
Guide to iOceanServerComms

Scott R. Sideleau
Naval Undersea Warfare Center (NUWC), Division Newport

May 11, 2010

1



Preface

Special thanks to Joe Burke (UMass-D ATMC) for the initial devel-
opment and documentation efforts on the iOceanServerComms MOOS
module.

The following document aims to extend the original documentation
efforts to account for changes in the Frontseat Helm (i.e. UVC) of the
OceanServer Iver2 Autonomous Undersea Vehicle (AUV).

2



Contents

3



1 State of the MOOS Module

Since late 2007, I have taken ownership of the original code base for this MOOS
module and have worked closely with OceanServer Technology, Inc. to resolve
several bugs in the serial communication architecture of the Frontseat Helm.
As such, the iOceanServerComms module should be considered an “early beta
release” that is currently undergoing significant re-design.

That being said, I am always looking for user feedback on what has been
developed to this point and will – as is customary – provide as much support as I
reasonably can to others attempting to use the iOceanServerComms application.
Please refer to the Support section of this document for contact details.

2 Conventions

The following is a description of the conventions used throughout the iOceanServer-

Comms MOOS module. The file “iOceanServerComms.h” declares the class,
functions, and variables about to be discussed.

2.1 A Note on Hungarian Notation

As coded now, the iOceanServerComms MOOS module employs Hungarian
notation; that is, the name of all variables are preceded by their intended use
or type or both. From studying the code, the followed scheme appears to be
primarily Systems Hungarian based – using prefix letters to indicate the variable
type at the system level – as opposed to Apps Hungarian based, where the prefix
letters would indicate the variable’s purpose.

Regardless of the pros and cons of Hungarian notation in software engi-
neering, I have opted to maintain the source code in its current form and will
continue to extend the given nomenclature. As such, the following notes should
be made to clarify the naming convention as it is understood now:

• m – corresponds to an external (i.e. MOOS) variable. This is an item
usually obtaining its data from the MOOSdb.

• b – indicates a variable of type Boolean.

• df – indicates a variable of type double precision floating point.

• s – indicates a variable of type C++ string.

• n – indicates a variable of type integer.

2.2 CMOOSOceanServerComms Class Variables

This is the primary class employed by the iOceanServerComms module, which
contains the member variables responsible for interacting with the MOOSdb. Said
private variables are discussed further, by group, in the following subsections.

4



2.2.1 Compass Variables

The compass variables are filled via a serial communication request with the
Frontseat Helm application.

• m dfPitch

The current vehicle pitch angle, in decimal degrees, as reported by the
Frontseat Helm. It is currently unclear if this is the raw pitch (i.e. the
instantaneous value reported by the hardware compass) or the adjusted

pitch (i.e. the pitch value geometrically calculated at the center of the
vehicle).

• m dfRoll

The current vehicle roll angle, in decimal degrees, as reported by the
Frontseat Helm.

• m dfMagHeading

The uncorrected vehicle heading, in decimal degrees, as reported by the
Frontseat Helm.

• m dfDepth

The vehicle depth, transformed into meters, as reported by the Frontseat
Helm. Please note that the frontseat reports and records this value in feet;
hence, the need for the unit transformation.

2.2.2 GPS Variables

The GPS variables are filled via a serial communication request with the Frontseat
Helm application. Please note that the Frontseat Helm must be running a mis-
sion in order for valid GPS messages to be passed.

• m dfLatOrigin

The origin latitude, specified in decimal degrees, usually set in a MOOS-
IvP configuration file (i.e. a .moos file) and stored in the MOOSdb. The
Frontseat Helm is unaware of this value and its meaning, which is to assist
in the formation of the UTM Grid Coordinate Plane.

• m dfLonOrigin

The origin longitude, specified in decimal degrees, usually set in a MOOS-
IvP configuration file (i.e. a .moos file) and stored in the MOOSdb. The
Frontseat Helm is unaware of this value and its meaning, which is to assist
in the formation of the UTM Grid Coordinate Plane.

• m dfLatNow

The most recently received latitude, in decimal degrees, from the Frontseat
Helm. GPS data is polled at a 1-Hz rate.

• m dfLonNow

The most recently received longitude, in decimal degrees, from the Frontseat
Helm. GPS data is polled at a 1-Hz rate.

5



• m dfMagVar

The most recently received magnetic variation, in decimal degrees, from
the Frontseat Helm. This value is relative to True North.

• m sWarning

The most recently received flag to accompany the GPS data that indicates
its validity. Because pNav is currently not used, all received GPS messages
– when a Frontseat Mission is running – should be valid, as the Frontseat
Helm currently predicts GPS location when underwater via the principle of
dead reckoning. It is currently unclear if set and drift has been accounted
for at this time.

2.2.3 State Variables

The State variables are filled via a serial communication request with the Frontseat
Helm application.

• m bControl

This value is determined by the last “bit” of the State message (the N,
M, or A). In order to send servo or primitive commands to the Frontseat
Helm, this value must be set to true, else the vehicle is in “Autonomous”
mode and the Frontseat Helm is driving.

• m bOverride

This value toggles the ability to send primitive commands to the Frontseat
Helm. If true, primitive commands are sent to the Frontseat Helm. Prim-
itive commands differ from servo commands by dictating the actual move-
ment of the fins instead of simply commanding the Frontseat Helm to
complete a desired action (i.e. dive to 1-meter). At this time, the sending
of primitive commands is not operational as bugs are being worked out
on the Frontseat and Backseat side.

• m dfMaxSpeed

The maximum speed of the configured Iver2 vehicle. As of now, this value
is not used; rather, safety rules implemented in the Frontseat Helm are
being used to cap surface and dive speeds on the vehicle.

• m nMaxPitch

Depending on vehicle operation mode, this value will vary from 25- to
90-degrees. When the user has control of the vehicle via iRemote or
pHelmIvP, the “freewheeling” value of 90-degrees is used to allow greater
control. When the vehicle is operating under Backseat Helm autonomy,
the value is capped at 25-degrees to ensure safer operation of the vehicle.
When the vehicle is in Frontseat Helm autonomy, the value has no effect.
Regardless of vehicle operating mode, the safety rules on the Frontseat
Helm take precedence.

6



2.2.4 YSI Variables

The YSI variables are filled via a serial communication request with the Frontseat
Helm application.

• m bYSI

This value indicates whether or not YSI data will be polled for on the
Frontseat Helm. If true, then the additional parameter is added to the
data request and the YSI NMEA string will be parsed accordingly.

2.2.5 Control Variables

The following variables are used to store control parameters that will be formed
into NMEA strings and transmitted to the Frontseat Helm via serial communi-
cations.

• m dfDesiredDepth

The desired next depth, specified in meters, which is later transformed
into feet to account for the Frontseat Helm’s use of standard units in the
SendServoCommand() method.

• m dfDesiredSpeed

The desired next speed, specified in meters per second (m/s), which is
later transformed into nautical miles per second (knots) to account for
the Frontseat Helm’s use of standard units in the SendServoCommand()
method.

• m dfDesiredHeading

The desired next heading, specified in radians, which is later transformed
into decimal degrees to account for the Frontseat Helm’s use of standard
units in the SendServoCommand() method.

• m nDesiredThrust

The desired next thrust setting, specified as a signed percentage. This is
used by SendPrimitiveCommand(), which is currently under re-design.

• m nDesiredRudder

The desired next rudder setting, specified as a signed decimal degree. This
is used by SendPrimitiveCommand(), which is currently under re-design.

• m nDesiredElevator

The desired next elevator setting, specified as a signed decimal degree.
This is used by SendPrimitiveCommand(), which is currently under re-
design.

• m nTimeout

The desired timeout to use before returning control to the Frontseat
Helm. Current operating procedure dictates that should the Frontseat
Helm reach the timeout limit without receiving another command from

7



the Backseat Helm, then the Frontseat Helm with take control and drive
the vehicle to its next waypoint (usually a park point).

• m nWaypointNum

The current waypoint the autonomous Frontseat Helm was heading to-
wards. This could be used to orchestrate jump-to-waypoint maneuvers ini-
tiated in the backseat. As of now, the Frontseat Helm’s jump-to-waypoint
feature is untested and, as such, the Backseat Helm’s jump-to-waypoint
methodology is under review and re-development.

2.3 CMOOSOceanServerComms Class Functions

This is the primary class employed by the iOceanServerComms module, which
contains the functions responsible for interacting with the MOOSdb and the
Frontseat Helm. Said private functions are discussed further in the following
subsections.

2.3.1 OnStartUp() Method

Called when the class is started by the MOOS mainframe (i.e. pAntler). This
function employs the MissionReader to parse the mission file and

• initialize the serial port connection to the Frontseat Helm,

• set the LatOrigin based on the mission file,

• set the LongOrigin based on the mission file,

• initialize the local UTM grid coordinate system,

• set the CommTimeout based on the mission file,

• check for the presence of the YSI sensors based on the mission file,

• and call DoRegistrations() to complete initial registration of variables
with the MOOSdb.

2.3.2 OnConnectToServer() Method

This is an overloaded function taken from the CMOOSApp class that is called
when iOceanServerComms has made a connection to the MOOSdb. Its pri-
mary purpose is to call DoRegistrations() to register specific variables in
the MOOSdb.

2.3.3 DoRegistrations() Method

This method registers our initial set of desired variables in the MOOSdb. The
variables are directly linked to the class variables described earlier in Section
2.2; please see said section for further comments.

8



• DESIRED SPEED

• DESIRED HEADING

• DESIRED DEPTH

• VEHICLE WPT INDEX

• MOOS MANUAL OVERIDE

• DESIRED RUDDER

• DESIRED THRUST

• DESIRED ELEVATOR

• ZERO RUDDER

• ZERO ELEVATOR

• VEHICLE UNDERWAY

2.3.4 OnNewMail() Method

This function is called when any of the registered variables of interest are pub-
lished to the MOOSdb. The registered variables, described in the previous section,
are stored locally while NEXT WAYPOINT is published and control is handed to
Iterate().

2.3.5 Iterate() Method

Called at an interval of 1/Apptick. This is the main application loop for the class
and is responsible for initiating the appropriate Frontseat Helm communication
functions (e.g. SendServoCommand()).

2.3.6 RequestInfo() Method

Forms a valid $OSD message in NMEA format to communicate to the Frontseat
Helm via the serial connection. Depending on the value of m bYSI, the message
requests the following data:

• C - Compass

• G - GPS

• S - State

• P - Power

• Y - YSI

9



2.3.7 SendServoCommand() Method

Forms a valid $OMS message in NMEA format to communicate to the Frontseat
Helm via the serial connection. The message contains the following double

precision floating point data converted to strings for transmission:

• DESIRED COURSE

• DESIRED DEPTH

• DESIRED MAXPITCH

• DESIRED SPEED

2.3.8 SendPrimitiveCommand() Method

Forms a valid $OMP message in NMEA format to communicate to the Frontseat
Helm via the serial connection. The message contains the following integer data
converted to strings for transmission:

• DESIRED RUDDER

• DESIRED ELEVATOR

• DESIRED THRUST

Please note that this method is under re-evaluation and re-development and is,
therefore, not used.

2.3.9 IdentifyMessage() Method

Determines what message was received from the Frontseat Helm and hands
said message off to the appropriate parsing method for further processing. It
is important to note that the Compass message, as received from the Frontseat
Helm, is in the old PNI format, whereas all other messages are in the newer
NMEA format.

2.3.10 ParseCompass() Method

Parses the received PNI-formatted Compass message from the Frontseat Helm.
It publishes the following double precision floating point values into the MOOSdb:

• COMPASS HEADING

• COMPASS YAW

• COMPASS ROLL DEG

• COMPASS PITCH DEG

• NAV DEPTH

• COMPASS TEMPERATURE

10



2.3.11 ParseGPS() Method

Parses the received NMEA-formatted GPS message from the Frontseat Helm.
It publishes the following double precision floating point values into the MOOSdb:

• GPS LATITUDE

• GPS LONGITUDE

• GPS X

• GPS Y

• GPS HEADING

• GPS YAW

• GPS SPEED

• GPS MAGNETICVARIATION

And publishes the following Boolean if the GPS data is bad:

• GPS WARNING

2.3.12 ParseState() Method

Parses the received NMEA-formatted State message from the Frontseat Helm.
It publishes the following double precision floating point values into the MOOSdb:

• NAV LAT

• NAV LONG

• NAV X

• NAV Y

• NAV SPEED

2.3.13 ParsePower() Method

Parses the received NMEA-formatted Power message from the Frontseat Helm.
It publishes the following integer values into the MOOSdb:

• BATTERY PERCENT

• BATTERY TIME

• BATTERY WATTS

• BATTERY VOLTS

• BATTERY AMPS

11



• BATTERY WATTHRS

And the following string value:

• BATTERY STATE

2.3.14 ParseYSI() Method

Parses the received NMEA-formatted YSI message from the Frontseat Helm. It
publishes the following double precision floating point values into the MOOSdb:

• YSI TEMP

• YSI SPCOND

• YSI SALINITY

• YSI DEPTH

• YSI TURBIDITY

• YSI ODO%

• YSI ODO

• YSI BATTERY

And the following string values:

• YSI DATE2

• YSI TIME

2.3.15 issueNextWaypoint() Method

Forms a valid $OJW message in NMEA format to communicate to the Frontseat
Helm via the serial connection. The message simply dictates to the frontseat
what waypoint the vehicle is at and/or unto which the operator would like the
vehicle to navigate.

3 Recommended AUV Setup

In the following section, NUWCDIVNPT’s operational procedure for the OceanServer
Iver2 AUV is outlined. This is what has worked for us, but feel free to pursue
other methods and let us know to improve this section further.

12



3.1 Frontseat Helm Operation

Although it is possible to design a Frontseat Helm mission with OceanServer’s
VectorMap software and run the vehicle via the UVC2 application, our partic-
ular use case dictates that the Backseat Helm should control the vehicle fully.
As such, the Frontseat Helm is provided a mission with two waypoints: a start
point, and a park point. Vehicle operation is as follows:

1. Place the Iver2 vehicle in the water.

2. Establish WiFi connectivity and launch vehicle on two-point mission.

3. As vehicle heads to first point, toggle the VEHICLE UNDERWAY flag in the
Backseat Helm to give control to iOceanServerComms.

4. After Backseat Helm mission has completed, watch Frontseat Helm exe-
cute remainder of two-point mission, bringing the vehicle to a park point.

5. *untested* Use the jump to waypoint ($OJW) command to reset the Frontseat
Helm and repeat Step 2 to execute a new Backseat Helm mission.

3.2 Backseat Helm Operation

The Backseat Helm is setup to startup MOOS and any necessary applications on
system boot to ensure that they are not closed when the vehicle is out of WiFi
range. Since we are running Debian “etch” Linux, modifying /etc/rc.local

was necessary to automatically startup MOOS automatically. Please note that,
depending on your Linux distribution, the methodology that you follow to au-
tomatically launch pAntler on your .moos file will vary.

iOceanServerComms is currently configured to wait for the VEHICLE UNDERWAY

flag to be toggled. Thus, a login to the vehicle is initiated to launch iRemote,
where the “manual mode” can be toggled by pressing the ’o’ (for operator con-
trol) button followed by the ’y’ (for yes) button to confirm release of the vehicle.
Afterwards, whatever mission was planned and placed in the .bhv file will be
executed.

Because iOceanServerComms is starting up on vehicle boot, it is necessary to
restart the Backseat Helm computer whenever a change to the .moos or .bhv file
to be executed have been changed via the sudo shutdown -r now command.

4 Support

Below, you will find contact information for the respective resources that can
be used whenever a problem is encountered.

4.1 Getting Help with the iOceanServerComms Module

To get help with the iOceanServerComms MOOS module, please contact:

13



• Scott R. Sideleau
Naval Undersea Warefare Center (NUWC), Division Newport
Code 2511, Tactical Control and Contact Management
Tel: +1 401-832-3129
Email: Scott.Sideleau@navy.mil

4.2 Getting Help with the Frontseat Helm

To get help with the Frontseat Helm or the Iver2 AUV itself, please contact:

• Technical Support
OceanServer Technology, Inc.
Tel: +1 508-678-0550
Email: support@ocean-server.com
FAQ: http://www.ocean-server.com/faq.html

4.3 Getting Help with the MOOS-IvP Helm

To get miscellaneous help with the MOOS-IvP Helm and its related software,
please use the following official mailing list:

• Mailing List: moosivp@lists.csail.mit.edu

• Sign-up Site: https://lists.csail.mit.edu/mailman/listinfo/moosusers

4.4 Getting Help with the MOOS Core

To get miscellaneous help related to MOOS (i.e. the ‘Core’ components), please
use the following official mailing list:

• Mailing List: moosusers@lists.csail.mit.edu

• Sign-up Site: https://lists.csail.mit.edu/mailman/listinfo/moosivp

14


