent = 0
incoming_var=“APPLES”

outgoing_var=“PEARS”

pXRelay_Pears

tally_recd = 0
tally_sent = 0
incoming_var=“PEARS”

outgoing_var=“APPLES”

MOOSDB

APPLES=0
uPokeDB

APPLES=0

MOOS
Mail

25

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Triggering the pXRelay Example

(5) pXRelay_Pears notes that tally_sent is less than tally_received.

(6) pXRelay_Pears publishes APPLES=1, and increments its tally_sent counter.

MOOSDB

APPLES=1 APPLES=1

pXRelay_Apples

tally_recd = 2
tally_sent = 1
incoming_var=“APPLES”

outgoing_var=“PEARS”

pXRelay_Pears

tally_recd = 1
tally_sent = 1
incoming_var=“PEARS”

outgoing_var=“APPLES”

MOOS
Mail

26

2/16/23

14

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Our Old Friend pXRelay

pXRelay_Apples

tally_recd = 0
tally_sent = 0
incoming_var=“APPLES”

outgoing_var=“PEARS”

pXRelay_Pears

tally_recd = 0
tally_sent = 0
incoming_var=“PEARS”

outgoing_var=“APPLES”

MOOSDB
Initial state:

(No activity)

What’s happening inside

• OnStartUp(),

• OnNewMail(),

• Iterate()?

MOOS
Mail

27

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The “Relayer” Class Definition

#include ”MOOS/libMOOS/MOOSLib.h”
class Relayer : public CMOOSApp
{

public:
Relayer();
virtual ~Relayer() {};

bool OnNewMail(MOOSMSG_LIST &NewMail);
bool OnStartUp();

bool Iterate();
bool OnConnectToServer();

void RegisterVariables();

protected:
unsigned long int m_tally_recd;

unsigned long int m_tally_sent;

std::string m_incoming_var;

std::string m_outgoing_var;
};

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

Include CMOOSApp definition

and subclass it

Declare the constructor

Declare and define the

destructor.

Declare the CMOOSApp

superclass virtual

functions for overloading

Declare a utility function

where registrations happen

Keep track of received and

outgoing message counts

Store the user’s choice for

incoming and outgoing

variables.

The Relayer class definition is in:

moos-ivp-extend/trunk/

src/pXRelayTest/

MOOS App
Functions

28

2/16/23

15

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The “Relayer” Class Definition

#include ”MOOS/libMOOS/MOOSLib.h”
class Relayer : public CMOOSApp
{

public:
Relayer();
virtual ~Relayer() {};

bool OnNewMail(MOOSMSG_LIST &NewMail);
bool OnStartUp();

bool Iterate();
bool OnConnectToServer();

void RegisterVariables();

protected:
unsigned long int m_tally_recd;

unsigned long int m_tally_sent;

std::string m_incoming_var;

std::string m_outgoing_var;
};

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

CONVENTION:

Class member variables
begin with m_

CONVENTION:

Functions declared before
member variables

The Relayer class definition is in:

moos-ivp-extend/trunk/

src/pXRelayTest/

MOOS App
Functions

29

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnStartUp() Method

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay –

The INCOMING_VAR and

OUTGOING_VAR

bool Relayer::OnStartUp()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration(GetAppName(), sParams);

STRING_LIST::iterator p;

for(p = sParams.begin(); p!=sParams.end(); p++) {
string line = *p;
string param = MOOSChomp(line, "=");

string value = line;

if(MOOSStrCmp(param, "INCOMING_VAR"))
m_incoming_var = value;

else if(MOOSStrCmp(param, "OUTGOING_VAR"))
m_outgoing_var = value;

}

RegisterVariables();

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

Declare

function

Get the list of

parameters from
the .moos file

Iterate through

the list of
param=value
pairs

If param matches,

store value in
local member var

If param matches,

store value in
local member var

Now that incoming

var is known,
register for it!

MOOS App
Functions

30

2/16/23

16

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnStartUp() Method

bool Relayer::OnStartUp()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration(GetAppName(), sParams);

STRING_LIST::iterator p;

for(p = sParams.begin(); p!=sParams.end(); p++) {
string line = *p;
string param = MOOSChomp(line, "=");

string value = line;

if(MOOSStrCmp(param, "INCOMING_VAR"))
m_incoming_var = value;

else if(MOOSStrCmp(param, "OUTGOING_VAR"))
m_outgoing_var = value;

}

RegisterVariables();

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

Declare

function

Get the list of

parameters from
the .moos file

Iterate through

the list of
param=value
pairs

If param matches,

store value in
local member var

If param matches,

store value in
local member var

Now that incoming

var is known,
register for it!

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay –

The INCOMING_VAR and

OUTGOING_VAR

MOOS App
Functions

31

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnStartUp() Method

bool Relayer::OnStartUp()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration(GetAppName(), sParams);

STRING_LIST::iterator p;

for(p = sParams.begin(); p!=sParams.end(); p++) {
string line = *p;
string param = MOOSChomp(line, "=");

string value = line;

if(MOOSStrCmp(param, "INCOMING_VAR"))
m_incoming_var = value;

else if(MOOSStrCmp(param, "OUTGOING_VAR"))
m_outgoing_var = value;

}

RegisterVariables();

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

Declare

function

Get the list of

parameters from
the .moos file

Iterate through

the list of
param=value
pairs

If param matches,

store value in
local member var

If param matches,

store value in
local member var

Now that incoming

var is known,
register for it!

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay –

The INCOMING_VAR and

OUTGOING_VAR

MOOS App
Functions

32

2/16/23

17

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnStartUp() Method

bool Relayer::OnStartUp()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration(GetAppName(), sParams);

STRING_LIST::iterator p;

for(p = sParams.begin(); p!=sParams.end(); p++) {
string line = *p;
string param = MOOSChomp(line, "=");

string value = line;

if(MOOSStrCmp(param, "INCOMING_VAR"))
m_incoming_var = value;

else if(MOOSStrCmp(param, "OUTGOING_VAR"))
m_outgoing_var = value;

}

RegisterVariables();

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

Declare

function

Get the list of

parameters from
the .moos file

Iterate through

the list of
param=value
pairs

If param matches,

store value in
local member var

If param matches,

store value in
local member var

Now that incoming

var is known,
register for it!

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay –

The INCOMING_VAR and

OUTGOING_VAR

MOOS App
Functions

33

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnStartUp() Method

bool Relayer::OnStartUp()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration(GetAppName(), sParams);

STRING_LIST::iterator p;

for(p = sParams.begin(); p!=sParams.end(); p++) {
string line = *p;
string param = MOOSChomp(line, "=");

string value = line;

if(MOOSStrCmp(param, "INCOMING_VAR"))
m_incoming_var = value;

else if(MOOSStrCmp(param, "OUTGOING_VAR"))
m_outgoing_var = value;

}

RegisterVariables();

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

Declare

function

Get the list of

parameters from
the .moos file

Iterate through

the list of
param=value
pairs

If param matches,

store value in
local member var

If param matches,

store value in
local member var

Now that incoming

var is known,
register for it!

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay –

The INCOMING_VAR and

OUTGOING_VAR

MOOS App
Functions

34

2/16/23

18

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnStartUp() Method

bool Relayer::OnStartUp()
{
STRING_LIST sParams;

m_MissionReader.GetConfiguration(GetAppName(), sParams);

STRING_LIST::iterator p;

for(p = sParams.begin(); p!=sParams.end(); p++) {
string line = *p;
string param = MOOSChomp(line, "=");

string value = line;

if(MOOSStrCmp(param, "INCOMING_VAR"))
m_incoming_var = value;

else if(MOOSStrCmp(param, "OUTGOING_VAR"))
m_outgoing_var = value;

}

RegisterVariables();

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11
12

13
14
15

16
17
18

19
20

Declare

function

Get the list of

parameters from
the .moos file

Iterate through

the list of
param=value
pairs

If param matches,

store value in
local member var

If param matches,

store value in
local member var

Now that incoming

var is known,
register for it!

The task of the OnStartUp()
method is to grab the two
configuration parameters for
pXRelay –

The INCOMING_VAR and

OUTGOING_VAR

MOOS App
Functions

35

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnNewMail() Method

The OnNewMail() method is called on each application

iteration. If there is no mail, it simply returns true.

bool Relayer::OnNewMail(MOOSMSG_LIST &NewMail)
{
MOOSMSG_LIST::reverse_iterator p;

for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
CMOOSMsg &msg = *p;

string key = msg.GetKey();

if(key == m_incoming_var)

m_tally_recd++;
}

return(true);

}

0
1
2

3
4
5

6
7
8

9
10
11
12

13

Declare function

Iterate through the

MOOS messages

GetKey() returns

the MOOS variable

If the key matches

the user-specified
incoming key,
increment the tally

MOOS App
Functions

36

2/16/23

19

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnNewMail() Method

bool Relayer::OnNewMail(MOOSMSG_LIST &NewMail)
{
MOOSMSG_LIST::reverse_iterator p;

for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
CMOOSMsg &msg = *p;

string key = msg.GetKey();

if(key == m_incoming_var)

m_tally_recd++;
}

return(true);

}

0
1
2

3
4
5

6
7
8

9
10
11
12

13

Declare function

Iterate through the

MOOS messages

GetKey() returns

the MOOS variable

If the key matches

the user-specified
incoming key,
increment the tally

The OnNewMail() method is called on each application

iteration. If there is no mail, it simply returns true.

MOOS App
Functions

37

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnNewMail() Method

bool Relayer::OnNewMail(MOOSMSG_LIST &NewMail)
{
MOOSMSG_LIST::reverse_iterator p;

for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
CMOOSMsg &msg = *p;

string key = msg.GetKey();

if(key == m_incoming_var)

m_tally_recd++;
}

return(true);

}

0
1
2

3
4
5

6
7
8

9
10
11
12

13

Declare function

Iterate through the

MOOS messages

GetKey() returns

the MOOS variable

If the key matches

the user-specified
incoming key,
increment the tally

The OnNewMail() method is called on each application

iteration. If there is no mail, it simply returns true.

MOOS App
Functions

38

2/16/23

20

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay OnNewMail() Method

bool Relayer::OnNewMail(MOOSMSG_LIST &NewMail)
{
MOOSMSG_LIST::reverse_iterator p;

for(p = NewMail.rbegin(); p!=NewMail.rend(); p++) {
CMOOSMsg &msg = *p;

string key = msg.GetKey();

if(key == m_incoming_var)

m_tally_recd++;
}

return(true);

}

0
1
2

3
4
5

6
7
8

9
10
11
12

13

Declare function

Iterate through the

MOOS messages

GetKey() returns

the MOOS variable

If the key matches

the user-specified
incoming key,
increment the tally

The OnNewMail() method is called on each application

iteration. If there is no mail, it simply returns true.

MOOS App
Functions

39

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay Iterate() Method

bool Relayer::Iterate()
{
unsigned deficit = m_tally_recd - m_tally_sent;

for(unsigned int i=0; i<deficit; i++) {

m_tally_sent++;
Notify(m_outgoing_var, m_tally_sent);

}

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11

Declare function

Determine if we’ve

sent less than we’ve
received

Make N postings

where N is the
deficit

The Iterate() method is called on each application iteration – after OnNewMail() is called.

MOOS App
Functions

40

2/16/23

21

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay Iterate() Method

bool Relayer::Iterate()
{
unsigned deficit = m_tally_recd - m_tally_sent;

for(unsigned int i=0; i<deficit; i++) {

m_tally_sent++;
Notify(m_outgoing_var, m_tally_sent);

}

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11

Declare function

Determine if we’ve

sent less than we’ve
received

Make N postings

where N is the
deficit

The Iterate() method is called on each application iteration – after OnNewMail() is called.

MOOS App
Functions

41

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The pXRelay Iterate() Method

bool Relayer::Iterate()
{
unsigned deficit = m_tally_recd - m_tally_sent;

for(unsigned int i=0; i<deficit; i++) {

m_tally_sent++;
Notify(m_outgoing_var, m_tally_sent);

}

return(true);
}

0
1
2

3
4
5

6
7
8

9
10
11

Declare function

Determine if we’ve

sent less than we’ve
received

Make N postings

where N is the
deficit

The Iterate() method is called on each application iteration – after OnNewMail() is called.

MOOS App
Functions

42

2/16/23

22

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

OnStartup() and RegisterVariables() Methods

Variable registration is done both at the end of OnConnectToServer() and OnStartUp()

bool Relayer::OnConnectToServer()
{
RegisterVariables();

return(true);
}

0
1
2

3
4

Declare function

Register here in

case not done in
OnStartUp()

void Relayer::RegisterVariables()
{
if(m_incoming_var != "")

m_Comms.Register(m_incoming_var, 0);
}

0
1
2

3
4

Declare function

Just register for

the one user-defined
incoming variable

MOOS App
Functions

43

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use AppCasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

Serialization
Time Warp

44

2/16/23

23

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

General MOOS App Concepts
Message Serialization

• A MOOS Message data type is either a string or a double

• It is common to want to pass a data structure

• For example, if we want to pass a point in 3D space, we could pass MY_POINT = “22,87,95”

• The recipient would be responsible for parsing this string back into a 3D points.

Ways of handling this:

Poorest way: Passing the string “22,87,95” and just have an informal agreement that

the first field is X, second field is Y, third field is Z.

Better way: Passing the string “x=22, y=87, z=95”.

The fields are self-labelled and the message is easily extendable. Still have to
have an informal agreement on the field labels.

Even Better way: Create a Class or Structure for holding this information.

Class implements an instance-to-string function.
Class implements a string-to-instance function.

Best(?) way: Use a general-purpose scheme like Google Protocol Buffers to define

your data structure in a meta-file and auto-generate the class.

Serialization
Time Warp

45

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use AppCasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

Serialization
Time Warp

46

2/16/23

24

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

General MOOS App Concepts
Time Warp

• MOOS implements a function called MOOSTime().

It returns the number of seconds since the start of Jan 1st, 1970.

• MOOS simulations may be run with TimeWarp

• In your .moos configuration file:

“Time Warp Compliance”:

Your app may be “time warp compliant” if it only gets its time from MOOSTime()

MOOSTimeWarp = 20

• From the command-line:

pAntler --MOOSTimeWarp=20

• From within your app, MOOS implements GetMOOSTimeWarp()

You may want to slow down any terminal debug output at high time warps.

• TimeWarp accepts values less than 1, if you want to actually slow things down.

Serialization
Time Warp

47

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use AppCasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

AppCasting
MOOS Apps

48

2/16/23

25

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Life Before AppCasting

• One window for each

MOOS Application:

10 windows

AppCasting
MOOS Apps

49

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

AppCasting in MOOS

• The biggest headache of users new to MOOS (students in MIT 2.680) was the derailment of a mission

due to an unnoticed configuration or runtime error.

• Debugging typically involves re-launching with app terminal windows open and analyzing expected vs.

observed output.

• Deploying multiple vehicles each with multiple MOOS Apps means a lot of terminal windows are open.

• On a remotely deployed vehicle, one cannot ssh in and see any application terminal output at all!

• Since terminal output is rarely viewable for the above practical reasons, apps are rarely designed with
much thought put into their terminal output.

… Introducing AppCasting in MOOS

AppCasting was motivated by a few observations:

AppCasting
MOOS Apps

50

2/16/23

26

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

With AppCasting

AppCasting
MOOS Apps

51

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

AppCasting

With AppastingWithout

AppCasting
MOOS Apps

52

2/16/23

27

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

MOOSDB

MOOS Application

• Incoming Mail
• Outgoing Mail

• Status Report

MOOS Application I/O

mail

• A typical MOOS application interacts by way of mail and the MOOSDB.

Terminal

Standard Output

• Most applications also produce debugging/status info to the terminal.

• Often this format is an afterthought.

• Often this content is out of sight, if a terminal is not open.

AppCasting
MOOS Apps

53

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Typical Terminal Output

Typical terminal output of a MOOSApp will show:

• Startup summary and health status,

• A simple heartbeat character or other simple health indicator.

pLogger

AppCasting
MOOS Apps

54

2/16/23

28

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Terminal

MOOSDB

MOOS Application

Status Report

AppCast
(serialized)

Standard Output

Introducing AppCasting

AppCast

• Generates an AppCast representing its status report.

• The AppCast is sent to the terminal standard output.

(From the user’s perspective it looks like any other MOOS application.)

• The AppCast is also serialized and sent to the MOOSDB.

An AppCast-Enabled MOOS App:

AppCasting
MOOS Apps

55

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

An Example AppCast
From the uProcessWatch MOOSApp

List of
Strings

List of
Events
(Limited)

Application
Iteration
Counter

AppCasting
MOOS Apps

56

2/16/23

29

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Terminal

MOOSDB

MOOS Application

AppCast

Standard Output

MOOS Application

AppCast Viewer

AppCast Viewing

• Now a user can see application output even if an application terminal output is

otherwise suppressed (e.g., no open terminal or I/O re-directed to /dev/null).

• A separate MOOS utility application may be run to view AppCasts from

any AppCast-enabled application.

Status Report

AppCast

AppCasting
MOOS Apps

57

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

MOOSDB

MOOS App

AppCast

MOOS Application

AppCast Viewer

MOOS App

MOOS App

MOOS App

AppCast

AppCast

AppCast

AppCast Viewing

• The AppCast viewer may “connect” to multiple applications.

• The AppCast viewer can switch between “channels”.

• The AppCast viewer brings Config alerts and RunTime alerts to the

user’s attention even when not monitoring that channel.

AppCasting
MOOS Apps

58

2/16/23

30

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

AppCast Viewing

•The AppCast viewer may connect to multiple vehicles, diving down to the

vehicle and application it selects.

MOOSDB

MOOS Application

AppCast Viewer

ShoresideField

AppCasting
MOOS Apps

59

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

AppCast Viewing

MOOSDB

MOOS Application

AppCast Viewer

AppCasting
MOOS Apps

60

2/16/23

31

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

AppCast Viewers

What does an AppCast Viewer do?

• Sends AppCast requests to clients.

• Renders received AppCasts.

• Allows the user to select/switch between different MOOSApps and vehicles

(1) uMAC (2) uMACView (3) pMarineViewer

Currently there are three AppCast Viewer applications:

Terminal
(good for ssh’ing into a

remote vehicle) GUI (fltk) GUI (fltk)

AppCasting
MOOS Apps

61

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

AppCast Viewing
with the uMACView Tool

• uMACView is a stand-alone, GUI-Based Viewer

• Launch from the command-line or with pAntler.

ShoresideField

MOOSDB

Select the
Vehicle/Node

Select the
MOOSApp

View the
AppCast

AppCasting
MOOS Apps

62

2/16/23

32

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

AppCast Viewing
with uMAC

• Terminal interface provides most of what the GUI tools provide.

• Primary advantage: When a remote vehicle is not sending AppCasts to
a shoreside, user can ssh into the vehicle and launch uMAC to debug.

MOOSDB

ShoresideField

AppCasting
MOOS Apps

63

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The AppCast Structure
AppCast Config Warnings

Configuration warnings:

• Usually created at App startup time.

• Unlimited in quantity.

Config Warnings

General
messages

Events

Run Warnings

• An AppCast is an instance of the

AppCast C++ class.

• It contains:

AppCasting
MOOS Apps

64

2/16/23

33

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The AppCast Structure
AppCast Run Warnings

Run warnings:

• Created typically well after
launch time when something
goes wrong.

• Limited in quantity.(don’t want
the size of an appcast to grow
unbounded)

• Provisions are made in AppCast
Viewers to ensure RunWarnings
come to the user’s attention.

• An AppCast is an instance of the

AppCast C++ class.

• It contains:

Config Warnings

General
messages

Events

Run Warnings

AppCasting
MOOS Apps

65

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The AppCast Structure
AppCast Messages

Messages:

• Free in format. Up to the
user to pick the
information and layout.

• Typically “cleared” on each
generation of an appcast.

• Just a list of strings.

• Tables, columns etc. done
by the user.

• An AppCast is an instance of the

AppCast C++ class.

• It contains:

Config Warnings

General
messages

Events

Run Warnings

AppCasting
MOOS Apps

66

2/16/23

34

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The AppCast Structure
AppCast Events

Events:

• Created typically after launch time
when something “notable” happens.

• Limited in quantity.(don’t want the size
of an appcast to grow unbounded)

• Each event is just a string with a
timestamp.

• An AppCast is an instance of the

AppCast C++ class.

• It contains:

Config Warnings

General
messages

Events

Run Warnings

AppCasting
MOOS Apps

67

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
AppCasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use AppCasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

AppCasting
MOOS Apps

68

2/16/23

35

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

How do you make an

“AppCast-Enabled”

MOOS application?

AppCasting
MOOS Apps

69

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

On-Demand AppCasting

• Apps must register for APPCAST_REQ mail.

An AppCast request will renew a token for some number of seconds
Until the token expires, the app generates an appcast repeatedly.

• Even while appcasting, the app only generates an AppCast every N secs.
The app keeps track of the last real-time appcast generation.

• Each app handles a config setting indicating whether an xterm is open.
This setting is a global variable in the .moos config file.

So, a new generic “AppCastingMOOSApp” class is used:

Minimizes boilerplate in individual apps.

CMOOSApp

AppCastingMOOSApp

Subclass

Your MOOSApp

Subclass

To implement on-demand appcasting, a few things need to be done in each application.

http://oceanai.mit.edu/ivpman/appcast_enable

AppCasting
MOOS Apps

70

2/16/23

36

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Using the AppCastingMOOSApp Superclass
Six Steps

Step 1: Subclass the AppCastingMOOSApp Superclass

Step 2: Invoke two superclass methods in your Iterate() method.

Step 3: Invoke a superclass method when you register variables.

Step 4: Invoke a superclass method during OnNewMail().

Step 5: Invoke a superclass method during OnStartUp().

Step 6: Implement your buildReport() function.

Trivial, 1-2 line

changes in each
case

This is where you

get to be creative
about what your
app reports.

AppCasting
MOOS Apps

71

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Using the AppCastingMOOSApp Superclass
Your Class Definition

Step 1: Subclass the AppCastingMOOSApp Superclass

#include
“MOOS/libMOOS/Thirdparty/AppCasting/AppCastingMOOSApp.h”
class YourMOOSApp : public AppCastingMOOSApp

{
// All your normal class declaration stuff

bool buildReport();
};

0
1
2

3
4
5

6
7

The buildReport()
function is a virtual

function in the
superclass. It is where
you can do the work of
constructing an AppCast.

AppCasting
MOOS Apps

72

2/16/23

37

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Using the AppCastingMOOSApp Superclass
Modifying Your Iterate() and Registrations

Step 2: Invoke two superclass methods in your Iterate()

bool YourMOOSApp::Iterate()
{

AppCastingMOOSApp::Iterate();

// Do all your normal Iterate stuff

AppCastingMOOSApp::PostReport();
return(true);

};

0
1

2
3
4
5

6
7
8

Updates the current

MOOSTime, and # of
iterations.

Determines if an AppCast

is warranted, and invokes
buildReport() if so.

Step 3: Invoke a superclass method when you register variables.

void YourMOOSApp::registerVariables()
{

AppCastingMOOSApp::RegisterVariables();

// Do all your other registrations

}

0
1

2
3
4
5

6

The superclass will

register for APPCAST_REQ,
indicating another app,
like uMAC, is interested
in appcasts from this app.

AppCasting
MOOS Apps

73

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Using the AppCastingMOOSApp Superclass
Modifying Your OnNewMail() and OnStartUp()

Step 4: Invoke a superclass method when you handle mail.

bool YourMOOSApp::OnNewMail(MOOSMSG_LIST
&NewMail)

{
AppCastingMOOSApp::OnNewMail(NewMail);

// Do all your other normal mail handling.

}

0
1

2
3
4
5

6

The superclass will handle

the APPCAST_REQ mail.

Step 5: Invoke a superclass method during OnStartUp()

void YourMOOSApp::OnStartUp()
{

AppCastingMOOSApp::OnStartUp();

// Do all your other startup stuff
}

0
1

2
3
4
5

The superclass will

register for
APPCAST_REQ, indicating
another app, like uMAC,

is interested in
appcasts from this app.

AppCasting
MOOS Apps

74

2/16/23

38

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
AppCasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use AppCasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

MOOS
Conventions

75

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Good Conventions for MOOS Programming
Command-Line Switches

• Most MOOS apps are launched from pAntler, but a number of common command-

line switches a common, good practice.

• Add these to your own apps – Remember they are there for the apps you use.

-v, --version: • Provides the version information for the given app

• Always provide this when/if submitting a bug report.

MOOS
Conventions

76

2/16/23

39

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Most MOOS apps are launched from pAntler, but a number of common command-line

switches a common, good practice.

• Add these to your own apps – Remember they are there for the apps you use.

-v, --version: • Provides the version information for the given app

• Always provide this when/if submitting a bug report.

MOOS
Conventions

Good Conventions for MOOS Programming
Command-Line Switches

77

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Most MOOS apps are launched from pAntler, but a number of common command-

line switches a common, good practice.

• Add these to your own apps – Remember they are there for the apps you use.

-h, --help: • Short synopsis of what the app is intended to do.
• Other command line switches are available
• Other usage tips

-v, --version: • Provides the version information for the given app
• Always provide this when/if submitting a bug report.

MOOS
Conventions

Good Conventions for MOOS Programming
Command-Line Switches

78

2/16/23

40

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Command Line Switches

$ uTimerScript --help

MOOS
Conventions

79

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Most MOOS apps are launched from pAntler, but a number of common command-

line switches a common, good practice.

• Add these to your own apps – Remember they are there for the apps you use.

-h, --help: • Short synopsis of what the app is intended to do.
• Other command line switches are available
• Other usage tips

-v, --version: • Provides the version information for the given app
• Always provide this when/if submitting a bug report.

-i, --interface: • Short synopsis of what the app is intended to do.
• The variables to which this app subscribes, and example values
• The variables to which this app publishes, and example values

MOOS
Conventions

Good Conventions for MOOS Programming
Command-Line Switches

80

2/16/23

41

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Command Line Switches

-- interface

$ uTimerScript --interface

MOOS
Conventions

81

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Most MOOS apps are launched from pAntler, but a number of common command-line

switches a common, good practice.

• Add these to your own apps – Remember they are there for the apps you use.

-h, --help: • Short synopsis of what the app is intended to do.
• Other command line switches are available
• Other usage tips

-v, --version: • Provides the version information for the given app
• Always provide this when/if submitting a bug report.

-i, --interface:

-e, --example: • An example MOOS configuration block.
• Description of MOOS parameter meanings
• Example values and default values

• Short synopsis of what the app is intended to do.
• The variables to which this app subscribes, and example values
• The variables to which this app publishes, and example values

MOOS
Conventions

Good Conventions for MOOS Programming
Command-Line Switches

82

2/16/23

42

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Command Line

Switches
-- example

$ uTimerScript --example

MOOS
Conventions

83

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Command Line

Switches
--web, or -w

$ uTimerScript --web

MOOS
Conventions

84

2/16/23

43

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use Appcasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

MOOS
Conventions

85

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Types of documentation for your MOOS App:

• Document your code, inside your code with comments, or Doxygen tags

• Document your application with command-line switches

• Document your application with a manual-like PDF, with example missions.

Good Conventions for MOOS Programming
Documentation (Why and How)

MOOS
Conventions

86

2/16/23

44

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Types of documentation for your MOOS App:

• Document your code, inside your code with comments, or Doxygen tags

• Document your application with command-line switches

• Document your application with a manual-like PDF, with example missions.

• Why do we document our code and application. Three Reasons:

• So users know what it does and how to use it effectively.

• So developers may continue development someday when you’re not around.

• What is the third reason? (Perhaps the most important)

Good Conventions for MOOS Programming
Documentation (Why and How)

MOOS
Conventions

87

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Types of documentation for your MOOS App:

• Document your code, inside your code with comments, or Doxygen tags

• Document your application with command-line switches

• Document your application with a manual-like PDF, with example missions.

• Why do we document our code and application. Three Reasons:

• So users know what it does and how to use it effectively.

• So developers may continue development someday when you’re not around.

• What is the third reason? (Perhaps the most important)

• Answer: So that YOU write better code!

Good Conventions for MOOS Programming
Documentation (Why and How)

MOOS
Conventions

88

2/16/23

45

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Types of documentation for your MOOS App:

• Document your code, inside your code with comments, or Doxygen tags

• Document your application with command-line switches

• Document your application with a manual-like PDF, with example missions.

• Why do we document our code and application. Three Reasons:

• So users know what it does and how to use it effectively.

• So developers may continue development someday when you’re not around.

• What is the third reason? (Perhaps the most important)

• Answer: So that YOU write better code!

• Don’t leave documentation until the end.

• By documenting as you go along, you will write better code.

• By documenting as you go along, you are less likely to “run out of time”

Good Conventions for MOOS Programming
Documentation (Why and How)

MOOS
Conventions

89

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

• Types of documentation for your MOOS App:

• Document your code, inside your code with comments, or Doxygen tags

• Document your application with command-line switches

• Document your application with a manual-like PDF, with example missions.

• Why do we document our code and application. Three Reasons:

• So users know what it does and how to use it effectively.

• So developers may continue development someday when you’re not around.

• What is the third reason? (Perhaps the most important)

• Answer: So that YOU write better code!

• Don’t leave documentation until the end.

• By documenting as you go along, you will write better code.

• By documenting as you go along, you are less likely to “run out of time”

• For MOOS Apps, document:

• What it does

• The publish-subscribe interface

• An example app configuration

• An example mission using the application

Good Conventions for MOOS Programming
Documentation (Why and How)

MOOS
Conventions

90

2/16/23

46

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Intro to MOOS Programming Outline

• MOOS App Class Hierarchy

• MOOS Messages and Posting to the MOOSDB

• Registering for and Publishing Mail

• Key Overloadable Functions: OnNewMail(), OnStartUp(), Iterate()

• Serializing and De-Serializing Messages

• Time Warp

Part 1: General
MOOS App
Concepts

Part 2:
Appcasting

Part 3 Good :
MOOS App

Conventions

• Motivation and How to use Appcasting

• How to convert an existing MOOSApp to an AppCastingMOOSApp

• Command-Line Switches

• Documentation

• Pros and Cons of Branching, How to Branch

MOOS
Conventions

91

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

Branching - Why and When?

• A powerful feature of MOOS and Open Source code: If you don’t like what the

application does, you have options.

• Branching here refers to (a) copying an existing module (b) modify for a different or

augmented use, (c) making it available for others to use.

• Pros of Branching:

• You are free to innovate! (From a decent baseline case)

• Authors are motivated to maintain their code (or else it will be replaced)

• Authors have limited liability – (hey, if you don’t like it, build your own!)

• Cons of Branching:

• Lots of choices between trivially different modules is confusing for other users.

MOOS
Conventions

92

2/16/23

47

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

The Etiquette of Branching

• If you have a minor bug fix or feature request, give the maintainer

a chance to maintain the code. Don’t branch trivially.

• If you do branch, definitely, absolutely, give it a different name!

• Give credit where credit is due to the original author.

MOOS
Conventions

93

MOOS
Classes

MOOS
Messages

MOOS
Mail

MOOS App
Functions

AppCasting
MOOS Apps

MOOS

Conventions
Scoping
MOOS

Serialization
Time Warp

Michael Benjamin, Spring 2023 MIT Dept of Mechanical Engineering

END

94

