
C++ Lab 04 - File I/O, Arrays and Vectors
2.680 Unmanned Marine Vehicle Autonomy, Sensing and Communications

IAP 2024

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Lab Four Overview and Objectives 3

2 C-Style Arrays 3
2.1 Exercise 1: Build a Simple Array from Command Line Arguments 3
2.2 Exercise 2: Analyze and Modify a Simple Array . 4

3 C-Style File Input and Formatted Output 4
3.1 Exercise 3: Create and Write to a File with Command Line Args 5
3.2 Exercise 4: Reading from a File Specified on the Command Line 5

4 C++ Vectors 5
4.1 Declaring, building and copying a vector . 6
4.2 Accesing and Iterating Through Vectors . 7
4.3 Exercise 5: Build a Vector from Command Line Arguments 8
4.4 Exercise 6: Build a Vector of Strings Input from a File . 8
4.5 Links to On-Line Tutorials on Vectors for Further Info . 9
4.6 Behind-the-Scenes Info about Vectors Worth Knowing Now 9
4.7 A Preview of other STL Containers . 10

5 Solutions to Exercises 11
5.1 Solution to Exercise 1 . 11
5.2 Solution to Exercise 2 . 12
5.3 Solution to Exercise 3 . 13
5.4 Solution to Exercise 4 . 14
5.5 Solution to Exercise 5 . 15
5.6 Solution to Exercise 6 . 16

1

2

1 Lab Four Overview and Objectives

This lab covers two topics that tie together to produce a nice utility function we will use in later
labs. We cover C-style arrays and their more modern counterpart vectors commonly used C++.
Along the way we introduce file input/output (I/O) to give us the power of reading to and from
files. In the end we build a simple utility for reading the contents of a file into a vector of strings.

� C-Style Arrays

� C-Style File Input and Formatted Output

� C++ Vectors

2 C-Style Arrays

The C language provides a robust mechanism for representing and using arrays, which are con-
tiguous blocks of memory holding elements of the same data type. This is a fundamental concept
underpinning C and C++ and commonly found in most if not all programming languages. C++
now provides alternative data structures such as the vector which is simpler to use and less prone
to programmer error. So an array in typical modern C++ code is more likely to be implemented
using a vector and for this reason we refer to simple memory arrays as ”C-style” arrays.

Since C-style arrays are still commonly found in legacy and even newer C++ code, we take a look
at these before introducing and advocating the use of the vector later in the lab. We will do a short
exercise with C-style arrays, but first, read the page(s) below on C-style arrays.

� http://www.cplusplus.com/doc/tutorial/arrays

� http://www.tutorialspoint.com/cplusplus/cpp_arrays.htm

2.1 Exercise 1: Build a Simple Array from Command Line Arguments

Write a program to read in any number of integers from the command line, constructing an array
of such integers, and printing them out afterwards. Your array should be exactly the size of the
number of integers read in from the command line. You can assume all arguments on the command
line are valid integers.

Call your file arrays.cpp and build it to the executable arrays. When your program runs, it
should be invocable from the command line with:

$./arrays 1 2 3 88 43 26

Total amount of integers provided: 6

numbers[0]: 1

numbers[1]: 2

numbers[2]: 3

numbers[3]: 88

numbers[4]: 43

numbers[5]: 26

The solution to this exercise is in Section 5.1.

3

http://www.cplusplus.com/doc/tutorial/arrays
http://www.tutorialspoint.com/cplusplus/cpp_arrays.htm

2.2 Exercise 2: Analyze and Modify a Simple Array

Continuing with the first exercise, write a program to read in any number of integers from the
command line, constructing an array of such integers, and printing them out afterwards. Your array
should be exactly the size of the number of integers read in from the command line. Following this
scan the array and determine the smallest number and build a new array of size N-1 removing at
most one element of the first array equal to the smallest element. You can assume all arguments on
the command line are valid integers.

Call your file array nosmall.cpp and build it to the executable array nosmall. When your
program runs, it should be invocable from the command line with:

$./arrays_nosmall 1 88 43 1 7 26

Total amount of integers provided: 6

numbers[0]: 1

numbers[1]: 88

numbers[2]: 43

numbers[3]: 1

numbers[4]: 7

numbers[5]: 26

The new array of integers:

numbers[0]: 88

numbers[1]: 43

numbers[2]: 1

numbers[3]: 7

numbers[4]: 26

The solution to this exercise is in Section 5.2.

3 C-Style File Input and Formatted Output

The next topic is file I/O, reading from and writing to a file on your computer from within a C or
C++ program. Pretty much everything you need for reading and writing can be found in the below
five functions, which squarely fall in the realm of C but supported of course in C++. There are
several other options and functions to do similar things, but the below is pretty complete. Take a
look at them and follow the examples. Pay special attention to the options for the fopen() function.
Following this are a couple simple exercises.

� fopen()

http://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm

� fclose()

http://www.tutorialspoint.com/c_standard_library/c_function_fclose.htm

� fprintf()

http://www.tutorialspoint.com/c_standard_library/c_function_fprintf.htm

� feof()

http://www.tutorialspoint.com/c_standard_library/c_function_feof.htm

� fgetc()

http://www.tutorialspoint.com/c_standard_library/c_function_fgetc.htm

4

http://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
http://www.tutorialspoint.com/c_standard_library/c_function_fclose.htm
http://www.tutorialspoint.com/c_standard_library/c_function_fprintf.htm
http://www.tutorialspoint.com/c_standard_library/c_function_feof.htm
http://www.tutorialspoint.com/c_standard_library/c_function_fgetc.htm

3.1 Exercise 3: Create and Write to a File with Command Line Args

Write a program that accepts a number of strings on the command line and creates a new file, also
specified as a command line argument. The new file will contain one line for each provided command
line argument (except for the argument specifying the file name). For this exercise, you will need to
know about the fopen(), fclose(), and fprintf functions found on the above web pages, plus some
of your knowledge obtained in prior lab exercises for handling command line arguments.

Call your file fileout.cpp and build it to the executable fileout. When your program runs, it
should be invocable from the command line with:

$./fileout --filename=test.txt one two three four

$ cat test.txt

one

two

three

four

The solution to this exercise is in Section 5.3.

3.2 Exercise 4: Reading from a File Specified on the Command Line

Write a program that accepts a given filename on the command line, opens the file for reading, and
reads in each line to a string. The string will have the format: line: [contents] where contents is
the raw contents of the line in the file including white space. Your program should then output each
string to the terminal. For this exercise, you will need to know about the fopen(), fclose(), and
feof() and fgetc() functions found on the above web pages, plus some of your knowledge obtained
in prior lab exercises for handling command line arguments.

Call your file filein.cpp and build it to the executable filein. When your program runs, it should
be invocable from the command line with:

$./filein --filename=test.txt

line: [one]

line: [two]

line: [three]

line: [four]

The solution to this exercise is in Section 5.4.

4 C++ Vectors

In the situation where one would otherwise use an array in C, code writers in C++ are more likely
to use the vector class. Even though we haven’t covered C++ classes yet in this lab, this shouldn’t
stop us from seeing how a vector can be used in basic operations similar to an array. We will point
you to a couple on-line tutorials on the vector which treat the topic more thoroughly, but first a
description of the minimal things you should know:

5

4.1 Declaring, building and copying a vector

One the best things about the vector is that, unlike a C-style array, you don’t need to specify the
size when it is declared.

int my_array[100]; // Declaring an C-style array of integers

vector<int> my_vector; // Declaring an array of integers using a vector

The above my vector is initially empty and elements are added always to the end with:

my_vector.push_back(22);

my_vector.push_back(17);

my_vector.push_back(43);

Note that when the vector is initially declared, it is empty, so the following would not work:

vector<int> my_vector;

my_vector[0] = 22; // error: accessing at an index out-of-bounds

my_vector[1] = 17; //

my_vector[2] = 43; //

If you would like to declare a vector with an initial size and default value for each element, this can
be done with:

vector<int> my_vector(100, 0); // my_vector has 100 elements all zero

my_vector[0] = 22; // Now this is ok. 22 overwrites zero

my_vector[1] = 17;

my_vector[2] = 43;

As with most all C++ structures like the vector they can copied very simply as you would with
fundamental data types like int or double:

vector<int> my_vector(100, 0); // my_vector has 100 elements all zero

my_vector[0] = 22; // Now this is ok. 22 overwrites zero

my_vector[1] = 17;

my_vector[2] = 43;

vector<int> his_vector = my_vector; // his_vector has 100 elements {22,17,43,...,0}

Since a vector size is not set in stone upon creation, elements may be removed too (from the end)
with the pop back() function:

vector<int> my_vector; // my_vector initially has no elements

my_vector.push_back(22); //

my_vector.push_back(17);

my_vector.push_back(43); // my_vector now has three element

...

my_vector.pop_back(); // my_vector now has two elements {22,17}

6

4.2 Accesing and Iterating Through Vectors

Accessing and iterating through a vector is very similar to array, but since the vector size is not
fixed at the outset, we often want to know the size of the vector to prevent accessing an index out
of bounds.

vector<int> my_vector; // my_vector initially has no elements

my_vector.push_back(22); //

my_vector.push_back(17);

my_vector.push_back(43); // my_vector now has three element

unsigned int total_elements = my_vector.size();

Note the type returned by the size() function is of type unsigned int since the size can never be less
than zero. Accessing a vector is the same as an array, e.g., my vector[8] refers to the 9th element,
and can be used on the left or right side of an assignment operator or passed as a parameter to a
function. In fact the whole vector can be passed as a parameter in a function. Iterating through an
array is also very similar:

vector<int> my_vector; // my_vector initially has no elements

my_vector.push_back(22);

my_vector.push_back(17);

my_vector.push_back(43);

int total = 0;

for(unsigned int i=0; i<my_vector.size(); i++)

total += my_vector[i];

A vector may be ”reset” or emptied with the clear() function:

vector<int> my_vector; // my_vector initially has no elements

my_vector.push_back(22);

my_vector.push_back(17);

my_vector.push_back(43); // my_vector has three elements

my_vector.clear(); // my_vector again has no elements

Lastly, it is often useful to know the last element of a vector regardless of the index of the last
element. For this, use the back() function:

vector<int> my_vector; // my_vector initially has no elements

my_vector.push_back(22);

my_vector.push_back(17);

my_vector.push_back(43); // my_vector has three elements

int val = my_vector.back(); // val is set to 43, my_vector still has three elements

7

4.3 Exercise 5: Build a Vector from Command Line Arguments

Write a program, similar to Excercise 2, to read in any number of integers from the command line,
but constructing this time a vector of such integers, and printing them out afterwards. As before,
scan the vector and determine the smallest number and build a new vector of size N-1 removing at
most one element of the first vector equal to the smallest element. You can assume all arguments
on the command line are valid integers.

Call your file vectors nosmall.cpp and build it to the executable vectors nosmall. When your
program runs, it should be invocable from the command line with similar output:

$./vectors_nosmall 1 88 43 1 7 26

Total amount of integers provided: 6

numbers[0]: 1

numbers[1]: 88

numbers[2]: 43

numbers[3]: 1

numbers[4]: 7

numbers[5]: 26

The new array of integers:

numbers[0]: 88

numbers[1]: 43

numbers[2]: 1

numbers[3]: 7

numbers[4]: 26

The solution to this exercise is in Section 5.5.

4.4 Exercise 6: Build a Vector of Strings Input from a File

Completion of this exercise is the primary goal of this lab. This exercise asks you to build a utility
function we will use in later labs, that essentially reads the contents of a file into a vector of strings.
We have touched on all the components of this through prior exercises so far, so this should just
pull things together.

Write a program that reads in one argument from the command line (--filename=file), and reads
in the contents of this file into a vector of strings. Afterwards, all non-empty strings will be written
to the terminal on a separate line. An empty line should be indicated as empty.

Your program should consist of three files, filebuff main.cpp containing your main() function and
FileBuffer.h and FileBuffer.cpp containing your utility function. When your program runs, it
should be invocable from the command line with:

8

$ cat test.txt // Assuming a test file with five lines, one of them blank

one

two

three

four

$./filebuff --filename=test.txt

line: [one]

line: [two]

line: [three]

line: Empty!

line: [four]

The solution to this exercise is in Section 5.6.

4.5 Links to On-Line Tutorials on Vectors for Further Info

Here are a few good links for further reading. Feel free to explore and try some of the things you
see.

� This link provides an example of a matrix with two vectors:
http://www.yolinux.com/TUTORIALS/LinuxTutorialC++STL.html

� This link also touches on algorithms available for operation on vectors, such as sorting and
randomizing:
http://www.mochima.com/tutorials/vectors.html

� Here you can see all the functions defined on a vector in the menu on the lefthand side of the
page:
http://www.cplusplus.com/reference/vector/vector/vector/

4.6 Behind-the-Scenes Info about Vectors Worth Knowing Now

Some of the web links above touch on these issues, but in case you didn’t read them or want further
emphasis, we discuss a few of these ideas here.

Memory allocation in vectors:

The issue of allocating memory is largely hidden from the user when using a vector. A vector still
uses a contiguous block of memory just like an array, but the user typically isn’t concerned how
the vector obtains or grows this memory. A vector has a capacity which is always greater or equal
to the number of elements in the array. The vector will grow the capacity as needed, behind the
scenes without the user needing to be concerned with the when or how. A good discussion can be
found here:

� vector capacity: http://www.cplusplus.com/reference/vector/vector/capacity/

At times the user may want to think about vector capacity. If you are building a big vector by
pushing one element at a time onto the end, the vector capacity will up-size periodically along the
way by grabbing a bigger chunk of memory and copying the existing contents into the new memory
before proceeding. However, if you know this vector will contain say a million elements, you can set

9

http://www.yolinux.com/TUTORIALS/LinuxTutorialC++STL.html
http://www.mochima.com/tutorials/vectors.html
http://www.cplusplus.com/reference/vector/vector/vector/
http://www.cplusplus.com/reference/vector/vector/capacity/

the capacity right at the time of creation so no re-sizing ever needs to be done. If this operation is a
core operation (repeated many times over and over in a short period) in your program, then the
reservation of vector capacity can make the difference in having a program that runs sufficiently
fast.

A few things to remember about vector capacity:

� There is no way to set capacity at declaration. It is a two step process. First the declaration,
then the reservation of capacity:

vector<int> vector_a;

vector_a.reserve(1000000); // Has size 0. Capacity exactly 1,000,000

...

vector<int> vector_b(1000000); // Has size 1,000,000. Capacity >= 1,000,000

� Invoking the clear() function doesn’t change it’s capacity, but sets the size to zero.

� You can know the capacity by invoking the capacity() function.

4.7 A Preview of other STL Containers

The vector is but one type of container available in C++. Below are a few short descriptions of
other useful containers we may explore in later labs. These are all from the cplusplus.com website.

� deque (usually pronounced like ”deck”) is an irregular acronym of double-ended queue. Double-
ended queues are sequence containers with dynamic sizes that can be expanded or contracted
on both ends (either its front or its back).

� Maps are associative containers that store elements formed by a combination of a key value
and a mapped value, following a specific order. In a map, the key values are generally used to
sort and uniquely identify the elements, while the mapped values store the content associated
to this key.

� Sets are containers that store unique elements following a specific order. In a set, the value
of an element also identifies it (the value is itself the key), and each value must be unique.
The value of the elements in a set cannot be modified once in the container, but they can be
inserted or removed from the container.

� Lists are sequence containers that allow constant time insert and erase operations anywhere
within the sequence, and iteration in both directions. List containers are implemented as
doubly-linked lists; Doubly linked lists can store each of the elements they contain in different
and unrelated storage locations. The ordering is kept internally by the association to each
element of a link to the element preceding it and a link to the element following it.

10

cplusplus.com

5 Solutions to Exercises

5.1 Solution to Exercise 1

/*--*/

/* FILE: arrays.cpp (Fourth C++ Lab Exercise 1) */

/* WGET: wget http://oceanai.mit.edu/cpplabs/arrays.cpp */

/* BUILD: g++ -o arrays arrays.cpp */

/* RUN: ./arrays 23 11 98 32 2 23 */

/*--*/

#include <iostream> // For use of the cout function

#include <cstdlib> // For use of the atoi function

using namespace std;

int main(int argc, char **argv)

{

int total_numbers = argc - 1;

if(total_numbers == 0) {

cout << "Usage: ./arrays NUMBER [MORENUMBERS]" << endl;

return(1);

}

// Initialize the array

int numbers[total_numbers];

// Get the numbers from the command line arguments

for(int i=1; i<argc; i++)

numbers[i-1] = atoi(argv[i]);

// Output the raw numbers provided

cout << "Total amount of integers provided: " << total_numbers << endl;

for(int i=0; i<total_numbers; i++)

cout << "numbers[" << i << "]: " << numbers[i] << endl;

return(0);

}

11

5.2 Solution to Exercise 2

/*--*/

/* FILE: arrays_nosmall.cpp (Fourth C++ Lab Exercise 2) */

/* WGET: wget http://oceanai.mit.edu/cpplabs/arrays_nosmall.cpp */

/* BUILD: g++ -o arrays_nosmall arrays_nosmall.cpp */

/* RUN: ./arrays_nosmall 23 11 98 32 2 23 */

/*--*/

#include <iostream> // For use of the cout function

#include <cstdlib> // For use of the atoi function

using namespace std;

int main(int argc, char **argv)

{

int total_numbers = argc - 1;

if(total_numbers == 0) {

cout << "Usage: ./arrays NUMBER [MORENUMBERS]" << endl;

return(1);

}

// Initialize the array

int numbers[total_numbers];

// Get the numbers from the command line arguments

for(int i=1; i<argc; i++)

numbers[i-1] = atoi(argv[i]);

// Output the raw numbers provided

cout << "Total amount of integers provided: " << total_numbers << endl;

for(int i=0; i<total_numbers; i++)

cout << " numbers[" << i << "]: " << numbers[i] << endl;

// Find the smallest number in the array

int smallest = numbers[0];

for(int i=1; i<total_numbers; i++) {

if(numbers[i] < smallest)

smallest = numbers[i];

}

// make a new array one size smaller

int new_numbers[total_numbers-1];

// Populate the new array with all but smallest number

int curr_index = 0;

bool hit_smallest = false;

for(int i=0; i<total_numbers; i++) {

if((numbers[i] == smallest) && !hit_smallest)

hit_smallest = true;

else {

new_numbers[curr_index] = numbers[i];

curr_index++;

}

}

// Output the new array (minus the smallest of the originals)

cout << "The new array of integers: " << endl;

for(int i=0; i<total_numbers-1; i++)

cout << " numbers[" << i << "]: " << new_numbers[i] << endl;

return(0);

}

12

5.3 Solution to Exercise 3

/*--*/

/* FILE: fileout.cpp (Fourth C++ Lab Exercise 3) */

/* WGET: wget http://oceanai.mit.edu/cpplabs/fileout.cpp */

/* BUILD: g++ -o fileout fileout.cpp */

/* RUN: ./fileout --filename=test.txt one two three */

/*--*/

#include <iostream> // For the cout function

#include <cstdio> // For the fopen, fclose and fprintf functions

using namespace std;

int main(int argc, char **argv)

{

string filename;

for(int i=1; i<argc; i++) {

string argi = argv[i];

if(argi.find("--filename=") == 0)

filename = argi.substr(11);

}

if(filename == "") {

cout << "Usage: fileout --filename=test.txt one two three" << endl;

return(1);

}

FILE *f = fopen(filename.c_str(), "w");

if(!f) {

cout << "Unable to open file: " << filename << endl;

return(1);

}

for(int i=1; i<argc; i++) {

string argi = argv[i];

if(argi.find("--filename=") != 0)

fprintf(f, "%s\n", argi.c_str());

}

fclose(f);

return(0);

}

13

5.4 Solution to Exercise 4

/*--*/

/* FILE: filein.cpp (Fourth C++ Lab Exercise 4) */

/* WGET: wget http://oceanai.mit.edu/cpplabs/filein.cpp */

/* BUILD: g++ -o filein filein.cpp */

/* RUN: ./filein --filename=test.txt */

/*--*/

#include <iostream> // For the cout function

#include <cstdio> // For the fopen, fclose, fgetc, feof functions

using namespace std;

int main(int argc, char **argv)

{

// Find the name of the file to be read

string filename;

for(int i=1; i<argc; i++) {

string argi = argv[i];

if(argi.find("--filename=") == 0)

filename = argi.substr(11);

}

// If no file specified, produce usage information and exit now.

if(filename == "") {

cout << "Usage: filein --filename=test.txt" << endl;

return(1);

}

// Open the specified file for reading and exit with message if failed

FILE *f = fopen(filename.c_str(), "r");

if(!f) {

cout << "Unable to open file: " << filename << endl;

return(1);

}

// Begin reading in file, ending only when end-of-file detected

string str = "line: [";

while(1) {

int c = fgetc(f);

if(feof(f))

break;

if(c == ’\n’) {

str += "]";

cout << str << endl;

str = "line: [";

}

else

str += c;

}

// Make sure we close the file

fclose(f);

return(0);

}

14

5.5 Solution to Exercise 5

/*--*/

/* FILE: vectors_nosmall.cpp (Fourth C++ Lab Exercise 5) */

/* WGET: wget http://oceanai.mit.edu/cpplabs/vectors_nosmall.cpp */

/* BUILD: g++ -o vectors_nosmall vectors_nosmall.cpp */

/* RUN: ./vectors_nosmall 23 11 98 32 2 23 */

/*--*/

#include <iostream> // For use of the cout function

#include <cstdlib> // For use of the atoi function

#include <vector> // For use of the STL vector class

using namespace std;

int main(int argc, char **argv)

{

vector<int> numbers;

// Get the numbers from the command line arguments

for(int i=1; i<argc; i++)

numbers.push_back(atoi(argv[i]));

// Check if no numbers provided, exit if so.

if(numbers.size() == 0) {

cout << "Usage: ./arrays NUMBER [MORENUMBERS]" << endl;

return(1);

}

// Output the raw numbers provided

cout << "Total amount of integers provided: " << numbers.size() << endl;

for(unsigned int i=0; i<numbers.size(); i++)

cout << "numbers[" << i << "]: " << numbers[i] << endl;

// Find the smallest number in the array

int smallest = numbers[0];

for(unsigned int i=1; i<numbers.size(); i++) {

if(numbers[i] < smallest)

smallest = numbers[i];

}

// make a new array one size smaller // make a new vector

vector<int> new_numbers;

bool hit_smallest = false;

for(unsigned int i=0; i<numbers.size(); i++) {

if((numbers[i] == smallest) && !hit_smallest)

hit_smallest = true;

else

new_numbers.push_back(numbers[i]);

}

// Output the new array (minus the smallest of the originals)

for(unsigned int i=0; i<new_numbers.size(); i++)

cout << " numbers[" << i << "]: " << new_numbers[i] << endl;

return(0);

}

15

5.6 Solution to Exercise 6

/*--*/

/* FILE: filebuff_main.cpp (Fourth C++ Lab Exercise 5) */

/* WGET: wget http://oceanai.mit.edu/cpplabs/filebuff_main.cpp */

/* BUILD: g++ -o filebuff FileBuffer.cpp filebuff_main.cpp */

/* RUN: ./filebuff --filename=test.txt */

/*--*/

#include <iostream> // For use of the cout function

#include <vector> // For use of the STL vector class

#include "FileBuffer.h"

using namespace std;

int main(int argc, char **argv)

{

// Find the name of the file to be read

string filename;

for(int i=1; i<argc; i++) {

string argi = argv[i];

if(argi.find("--filename=") == 0)

filename = argi.substr(11);

}

// If no file specified, produce usage information and exit now.

if(filename == "") {

cout << "Usage: filein --filename=test.txt" << endl;

return(1);

}

vector<string> lines = fileBuffer(filename);

cout << "Total Lines: " << lines.size() << endl;

for(unsigned int i=0; i<lines.size(); i++) {

if(lines[i].length() > 0)

cout << "line: [" << lines[i] << "]" << endl;

else

cout << "line: Empty!" << endl;

}

return(0);

}

16

/*--*/

/* FILE: FileBuffer.h */

/* WGET: wget http://oceanai.mit.edu/cpplabs/FileBuffer.h */

/*--*/

#ifndef FILE_BUFFER_HEADER

#define FILE_BUFFER_HEADER

#include <vector>

#include <string>

std::vector<std::string> fileBuffer(std::string);

#endif

17

/*--*/

/* FILE: FileBuffer.cpp */

/* WGET: wget http://oceanai.mit.edu/cpplabs/FileBuffer.cpp */

/* BUILD: A utility meant to be built with other source code */

/* For example: g++ -o myprog FileBuffer.cpp main.cpp */

/*--*/

#include "FileBuffer.h"

#include <cstdio>

using namespace std;

vector<string> fileBuffer(string filename)

{

// Create a vector of strings. In ANY case this is the return type

vector<string> fvector;

// Check that the file can be read. Return empty vector otherwise

FILE *f = fopen(filename.c_str(), "r");

if(!f)

return(fvector);

// Create a string buffer to hold each line. Reserve a big size to

// allow for efficient growth.

string strbuff;

strbuff.reserve(50000);

// Read in the file one character at a time. Stopping only when the

// file pointer points to the end of file.

while(1) {

int intval = fgetc(f);

char c = (char) intval;

if(feof(f)) {

if(strbuff.length() != 0)

fvector.push_back(strbuff);

break;

}

else if(c == ’\n’) {

fvector.push_back(strbuff);

strbuff.clear();

}

else

strbuff.push_back(c);

}

// Make sure we close the file.

fclose(f);

return(fvector);

}

18

	Lab Four Overview and Objectives
	C-Style Arrays
	Exercise 1: Build a Simple Array from Command Line Arguments
	Exercise 2: Analyze and Modify a Simple Array

	C-Style File Input and Formatted Output
	Exercise 3: Create and Write to a File with Command Line Args
	Exercise 4: Reading from a File Specified on the Command Line

	C++ Vectors
	Declaring, building and copying a vector
	Accesing and Iterating Through Vectors
	Exercise 5: Build a Vector from Command Line Arguments
	Exercise 6: Build a Vector of Strings Input from a File
	Links to On-Line Tutorials on Vectors for Further Info
	Behind-the-Scenes Info about Vectors Worth Knowing Now
	A Preview of other STL Containers

	Solutions to Exercises
	Solution to Exercise 1
	Solution to Exercise 2
	Solution to Exercise 3
	Solution to Exercise 4
	Solution to Exercise 5
	Solution to Exercise 6

