
MOOS-IvP Autonomy Tools Users Manual

Release 13.2

Michael R. Benjamin
Department Mechanical Engineering

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge MA

February 14, 2013 - Release 13.2

Abstract

This document describes several MOOS-IvP autonomy tools. uHelmScope provides a run-
time scoping window into the state of an active IvP Helm executing its mission. pMarineViewer
is a geo-based GUI tool for rendering marine vehicles and geometric data in their operational
area. uXMS is a terminal based tool for scoping on a MOOSDB process. uTermCommand is a
terminal based tool for poking a MOOSDB with a set of MOOS file pre-defined variable-value
pairs selectable with aliases from the command-line. pEchoVar provides a way of echoing a post
to one MOOS variable with a new post having the same value to a different variable. uPro-
cessWatch monitors the presence or absence of a set of MOOS processes and summarizes the
collective status in a single MOOS variable. uPokeDB provides a way of poking the MOOSDB

from the command line with one or more variable-value pairs without any pre-existing configu-
ration of a MOOS file. uTimerScript will execute a pre-defined timed pausable script of poking
variable-value pairs to a MOOSDB. pNodeReporter summarizes a platforms critical information
into a single node report string for sharing beyond the vehicle. pBasicContactMgr provides
a basic contact management service with the ability to generate range-dependent configurable
alerts. uSimMarine provides a simple marine vehicle simulator. The Alog Toolbox is a set of
offline tools for analyzing and manipulating log files in the .alog format.

2

This work is the product of a multi-year collaboration between the Department of Mechanical
Engineering and the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Mas-
sachusetts Institute of Technology in Cambridge Massachusetts, and the Oxford University Mobile
Robotics Group.

Points of contact for collaborators:

Dr. Michael R. Benjamin
Department of Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Intitute of Technology
mikerb@csail.mit.edu

Dr. Paul Newman
Department of Engineering Science
University of Oxford
pnewman@robots.ox.ac.uk

Prof. Henrik Schmidt
Department of Mechanical Engineering
Massachusetts Intitute of Technology
henrik@mit.edu

Prof. John J. Leonard
Department of Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Intitute of Technology
jleonard@csail.mit.edu

Other collaborators have contributed greatly to the development and testing of software and ideas within,
notably - Joseph Curcio, Toby Schneider, Stephanie Kemna, Arjan Vermeij, Don Eickstedt, Andrew Pa-
trikilakis, Arjuna Balasuriya, David Battle, Christian Convey, Chris Gagner, Andrew Shafer, and Kevin
Cockrell.

Sponsorship, and public release information:

This work is sponsored by Dr. Behzad Kamgar-Parsi and Dr. Don Wagner of the Office of Naval Research

(ONR), Code 311. Further support for testing and coursework development sponsored by Battelle, Dr.

Robert Carnes.

3

Contents

1 Introduction 16
1.1 Overview of the MOOS-IvP Project and MOOS-IvP Tools 16
1.2 Module Overview . 16

1.2.1 Mission Monitoring Modules . 16
1.2.2 Mission Execution Modules . 17
1.2.3 Mission Simulation Modules . 17
1.2.4 Modules for Poking the MOOSDB . 17
1.2.5 The Alog Toolbox . 18
1.2.6 The uField Toolbox . 18
1.2.7 Brief Background of MOOS-IvP . 20
1.2.8 Sponsors of MOOS-IvP . 20
1.2.9 The Software . 20
1.2.10 Building and Running the Software . 21
1.2.11 Operating Systems Supported by MOOS and IvP 22
1.2.12 Where to Get Further Information . 22

1.3 The uField Toolbox . 23
1.4 Motivations for the uField Toolbox . 24
1.5 Introduction to AppCasting . 26

1.5.1 Motivation For AppCasting . 26
1.5.2 MOOS Applications and Terminal Output . 26
1.5.3 Viewing AppCasts and Navigating AppCast Collections 28
1.5.4 The AppCast Data Structure . 29
1.5.5 A Preview of AppCast Viewing Utilities . 31

2 pMarineViewer: A GUI for Mission Monitoring and Control 33
2.1 Overview . 33

2.1.1 The Shoreside-Vehicle Topology . 33
2.1.2 Description of the pMarineViewer GUI Interface 35
2.1.3 The AppCasting, FullScreen and Traditional Display Modes 36
2.1.4 Run-Time and Mission Configuration . 37
2.1.5 Command-and-Control . 38

2.2 The BackView Pull-Down Menu . 39
2.2.1 Panning and Zooming . 39
2.2.2 Background Images . 40
2.2.3 Local Grid Hash Marks . 42
2.2.4 Full-Screen Mode . 42

2.3 The GeoAttributes Pull-Down Menu . 42
2.3.1 Polygons, SegLists, Points, Circles and Vectors 43
2.3.2 Markers . 45
2.3.3 Comms Pulses . 46
2.3.4 Range Pulses . 47
2.3.5 Drop Points . 48

2.4 The Vehicles Pull-Down Menu . 50

4

2.4.1 The Vehicle Name Mode . 50
2.4.2 Dealing with Stale Vehicles . 51
2.4.3 Supported Vehicle Shapes . 51
2.4.4 Vehicle Colors . 52
2.4.5 Centering the Image According to Vehicle Positions 52
2.4.6 Vehicle Trails . 52

2.5 The AppCast Pull-Down Menu . 53
2.5.1 Turning On and Off AppCast Viewing . 53
2.5.2 Adjusting the AppCast Viewing Panes Height and Width 54
2.5.3 Adjusting the AppCast Refresh Mode . 54
2.5.4 Adjusting the AppCast Fonts . 55
2.5.5 Adjusting the AppCast Color Scheme . 55

2.6 The MOOS-Scope Pull-Down Menu . 56
2.7 The Action Pull-Down Menu . 56
2.8 The Mouse-Context Pull-Down Menu . 58

2.8.1 Generic Poking of the MOOSDB with the Operation Area Position 58
2.8.2 Custom Poking of the MOOSDB with the Operation Area Position 58

2.9 The Reference-Point Pull-Down Menu . 59
2.10 Configuration Parameters for pMarineViewer . 61

2.10.1 Configuration Parameters for the BackView Menu 61
2.10.2 Configuration Parameters for the GeoAttributes Menu 62
2.10.3 Configuration Parameters for the Vehicles Menu 64
2.10.4 Configuration Parameters for the AppCast Menu 65
2.10.5 Configuration Parameters for the Scope, MouseContext and Action Menus . 65

2.11 Publications and Subscriptions for pMarineViewer 66
2.11.1 Variables Published by pMarineViewer . 66
2.11.2 Variables Subscribed for by pMarineViewer 67

3 uHelmScope: Scoping on the IvP Helm 68
3.1 Overview . 68
3.2 The Helm Summary Section of the uHelmScope Output 69

3.2.1 The Helm Status (Lines 1-8) . 69
3.2.2 The Helm Decision (Lines 9-11) . 69
3.2.3 The Helm Behavior Summary (Lines 12-17) 69

3.3 The MOOSDB-Scope Section of the uHelmScope Output 70
3.4 The Behavior-Posts Section of the uHelmScope Output 71
3.5 Console Key Mapping and Command Line Usage . 71
3.6 Helm-Produced Variables Used by uHelmScope . 73
3.7 Configuration Parameters for uHelmScope . 74
3.8 Publications and Subscriptions for uHelmScope . 75

3.8.1 Variables Published by uHelmScope . 75
3.8.2 Variables Subscribed for by uHelmScope . 75

4 pNodeReporter: Summarizing a Node’s Position and Status 77
4.1 Overview . 77

5

4.2 Using pNodeReporter . 78
4.2.1 Overview Node Report Components . 78
4.2.2 Helm Characteristics . 78
4.2.3 Platform Characteristics . 79
4.2.4 Dealing with Local versus Global Coordinates 79
4.2.5 Processing Alternate Navigation Solutions . 80

4.3 The Optional Blackout Interval Option . 80
4.4 Configuration Parameters for pNodeReporter . 82
4.5 Publications and Subscriptions for pNodeReporter 83

4.5.1 Variables Published by pNodeReporter . 83
4.5.2 Variables Subscribed for by pNodeReporter 84
4.5.3 Command Line Usage of pNodeReporter . 84

4.6 The Optional Platform Report Feature . 85
4.7 An Example Platform Report Configuration Block for pNodeReporter 86

5 uXMS: Scoping the MOOSDB from the Console 87
5.1 Overview . 87
5.2 The uXMS Refresh Modes . 88

5.2.1 The Streaming Refresh Mode . 88
5.2.2 The Events Refresh Mode . 88
5.2.3 The Paused Refresh Mode . 89

5.3 The uXMS Content Modes . 89
5.3.1 The Scoping Content Mode . 89
5.3.2 The History Content Mode . 90
5.3.3 The Processes Content Mode . 91

5.4 Configuration File Parameters for uXMS . 93
5.4.1 The colormap Configuration Parameter . 94
5.4.2 The content mode Configuration Parameter 95
5.4.3 The display* Configuration Parameters . 95
5.4.4 The history var Configuration Parameter . 96
5.4.5 The refresh mode Configuration Parameter 96
5.4.6 The source Configuration Parameter . 96
5.4.7 The term report interval Configuration Parameter 97
5.4.8 The trunc data Configuration Parameter . 97
5.4.9 The var Configuration Parameter . 97

5.5 Command Line Usage of uXMS . 98
5.6 Console Interaction with uXMS at Run Time . 99
5.7 Running uXMS Locally or Remotely . 100
5.8 Connecting multiple uXMS processes to a single MOOSDB 100
5.9 Using uXMS with Appcasting . 100
5.10 Publications and Subscriptions for uXMS . 102

5.10.1 Variables Published by uXMS . 102
5.10.2 Variables Subscribed for by uXMS . 102

6 uTimerScript: Scripting Events to the MOOSDB 104

6

6.1 Overview . 104
6.2 Using uTimerScript . 104

6.2.1 Configuring the Event List . 104
6.2.2 Setting the Event Time or Range of Event Times 105
6.2.3 Resetting the Script . 105

6.3 Script Flow Control . 106
6.3.1 Pausing the Timer Script . 106
6.3.2 Conditional Pausing of the Timer Script and Atomic Scripts 107
6.3.3 Fast-Forwarding the Timer Script . 107
6.3.4 Quitting the Timer Script . 107

6.4 Macro Usage in Event Postings . 108
6.4.1 Built-In Macros Available . 108
6.4.2 User Configured Macros with Random Variables 108
6.4.3 Support for Simple Arithmetic Expressions with Macros 109

6.5 Time Warps, Random Time Warps, and Restart Delays 109
6.5.1 Random Time Warping . 109
6.5.2 Random Initial Start and Reset Delays . 110
6.5.3 Status Messages Posted to the MOOSDB by uTimerScript 110

6.6 Terminal and AppCast Output . 111
6.7 Configuration File Parameters for uTimerScript . 112
6.8 Publications and Subscriptions for uTimerScript . 113

6.8.1 Variables Published by uTimerScript . 113
6.8.2 Variables Subscribed for by uTimerScript . 114
6.8.3 An Example MOOS Configuration Block . 114

6.9 Examples . 115
6.9.1 A Script Used as Proxy for an On-Board GPS Unit 115
6.9.2 A Script as a Proxy for Simulating Random Wind Gusts 117

7 pBasicContactMgr: Managing Platform Contacts 119
7.1 Overview . 119
7.2 Using pBasicContactMgr . 119

7.2.1 Contact Alert Messages . 120
7.2.2 Contact Alert Triggers . 121
7.2.3 Contact Alert Record Keeping . 122
7.2.4 Contact Resolution . 122

7.3 Deferring to Earth Coordinates over Local Coordinates 123
7.4 Usage of the pBasicContactMgr with the IvP Helm 123
7.5 Terminal and AppCast Output . 124
7.6 Configuration Parameters for pBasicContactMgr . 125

7.6.1 An Example MOOS Configuration Block . 125
7.7 Publications and Subscriptions for pBasicContactMgr 126

7.7.1 Variables Published by pBasicContactMgr . 126
7.7.2 Variables Subscribed for by pBasicContactMgr 127
7.7.3 Command Line Usage of pBasicContactMgr 127

7

8 uProcessWatch: Monitoring MOOS Application Health 129
8.1 Overview . 129
8.2 Typical uProcessWatch Usage Scenarios . 130

8.2.1 Using uProcessWatch with AppCasting and pMarineViewer 130
8.2.2 Directly Accessing the PROC WATCH SUMMARY Output 130

8.3 Using and Configuring the uProcessWatch Utility . 131
8.3.1 The DB CLIENTS Variable for Detecting Missing Processes 131
8.3.2 Defining the Watch List . 131
8.3.3 Reports Generated . 131
8.3.4 Watching and Reporting on a Single MOOS Process 132
8.3.5 A Heartbeat for the Watch Dog . 133
8.3.6 Excusing a Process . 133
8.3.7 Allowing Retractions if a Process Reappears 134

8.4 Configuration Parameters of uProcessWatch . 135
8.5 Publications and Subscriptions for uProcessWatch 136

8.5.1 Variables Published by uProcessWatch . 136
8.5.2 MOOS Variables Subscribed for by uProcessWatch 136

9 uSimMarine: Basic Vehicle Simulation 137
9.1 Configuration Parameters for uSimMarine . 137
9.2 Publications and Subscriptions for uSimMarine . 139

9.2.1 Variables Published by uSimMarine . 139
9.2.2 Variables Subscribed for by uSimMarine . 140
9.2.3 Command Line Usage of uSimMarine . 140

9.3 Setting the Initial Vehicle Position, Pose and Trajectory 141
9.4 Propagating the Vehicle Speed, Heading, Position and Depth 141

9.4.1 Propagating the Vehicle Speed . 142
9.4.2 Propagating the Vehicle Heading . 143
9.4.3 Propagating the Vehicle Position . 144
9.4.4 Propagating the Vehicle Depth . 145

9.5 Propagating the Vehicle Altitude . 146
9.6 Simulation of External Drift . 147

9.6.1 External X-Y Drift from Initial Simulator Configuration 147
9.6.2 External X-Y Drift Received from Other MOOS Applications 147

9.7 The ThrustMap Data Structure . 149
9.7.1 Automatic Pruning of Invalid Configuration Pairs 149
9.7.2 Automatic Inclusion of Implied Configuration Pairs 150
9.7.3 A Shortcut for Specifying the Negative Thrust Mapping 150
9.7.4 The Inverse Mapping - From Speed To Thrust 150
9.7.5 Default Behavior of an Empty or Unspecified ThrustMap 151

10 The uMAC Utilities 152
10.1 The uMACView Utility . 152

10.1.1 Publications and Subscriptions . 153
10.1.2 Configuration File Parameters . 153

8

10.1.3 Command Line Arguments and Options . 153
10.1.4 Refresh Modes . 154

10.2 The uMAC Utility . 155
10.2.1 Content Modes . 155
10.2.2 Refresh Modes . 157
10.2.3 A Tip Regarding Process Monitoring and uMAC Sessions 157
10.2.4 Publications and Subscriptions . 157
10.2.5 Configuration File Parameters . 157
10.2.6 Command Line Arguments and Options . 157

10.3 The uMACView Utility Integrated with pMarineViewer 158

11 Enabling a MOOS Application for AppCasting 159
11.1 Sub-classing the AppCastingMOOSApp Superclass 159
11.2 Invoking Superclass Methods in the Iterate() Method 160
11.3 Invoking a Superclass Method in the OnNewMail() Method 160
11.4 Invoking a Superclass Method in the OnStartUp() Method 161
11.5 Invoking a Superclass Method When Registering for Variables 161
11.6 Implementing a buildReport Method for Generating AppCasts 161
11.7 Posting Events . 162
11.8 Posting Run Warnings . 163
11.9 Posting Configuration Warnings . 164
11.10Under The Hood - On-Demand AppCasting . 167

11.10.1 Motivation . 167
11.10.2 AppCast Generation Criteria . 167
11.10.3 Terminal Switching . 168
11.10.4 AppCast Requests . 168
11.10.5 Limiting the AppCast Frequency . 170
11.10.6 Generating and AppCast vs. Publishing and AppCast 170
11.10.7 Monitoring AppCast Traffic Volume . 171

12 uSimMarine: Basic Vehicle Simulation 172
12.1 Configuration Parameters for uSimMarine . 172
12.2 Publications and Subscriptions for uSimMarine . 174

12.2.1 Variables Published by uSimMarine . 174
12.2.2 Variables Subscribed for by uSimMarine . 175
12.2.3 Command Line Usage of uSimMarine . 175

12.3 Setting the Initial Vehicle Position, Pose and Trajectory 176
12.4 Propagating the Vehicle Speed, Heading, Position and Depth 176

12.4.1 Propagating the Vehicle Speed . 177
12.4.2 Propagating the Vehicle Heading . 178
12.4.3 Propagating the Vehicle Position . 179
12.4.4 Propagating the Vehicle Depth . 180

12.5 Propagating the Vehicle Altitude . 181
12.6 Simulation of External Drift . 182

12.6.1 External X-Y Drift from Initial Simulator Configuration 182

9

12.6.2 External X-Y Drift Received from Other MOOS Applications 182
12.7 The ThrustMap Data Structure . 184

12.7.1 Automatic Pruning of Invalid Configuration Pairs 184
12.7.2 Automatic Inclusion of Implied Configuration Pairs 185
12.7.3 A Shortcut for Specifying the Negative Thrust Mapping 185
12.7.4 The Inverse Mapping - From Speed To Thrust 185
12.7.5 Default Behavior of an Empty or Unspecified ThrustMap 186

13 pHostInfo: Detecting and Sharing Host Info 187
13.1 Configuration Parameters for pHostInfo . 188
13.2 Publications and Subscriptions for pHostInfo . 188

13.2.1 Variables Published by pHostInfo . 188
13.2.2 Variables Subscribed for by pHostInfo . 189
13.2.3 Command Line Usage of pHostInfo . 189

13.3 Usage Scenarios the pHostInfo Utility . 190
13.3.1 Handling Multiple IP Addresses . 190

13.4 A Peek Under the Hood . 190
13.4.1 Temporary Files . 190
13.4.2 Possible Gotchas . 190

14 uPokeDB: Poking the MOOSDB from the Command Line 192
14.1 Overview . 192
14.2 Command-line Arguments of uPokeDB . 192
14.3 MOOS Poke Macro Expansion . 193
14.4 Providing the ServerHost and ServerPort on the Command Line 193
14.5 Session Output from uPokeDB . 194
14.6 Publications and Subscriptions for uPokeDB . 194

15 pEchoVar: Re-publishing Variables Under a Different Name 196
15.1 Overview . 196
15.2 Using pEchoVar . 196

15.2.1 Configuring Echo Mapping Events . 196
15.2.2 Configuring Flip Mapping Events . 196
15.2.3 Applying Conditions to the Echo and Flip Operation 198
15.2.4 Holding Outgoing Messages Until Conditions are Met 198
15.2.5 Limiting the Echo Posting Frequency to the AppTick Setting 198

15.3 Configuring for Vehicle Simulation with pEchoVar 199
15.4 Configuration Parameters for pEchoVar . 199
15.5 Publications and Subscriptions for pEchoVar . 200

15.5.1 Variables Posted by pEchoVar . 200
15.5.2 Variables Subscribed for by pEchoVar . 200

15.6 Terminal and AppCast Output . 200

16 pSearchGrid: Using a 2D Grid Model for Track History 203
16.1 Using pSearchGrid . 203

16.1.1 Basic Configuration of Grid Cells . 204

10

16.1.2 Cell Variables . 204
16.1.3 Serializing and De-serializing the Grid Structure 204
16.1.4 Resetting the Grid . 205
16.1.5 Viewing Grids in pMarineViewer . 205
16.1.6 Examples . 205

16.2 Configuration Parameters of pSearchGrid . 205
16.3 Publications and Subscriptions for pSearchGrid . 206

16.3.1 Variables Published by pSearchGrid . 206
16.3.2 Variables Subscribed for by pSearchGrid . 207
16.3.3 Command Line Usage of pSearchGrid . 207

17 uTermCommand: Poking the MOOSDB with Pre-Set Values 208
17.1 Configuration Parameters for uTermCommand . 208
17.2 Run Time Console Interaction . 208
17.3 Connecting uTermCommand to the MOOSDB Under an Alias 210
17.4 Publications and Subscriptions for uTermCommand 210

18 uSimCurrent: Simulating Drift Effects 211
18.1 Configuration Parameters for uSimCurrent . 211
18.2 Publications and Subscriptions for uSimCurrent . 211

18.2.1 MOOS Variables Published by uSimCurrent 212
18.2.2 MOOS Variables Subscribed for by uSimCurrent 212

19 The Alog-Toolbox for Analyzing and Editing Mission Log Files 213
19.1 Overview . 213
19.2 An Example .alog File . 213
19.3 The alogscan Tool . 213

19.3.1 Command Line Usage for the alogscan Tool 213
19.3.2 Example Output from the alogscan Tool . 214

19.4 The alogclip Tool . 216
19.4.1 Command Line Usage for the alogclip Tool 216
19.4.2 Example Output from the alogclip Tool . 217

19.5 The aloggrep Tool . 217
19.5.1 Command Line Usage for the aloggrep Tool 217
19.5.2 Example Output from the aloggrep Tool . 218

19.6 The alogrm Tool . 218
19.6.1 Command Line Usage for the alogrm Tool 218
19.6.2 Example Output from the alogrm Tool . 219

19.7 The alogview Tool . 220
19.7.1 Command Line Usage for the alogview Tool 221
19.7.2 Description of Panels in the alogview Window 221
19.7.3 The Op-Area Panel for Rendering Vehicle Trajectories 222
19.7.4 The Helm Scope Panels for View Helm State by Iteration 224
19.7.5 The Data Plot Panel for Logged Data over Time 224
19.7.6 Automatic Replay of the Log file(s) . 225

11

20 uFldNodeBroker: Brokering Node Connections 226
20.1 Overview of the uFldNodeBroker Interface and Configuration Options 227

20.1.1 Configuration Parameters of uFldNodeBroker 227
20.2 Publications and Subscriptions for uFldNodeBroker 228

20.2.1 Variables Published by uFldNodeBroker . 228
20.2.2 Variables Subscribed for by uFldNodeBroker 228
20.2.3 Command Line Usage of uFldNodeBroker . 228

20.3 Terminal and AppCast Output . 229

21 uFldShoreBroker: Brokering Shore Connections 231
21.1 Bridging Variables Upon Connection to Nodes . 232

21.1.1 Inter-MOOSDB Bridging with pShare . 232
21.1.2 Handling a Valid Incoming Ping from a Remote Node 232
21.1.3 Vanilla Bridge Arrangements . 233
21.1.4 Bridge Arrangements with Macros . 233
21.1.5 Shortcut to a Common Bridge Arrangement - the qbridge Parameter 234

21.2 Usage Scenarios the uFldShoreBroker Utility . 235
21.3 Terminal and AppCast Output . 235
21.4 Configuration Parameters of uFldShoreBroker . 236
21.5 Publications and Subscriptions for uFldShoreBroker 237

21.5.1 Variables Published by uFldShoreBroker . 237
21.5.2 MOOS Variables Subscribed for by uFldShoreBroker 238
21.5.3 Command Line Usage of uFldShoreBroker . 238

22 uFldNodeComms: Simulating Intervehicle Communications 239
22.1 Handling Node Reports . 240

22.1.1 The Criteria for Routing Node Reports . 240
22.1.2 Node Report Transmissions and pShare . 242

22.2 Handling Node Messages . 242
22.2.1 The Criteria for Routing Node Messages . 242
22.2.2 Enforcing a Minimum Time Between Node Messages 243
22.2.3 Enforcing a Maximum Node Message Length 243
22.2.4 Posting Messages to a Vehicle Group . 243

22.3 Visual Artifacts for Rendering Inter-Vehicle Communications 243
22.4 Terminal and AppCast Output . 244
22.5 Configuration Parameters of uFldNodeComms . 245
22.6 Publications and Subscriptions for uFldNodeComms 247

22.6.1 Variables Published by uFldNodeComms . 247
22.6.2 Variables Subscribed for by uFldNodeComms 247

23 uFldMessageHandler: Handling Incoming Node Messages 249
23.1 Configuration Parameters of uFldMessageHandler . 249
23.2 Publications and Subscriptions for uFldMessageHandler 250

23.2.1 Variables Published by uFldMessageHandler 250
23.2.2 Variables Subscribed for by uFldMessageHandler 251

12

23.3 Terminal and AppCast Output . 252

24 uFldScope: Gathering a Multi-Vehicle Status Summary 253
24.1 Configuration Parameters of uFldScope . 254

24.1.1 An Example MOOS Configuration Block . 254
24.2 Publications and Subscriptions for uFldScope . 254

24.2.1 Variables Published by uFldScope . 254
24.2.2 MOOS Variables Subscribed for by uFldScope 255

24.3 Configuring the uFldScope Utility . 255
24.3.1 Configuring Scope Elements . 255
24.3.2 Configuring Scope Layouts . 256
24.3.3 Further Control of the Terminal Output . 257

25 uFldPathCheck: Monitoring Vehicle Path Properties 258
25.1 Overview of the uFldPathCheck Interface and Configuration Options 258

25.1.1 Configuration Parameters of uFldPathCheck 259
25.2 Publications and Subscriptions for uFldPathCheck 259

25.2.1 Variables Published by uFldPathCheck . 259
25.2.2 Variables Subscribed for by uFldPathCheck 259
25.2.3 An Example MOOS Configuration Block . 259

25.3 Usage Scenarios the uFldPathCheck Utility . 260

26 uFldHazardSensor: Simulating an Simple Hazard Sensor 261
26.1 Using uFldHazardSensor . 261

26.1.1 A Quick Start Guide . 261
26.1.2 Typical Simulator Topology . 262

26.2 Configuring the Hazard Field . 263
26.2.1 An Example Hazard Field . 264
26.2.2 Automatically Generating a Hazard Field . 265

26.3 Configuring the Possible Sensor Settings . 265
26.3.1 Sensor Swath Width Options . 266
26.3.2 Sensor ROC Curve Configuration Options . 266
26.3.3 Classification Configuration Options . 268
26.3.4 Dynamic Resetting of the Sensor . 268
26.3.5 Posting of Sensor Configuration Options . 269

26.4 Configuring the Simulator Visual Preferences . 269
26.4.1 Configuring the Sensor Field Swath Rendering 269
26.4.2 Configuring the Hazard Field Renderings . 270
26.4.3 Configuring the Sensor Report Renderings . 270

26.5 Under the Hood: the Simulated Detection Algorithm 270
26.6 Under the Hood: the Simulated Classification Algorithm 271
26.7 Under the Hood: Sensor Blackouts During Turns . 272
26.8 Configuration Parameters of uFldHazardSensor . 273

26.8.1 An Example MOOS Configuration Block . 274
26.9 Publications and Subscriptions for uFldHazardSensor 275

13

26.9.1 Variables Published by uFldHazardSensor . 275
26.9.2 Variables Subscribed for by uFldHazardSensor 276

26.10Terminal and AppCast Output . 277
26.11The Jake Example Mission Using uFldHazardSensor 277

26.11.1 What is Happening in the Jake Mission . 278

27 uFldHazardMgr: On-Board Managment of a Hazard Sensor 281
27.1 Overview . 281
27.2 Using uFldHazardMgr . 282

27.2.1 Required MOOS Variable Bridges . 283
27.2.2 Configuration Parameters of uFldHazardMgr 283
27.2.3 An Example MOOS Configuration Block . 284
27.2.4 Configuring the Swath Width . 284
27.2.5 Configuring the Probability of Detection Setting 285

27.3 Under the Hood - Interacting with the Hazard Sensor 285
27.4 Under the Hood - Processing Data and Generating Reports 285
27.5 Publications and Subscriptions for uFldHazardMgr 286

27.5.1 Variables Published by uFldHazardMgr . 286
27.5.2 Variables Subscribed for by uFldHazardMgr 286

27.6 Terminal and AppCast Output . 287
27.7 The Jake Example Mission Using uFldHazardMgr 288

28 uFldHazardMetric: Grading a HazardSet Report 289
28.1 Overview . 289
28.2 Using uFldHazardMetric . 289

28.2.1 Required MOOS Variable Bridges . 290
28.2.2 The False-Alarm and Missed-Hazard Reward Structure 291
28.2.3 The Max-Time and Time-Overage Reward Structure 291
28.2.4 Raw and Normalized Scores . 292
28.2.5 The Report Evaluation Format . 292

28.3 Configuration Parameters of uFldHazardMetric . 293
28.4 Publications and Subscriptions for uFldHazardMetric 294

28.4.1 Variables Published by uFldHazardMetric . 294
28.4.2 Variables Subscribed for by uFldHazardMetric 294

28.5 Terminal and AppCast Output . 295
28.6 The Jake Example Mission Using uFldHazardMetric 296

29 uFldBeaconRangeSensor: Simulating Vehicle to Beacon Ranges 298
29.1 The uFldBeaconRangeSensor Interface and Configuration Options 299

29.1.1 Configuration Parameters of uFldBeaconRangeSensor 299
29.2 Publications and Subscriptions for uFldBeaconRangeSensor 301

29.2.1 Variables Published by uFldBeaconRangeSensor 301
29.2.2 Variables Subscribed for by uFldBeaconRangeSensor 301

29.3 Using and Configuring uFldBeaconRangeSensor . 302
29.3.1 Configuring the Beacon Locations and Properties 304

14

29.3.2 Unsolicited Beacon Range Reports . 305
29.3.3 Solicited Beacon Range Reports . 306
29.3.4 Limiting the Frequency of Vehicle Range Requests 306
29.3.5 Producing Range Measurements with Noise 307
29.3.6 Terminal and AppCast Output . 307

29.4 Interaction between uFldBeaconRangeSensor and pMarineViewer 309
29.5 The Indigo Example Mission Using uFldBeaconRangeSensor 310

29.5.1 Generating Range Report Data for Matlab 312

30 uFldContactRangeSensor: Detecting Contact Ranges 313
30.1 Overview . 313
30.2 Using uFldContactRangeSensor . 313

30.2.1 Typical Topology . 313
30.2.2 Required MOOS Variable Bridges . 314
30.2.3 Range Requests and Range Reports . 315
30.2.4 Configuring the Range Criteria . 316
30.2.5 Limiting the Frequency of Vehicle Range Requests 316
30.2.6 Producing Range Measurements with Noise 317

30.3 Configuration Parameters of uFldContactRangeSensor 317
30.4 Publications and Subscriptions for uFldContactRangeSensor 319

30.4.1 Variables Published by uFldContactRangeSensor 319
30.4.2 Variables Subscribed for by uFldContactRangeSensor 319

30.5 Terminal and AppCast Output . 320
30.6 Interaction between uFldContactRangeSensor and pMarineViewer 321
30.7 The Hugo Example Mission Using uFldContactRangeSensor 321

A Use of Logic Expressions 324

B Colors 326

15

1 Introduction

1.1 Overview of the MOOS-IvP Project and MOOS-IvP Tools

The MOOS-IvP autonomy tools described in this document are software applications that are
typically running either as part of an overall autonomy system running on a marine vehicle, as part
of a marine vehicle simulation. or used for post-mission off-line analysis. They are each MOOS
applications, meaning they are running and communicating with a MOOSDB. The AlogToolbox
described here contains a number of off-line tools for analyzing alog files produced by the pLogger
application.

The focus of this paper is on these tools, and the set of off-line mission analysis tools comprising
the Alog Toolbox. Important topics outside this scope are (a) MOOS middleware programming, (b)
the IvP Helm and autonomy behaviors, and (c) other important MOOS utilities applications not
covered here. The intention of this paper is to provide documenation for these common applications
for current users of the MOOS-IvP software.

1.2 Module Overview

1.2.1 Mission Monitoring Modules

Mission monitoring modules aid the user in either keeping a high-level tab on the mission as it
unfolds, or help the user analyze and debug a mission. In release 13.2 this includes two powerful
new tools for appcast monitoring, uMAC and uMACView. The pMarineViewer has also been substantially
augmented to support appcast viewing.

• pMarineViewer: GUI tool for rendering events in an area of vehicle operation. It repeatedly
updates vehicle positions from incoming node reports, and will render several geometric types
published from other MOOS apps. The viewer may also post messages to the MOOSDB based
on user-configured keyboard or mouse events. Section 2.

• uHelmScope: A terminal-based (non-GUI) scope onto a running IvP Helm process, and key
MOOS variables. It provides behavior summaries, activity states, and recent behavior post-
ings to the MOOSDB. A very useful tool for debugging helm anomalies. Section 3.

• uXMS: A terminal-based (non GUI) tool for scoping a MOOSDB Users may precisely config-
ure the set of variables they wish to scope on by naming them explicitly on the command line
or in the MOOS configuration block. The variable set may also be configured by naming one
or more MOOS proceses on which all variables published by those processes will be scoped.
Users may also scope on the history of a single variable. Section 5.

• uProcessWatch: This application monitors the presence of MOOS apps on a watch-list. If one
or more are noted to be absent, it will be so noted on the MOOS variable PROC WATCH SUMMARY.
uProcessWatch is appcast-enabled and will produce a succinct table summary of watched
processes and the CPU load reported by the processes themselves. The items on the watch
list may be named explicitly in the config file or inferred from the Antler block or from list
of DB CLIENTS. An application may be excluded from the watch list if desired. Section 8.

• uMAC: The uMAC application is a utility for Monitoring AppCasts. It is launched and run in
a terminal window and will parse appcasts generated within its own MOOS community or
those from other MOOS communities bridged or shared to the local MOOSDB. The primary

16

advantage of uMAC versus other appcast monitoring tools is that a user can remotely log
into a vehicle via ssh and launch uMAC locally in a terminal. Section 10.2.

• uMACView: A GUI tool for visually monitoring appcasts. It will parse appcasts generated
within its own MOOS community or those from other MOOS communities bridged or shared
to the local MOOSDB. Its capability is nearly identical to the appcast viewing capability
built into pMarineViewer. It was intended to be an appcast viewer for non-pMarineViewer
users. Section 10.1.

1.2.2 Mission Execution Modules

Mission execution modules participate directly in the proper execution of the mission rather than
simply helping to monitor, plan or analyze the mission.

• pNodeReporter: A tool for collecting node information such as present vehicle position, tra-
jectory and type, and posting it in a single report for sharing between vehicles or sending to
a shoreside display. Section 4.

• pBasicContactMgr: The contact manager deals with other known vehicles in its vicinity. It
handles incoming reports perhaps received via a sensor application or over a communications
link. Minimally it posts summary reports to the MOOSDB, but may also be configured to
post alerts with user-configured content about one or more of the contacts. May be used in
conjunction with the helm to spawn contact-related behaviors for collision avoidance, tracking,
etc. Section 7.

• pEchoVar: A tool for subscribing for a variable and re-publishing it under a different name. It
also may be used to pull out certain fields in string publications consisting of comma-separated
parameter=value pairs, publishing the new string using different parameters. Section 15.

• pSearchGrid: An application for storing a history of vehicle positions in a 2D grid defined
over a region of operation. Section 16.

1.2.3 Mission Simulation Modules

Mission simulation modules are used only in simulation. Many of the applications in the uField
Toolbox may also be considered simulation modules, but they also have a use case involving simu-
lated sensors on actual physical vehicles. The two modules below are purely for simulated vehicles.

• uSimMarine: A simple 3D vehicle simulator that updates vehicle state, position and trajec-
tory, based on the present actuator values and prior vehicle state. Typical usage scenario has
a single instance of uSimMarine associated with each simulated vehicle. Section 12.

• uSimCurrent: A simple application for simulating the effects of water current. Based on local
current information from a given file, it repeately reads the vehicle’s present position and
publishes a drift vector, presumably consumed by uSimMarine. Section 18.

1.2.4 Modules for Poking the MOOSDB

Poking the MOOSDB is a common and often essential part of mission execution and/or command
and control. The pMarineViewer tool also contains several methods for poking the MOOSDB on
user command.

17

• uPokeDB: A command-line tool for poking a MOOSDB with variable-value pairs provided on
the command line. It finds the MOOSDB via mission file provided on the command line, or
the IP address and port number given on the command line. It will connect to the DB, show
the value prior to poking, poke the DB, and wait for mail from the DB to confirm the result
of the poke. Section 14.

• uTimerScript: Allows the user to script a set of pre-configured pokes to a MOOSDB with
each entry in the script happening after a speci- fied amount of time. Script may be paused
or fast-forwarded. Events may also be configured with random values and happen randomly
in a chosen window of time. Section 6.

• uTermCommand: A terminal application for poking the MOOSDB with pre-defined variable-
value pairs. A unique key may be associated with each poke. Section 17.

1.2.5 The Alog Toolbox

The Alog Toolbox is set of offline tools for analyzing and manipulating alog files produces by the
pLogger application distributed with the Oxford MOOS codebase.

• alogscan: A command line tool for reporting the contents of a given MOOS .alog file. Section
19.3.

• alogclip: A command line tool that will create a new MOOS .alog file from a given .alog file
by removing entries outside a given time window. Section 19.4.

• aloggrep: A command line tool that will create a new MOOS .alog file by retaining only the
given MOOS variables or sources from a given .alog file. Section 19.5.

• alogrm: A command line tool that will create a new MOOS .alog file by removing the given
MOOS variables or sources from a given .alog file. Section 19.6.

• alogview: A GUI tool for analyzing a vehicle mission by plotting one or more vehicle trajec-
tories on the operation area, while viewing a plot of any of the numerical values in the alog
file(s). Section 19.7.

1.2.6 The uField Toolbox

The uField Toolbox contains a number of tools for supporting multi-vehicle missions where each
vehicle is connected to a shoreside community. This includes both simulation and real field ex-
periments. It also contains a number of simulated sensors that run on offboard the vehicle on the
shoreside.

• pHostInfo: Automatically detect the vehicle’s host information including the IP addresses,
port being used by the MOOSDB, the port being used by local pShare for UDP listening, and
the community name for the local MOOSDB. Post these to facilitate automatic intervehicle
communications in especially in multi-vehicle scenarios where the local IP address changes
with DHCP. Section 13.

• uFldNodeBroker: Typically run on a vehicle or simulated vehicle in a multi-vehicle context.
Used for making a connection to a shoreside community by sending local information about
the vehicle such as the IP address, community name, and port number being used by pShare
for incoming UDP messages. Presumably the shoreside community uses this to know where
to send outgoing UDP messages to the vehicle. Section 20.

18

• uFldShoreBroker: Typically run in a shoreside community. Takes reports from remote vehicles
describing how they may be reached. Posts registration requests to shoreside pShare to bridge
user-provided list of variables out to vehicles. Upon learning of vehicle JAKE will create
bridges FOO ALL and FOO JAKE to JAKE, for all such user-configured variables. Section 21.

• uFldNodeComms: A shoreside tool for managing communications between vehicles. It has
knowledge of all vehicle positions based on incoming node reports. Communications may be
limited based on vehicle range, frequency of messages, or size of message. Messages may also
be blocked based on a team affiliation. Section 22.

• uFldMessageHandler: A tool for handling incoming messages from other nodes. The message
is a string that contains the source and destination of the message as well as the MOOS
variable and value. This app simply posts to the local MOOSDB the variable-value pair
contents of the message. Section 23.

• uFldScope: Typically run in a shoreside community. Takes information from user-configured
set of incoming reports and parses out key information into a concise table format. Reports
may be any report in the form of comma-separated parameter-value pairs. Section 24.

• uFldPathCheck: Typically run in a shoreside community. Takes node reports from remote
vehicles and calculates the current vehicle speed and total distance travelled and posts them
in two concise reports. Odometry tallies may be re-set to zero by other apps. Section 25.

• uFldHazardSensor: Typically run in a shoreside community. Configured with a set objects
with a given x,y location and classification (hazard or beningn). The sensor simulator receives
a series of requests from a remote vehicle. When sensor determines that an object is is within
the sensor field of a requesting vehicle, it may or may not return a sensor detection report
for the object, and perhaps also a proper classification. The odds of receiving a detection
and proper classification depend on the sensor configuration and the user’s preference for
P D/P FA on the prevailing ROC curve. Section 26.

• uFldHazardMetric: An application for grading incoming hazard reports, presumably gen-
erated by users of the uFldHazardSensor after exploring a simulated hazard field. Section
28.

• uFldHazardMgr: The uFldHazardMgr is a strawman MOOS app for managing hazard sensor
information and generation of a hazard report over the course of an autonomous search
mission. Section 27.

• uFldBeaconRangeSensor: Typically run in a shoreside community. Configured with one or
more beacons with known beacon locations. Takes range requests from a remote vehicle and
returns a range report indicating that vehicle’s range to nearby beacons. Range requests may
or may not be answered depending on range to beacon. Reports may have noise added and
may or may not include beacon ID. Section 29.

• uFldContactRangeSensor: Typically run in a shoreside community. Takes reports from remote
vehicles, notes their position. Takes a range request from a remote vehicle and returns a range
report indicating that vehicle’s range to nearby vehicles. Range requests may or may not be
answered dependent on inter-vehicle range. Reports may also have noise added to their range
values. Section 30.

19

1.2.7 Brief Background of MOOS-IvP

MOOS was written by Paul Newman in 2001 to support operations with autonomous marine
vehicles in the MIT Ocean Engineering and the MIT Sea Grant programs. At the time Newman
was a post-doc working with John Leonard and has since joined the faculty of the Mobile Robotics
Group at Oxford University. MOOS continues to be developed and maintained by Newman at
Oxford and the most current version can be found at his web site. The MOOS software available in
the MOOS-IvP project includes a snapshot of the MOOS code distributed from Oxford. The IvP
Helm was developed in 2004 for autonomous control on unmanned marine surface craft, and later
underwater platforms. It was written by Mike Benjamin as a post-doc working with John Leonard,
and as a research scientist for the Naval Undersea Warfare Center in Newport Rhode Island. The
IvP Helm is a single MOOS process that uses multi-objective optimization to implement behavior
coordination.

Acronyms

MOOS stands for ”Mission Oriented Operating Suite” and its original use was for the Bluefin
Odyssey III vehicle owned by MIT. IvP stands for ”Interval Programming” which is a mathematical
programming model for multi-objective optimization. In the IvP model each objective function is a
piecewise linear construct where each piece is an interval in N-Space. The IvP model and algorithms
are included in the IvP Helm software as the method for representing and reconciling the output of
helm behaviors. The term interval programming was inspired by the mathematical programming
models of linear programming (LP) and integer programming (IP). The pseudo-acronym IvP was
chosen simply in this spirit and to avoid acronym clashing.

1.2.8 Sponsors of MOOS-IvP

Original development of MOOS and IvP were more or less infrastructure by-products of other
sponsored research in (mostly marine) robotics. Those sponsors were primarily The Office of
Naval Research (ONR), as well as the National Oceanic and Atmospheric Administration (NOAA).
MOOS and IvP are currently funded by Code 31 at ONR, Dr. Don Wagner and Dr. Behzad
Kamgar-Parsi. Testing and development of course work at MIT is further supported by Battelle,
Dr. Robert Carnes. MOOS is additionally supported in the U.K. by EPSRC. Early development of
IvP benefited from the support of the In-house Laboratory Independent Research (ILIR) program
at the Naval Undersea Warfare Center in Newport RI. The ILIR program is funded by ONR.

1.2.9 The Software

The MOOS-IvP autonomy software is available at the following URL:

http://www.moos-ivp.org

Follow the links to Software. Instructions are provided for downloading the software from an SVN
server with anonymous read-only access.

20

1.2.10 Building and Running the Software

This document is written to Release 13.2. After checking out the tree from the SVN server as
prescribed at this link, the top level directory should have the following structure:

$ cd moos-ivp/

$ ls

MOOS@ bin/ include/

MOOS_V10 build/ ivp/

README-LINUX.txt build-ivp.sh* lib/

README-OS-X.txt build-moos.sh* scripts/

README-WINDOWS.txt configure-ivp.sh*

Note there is a MOOS directory and an IvP sub-directory. The MOOS directory is a symbolic link to
a particular MOOS release checked out from the Oxford server. In the example above this is MOOS
Version 10. The MOOS directory included with MOOS-IvP contains the MOOS Core middleware
tree plus four other related trees distributed with MOOS:

• core-moos: Core middleware library, MOOSDB and MOOSApp superclass.

• essential-moos: Ubiquitious tools, pLogger, Antler, pShare and so on.

• ui-moos: GUI related tools, uMS, uPlayback and more.

• geodesy-moos: Tools for translating between local and earth coordinates.

• matlab-moos: Tools for interfacing with Matlab, including iMatlab.

The Core MOOS middlware library is very small, about 1.5Mb and has no external dependen-
cies. The MOOS directory distributed with MOOS-IvP contains these five Oxford MOOS trees
completely untouched other than a local re-naming of the folders and a build wrapper added to
automate the build process. The use of a symbolic link is done to simplify the process of bringing
in a new release from the Oxford server.

$ cd moos-ivp

$./build-moos.sh

Alternatively one can go directly into the MOOS directory and configure options with ccmake and
build with cmake. The script is included to facilitate configuration of options to suit local use.
Likewise the IvP directory can be built by executing the build-ivp.sh script. The MOOS tree must
be built before building IvP. Once both trees have been built, the user’s shell executable path must
be augmented to include the two directories containing the new executables:

moos-ivp/MOOS/bin

moos-ivp/bin

At this point the software should be ready to run and a good way to confirm this is to run the
example simulated mission in the missions directory:

$ cd moos-ivp/ivp/missions/alpha/

$ pAntler alpha.moos

Running the above should bring up a GUI with a simulated vehicle rendered. Clicking the DEPLOY

21

button should start the vehicle on its mission. If this is not the case, some help and email contact
links can be found at www.moos-ivp.org/support/, or emailing issues@moos-ivp.org.

1.2.11 Operating Systems Supported by MOOS and IvP

The MOOS software distributed by Oxford is well supported on Linux, Windows and Mac OS
X. The software distributed by MIT includes additional MOOS utility applications and the IvP
Helm and related behaviors. These modules are support on Linux and Mac OS X and the software
compiles and runs on Windows but Windows support is limited.

1.2.12 Where to Get Further Information

Websites and Email Lists

There are two web sites - the MOOS web site maintained by Oxford University, and the MOOS-IvP
web site maintained by MIT. At the time of this writing they are at the following URLs:

https://sites.google.com/site/moossoftware/

http://www.moos-ivp.org

What is the difference in content between the two web sites? As discussed previously, MOOS-IvP,
as a set of software, refers to the software maintained and distributed from Oxford plus additional
MOOS applications including the IvP Helm and library of behaviors. The software bundle released
at moos-ivp.org does include the MOOS software from Oxford - usually a particular released version.
For the absolute latest in the core MOOS software and documentation on Oxford MOOS modules,
the Oxford web site is your source. For the latest on the core IvP Helm, behaviors, and MOOS
tools distributed by MIT, the moos-ivp.org web site is the source.

There are two mailing lists open to the public. The first list is for MOOS users, and the second
is for MOOS-IvP users. If the topic is related to one of the MOOS modules distributed from the
Oxford web site, the proper email list is the ”moosusers” mailing list. You can join the ”moosusers”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosusers,

For topics related to the IvP Helm or modules distributed on the moos-ivp.org web site that
are not part of the Oxford MOOS distribution (see the software page on moos-ivp.org for help in
drawing the distinction), the ”moosivp” mailing list is appropriate. You can join the ”moosivp”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosivp,

Documentation

Documentation on MOOS can be found on the Oxford-maintained web site:

https://sites.google.com/site/moossoftware/home/documentation

22

This includes documentation on the MOOS architecture, programming new MOOS applications
as well as documentation on several bread-and-butter applications such as pAntler, pLogger, uMS,
pShare, iRemote, iMatlab, pScheduler and more. Documentation on the IvP Helm, behaviors and
autonomy related MOOS applications not from Oxford can be found on the www.moos-ivp.org web
site under the Documentation link. Below is a summary of documents:

1.3 The uField Toolbox

The uField Toolbox is a set of tools to facilitate the deployment of and simulation of multiple
fielded marine vehicles. It pre-supposes the arrangment depicted in Figure 1 below. A number of
vehicles are deployed and are connected to a single shoreside command and control computer. Each
vehicle, as well as the shoreside computer, contain a dedicated MOOS community. A community
is comprised of a MOOSDB process and a number of connected MOOS applications.

Figure 1: Shoreside to Multi-Vehicle Topology: A number of vehicles are deployed with each vehicle maintaining
some level of connectivity to a shoreside command and control computer. Each node (vehicles and the shoreside) are
comprised of a dedicated MOOS community. Modes and limits of communication may vary.

The uField Toolbox is designed to support both laboratory simulations as well as fielded exper-
iments with multiple marine vehicles.

The uField Toolbox in Laboratory Simulations

In laboratory or classroom simulations, the nodes in Figure 1 may be either (a) all running on a
single user’s machine during initial development and testing, or (b) each running on a separate
laptop with the shoreside community rendered on a central laboratory screen.

The uField Toolbox in Fielded Experimentation

During field experiments, the vehicle nodes in Figure 1 are actual fielded vehicles. The shoreside
node is a machine on the shore with connectivity to each of the vehicles. For example, at the MIT

23

Sailing Pavilion lab, the vehicles are either kayaks, kingfishers or a man-portable UUV. Commu-
nications is typically achieved with WiFi, and occasionally over acoustic link, or cellular network
link.

1.4 Motivations for the uField Toolbox

The uField Toolbox is meant to facilitate and simulate. It facilitates aspects of configuration for
inter-vehicle communications with pShare by letting nodes auto-configure with one another. It
facilitates the monitoring of properties of several fielded or simulated vehicles by collecting and
displaying user configurable information. It simulates properties inter-vehicle communication such
as range dependency and bandwidth limitations. It simulates inter-vehicle contact detection as
would otherwise occur through AIS or vehicle mounted sensors. And it simulates a range-only
sensor to fixed beacon locations and moving contacts.

Facilitation of Inter-Vehicle Connections

When vehicles are on the internet, or common local subnet, their inter-vehicle communications are
handled by pShare. This is the case during multi-vehicle simulations on a single machine, multi-
vehicle simulations between a room full of laptops, and field exercises at a facility like the MIT
Sailing Pavilion when all vehicles are connected by a local WiFi router. It is even the case when
vehicles are connected using the cellular telephone network. When or if a vehicle is connected via
an acoustic modem, or via a satellite link, pShare is replaced with a dedicated device interface.

A hurdle to using pShare has been the configuration of pShare on each machine to properly
point the IP address and community name of the vehicles to which it wishes to communicate. If
the IP address and vehicle/community names of all machines never change, this may be tractible
but cumbersome. When the IP addresses are not known at run time, the configuration problem is
often a deal-breaker. In conjunction with the development of the uField Toolbox, a key modification
to pShare was made to allow it to accept incoming mail specifying new bridge configurations. The
uFldNodeBroker app may be run on each vehicle to communicate in a generic manner to the shoreside
MOOS community running uFldShoreBroker. These two apps communicate to share IP and host
information and request modifications to their own local pShare instances, automatically configuring
them for all further communications. All that is needed on the vehicles is a list of possible shoreside
IP addresses to try for initial connections. Collectively these tools greatly simplify the pShare comms
configurations in both simulation and fielded exercises.

Facilitation of Multi-Vehicle Status Fields

Deploying multiple vehicles makes it increasingly important to have access to key information
across all vehicles in a concise, user-configurable format. For example, it may be good to know
which vehicles have had start-up problems, which vehicles are running low on power, or the total
trip distance or maximum noted speed for all vehicles. The uFldScope tool is built to address
this. It exploits a convention that many MOOS status messages are in the format of comma-
separated parmeter=value pairs. The uFldScope tool may be configured to register for any such
status message, provided a field to scope, and provided a field indicating the vehicle name. It
produces a series of terminal-output reports in a simple tabular format with a row for each vehicle

24

and column for each scoped piece of information. The tool may be configured to produce reports
on multiple different sets of scoped data, allowing the user to toggle through the reports.

Simulating Inter-Vehicle Contact Detection

Detecting the position of another vehicle may be necessary (a) for performing collision avoidance,
(b) for coordination with a collaborating vehicle, or (c) for stategizing against a competitor vehi-
cle. Knowning another vehicle’s position may come from either communication of vehicle position
through a general system such as AIS, through direct vehicle to vehicle communication, or through
on-board sensors uses to detect and track another vehicle.

The goal of the uFldNodeComms utility is simulate the above scenarios. It accepts node reports
from all fielded or simulated vehicles, and passes on this information to other vehicles. The user
may choose a configuration where every vehicle knows the position of every other vehicle all the
time. Or a configuration may be chosen where vehicle report sharing is based on the vehicle range.
The user may also choose a configuration where vehicle group or team membership determines, in
part, the sharing of node reports.

Simulating Range-Only Sensors

A set of common sensing problems for marine vehicles include (a) determining the location of a fixed
object given only a sequence of range-only measurements, (b) determining the location of one’s own
vehicle given range-only measurements to an object with a known location, and (c) determining
the location and trajectory of a moving contact given a sequence of range-only measurements to
the contact.

The uField Toolbox includes two tools for simulating these range-only sensors, the uFldBeaconRangeSensor
and uFldContactRangeSensor applications. Each tool is situated on the shoreside computer and
awaits the arrival of a “range request” from a deployed or simulated vehicle. The shoreside com-
puter is also receiving node reports from all vehicles and is thus able to factor in relative vehicle
position in determining whether or not to reply. Range replies contain the information otherwise
perhaps derived from a range-only sensor residing on the vehicle.

Simulating Inter-Vehicle Message Transmission

Message transmission between vehicles is never a given. There is almost always some degree of
range dependency, and some degree of uncertainty at any range as to whether the message will get
through. The message length itself may also be limited depending on how it is sent. Underwater
messaging is particularly subject to all three considerations.

The uFldNodeComms utility is designed to simulate message passing between vehicles. This utility
resides on a shoreside computer and operates by requiring inter-vehicle message passing to be routed
through this utility back out to the receiving vehicles. Since uFldNodeComms also is receiving node
reports from all fielded vehicles, it may apply the relative position of vehicles in its determination
of whether or not to send the message. It may also arbitrarily restrict the size of the message being
sent.

25

1.5 Introduction to AppCasting

AppCasting provides an optional new way of delivering application status output beyond the tra-
ditional means of writing to standard I/O in a terminal window. It is motivated by a few common
recurring observations:

• The biggest headache of new users to MOOS (e.g., students in MIT 2.680) was the derailment
of a mission due to an unnoticed configuration or runtime error.

• Debugging typically involves re-launching with app terminal windows open and analyzing
expected vs. observed output.

• When deploying multiple simulated vehicles, each with multiple MOOS apps, the number of
open terminal windows may be unmanageable.

• When deploying a vehicle in the field, one cannot ssh in and see any application terminal
output at all.

• Since terminal output is rarely viewable for the above practical reasons, apps are rarely
designed with much thought put into their status output.

1.5.1 Motivation For AppCasting

AppCasting is designed to make it easier to see application terminal output. This includes app-
specific status messages, configuration and runtime warnings, and notable events. It is designed to
allow appcast viewing tools to render this information and alerts on a single screen across multiple
vehicles, each with several running apps, whether in simulation or the field. The belief is that having
this form of information easier at hand, application developers will find it more rewarding to add
thoughtful status reports to their application’s functionality. The applications in the MOOS-IvP
tree have been almost all converted to support appcasting. It’s worth repeating that this is an
opt-in feature of MOOS. All existing MOOS apps work just fine without appcasting. Appcasting
apps and non-appcasting apps work side-by-side seamlessly.

1.5.2 MOOS Applications and Terminal Output

A MOOS application typically interacts with the world primarily through its subscriptions and
publications to the MOOSDB. It may also interact through a terminal interface by generating
status or debugging output, or in some rare cases, accepting terminal input.

26

Figure 2: A typical MOOS application interacts with the world by publishing and receiving mail through the
MOOSDB and by writing status messages to a terminal window, if one is open.

Even MOOS GUI applications have the option of opening a terminal interface in addition to
the GUI. The terminal interface option is invoked by setting NewConsole=true for the given app
in the ANTLER process configuration block in the mission file, or simply by just launching the app
manually from the command line. With AppCasting, an application still generates terminal output,
but does so by creating a report, in the form of an appcast data structure. The data structure
may be converted to a list of strings, sent to the terminal, or a single long string, published to the
MOOSDB.

Figure 3: An appcasting MOOS app produces terminal by repeatedly generating and sending an appcast to the
terminal. The appcast is a also serialized and published to the MOOSDB for other MOOS applications to consume.

By sending the appcast to the MOOSDB this makes a few things possible. First, even if the
application was launched long ago without a terminal, it is now possible to launch a separate MOOS
application (an appcast viewer tool discussed in Section 1.5.5) to start looking at the status output.
Second, the same appcast data structure may now also be bridged to a separate off-board MOOS
community, using something like pShare, so remote users may be alerted to or debug problems.
Third, the appcast data structure may contain configuration and run-time alerts to bring issues
to the attention of operators quickly. Fourth, the appcast structure may be logged like any other
MOOS variable, making it possible to review terminal output during the post-mission analysis
phase.

27

1.5.3 Viewing AppCasts and Navigating AppCast Collections

A primary motivation for appcasting is the ability to view appcasts over several applications with
a single viewer:

Figure 4: An AppCast Viewer is a separate MOOS application for gathering and navigating through appcasts from
several other MOOS applications.

In addition to being able to see application output from a single window, it is possible to
view application output for a particular app regardless of how that application was launched. In
comparison, if the status output were only viewable from a terminal window, that app would have
had to be launched with a terminal window from the outset. Furthermore, when the AppCast
Viewer has a terminal interface, a user may log onto a remotely deployed vehicle and launch the
viewer and see application output that would not be viewable otherwise since applications on fielded
platforms are never run with terminal windows open.

An AppCast Viewer may also handle appcasts from several vehicles as conveyed in Figure 5.
The viewer lets the user navigate between different vehicles and appcasts within a vehicle. The
interface is discussed in a later section, but the idea is shown on the right in Figure 7.

Figure 5: An AppCast Viewer may also be used for sorting and navigating through appcasts from several applications
over several vehicles or nodes. The appcasts may be bridged from one community to a single shoreside community
using a tool such as pShare.

28

The above arrangement assumes that appcasts are sent from each MOOS community to a single
shoreside MOOS community, to which the appcast viewer is connected. This may be done with
the pShare utility. The uField Toolbox also provides a set of MOOS utilities to facilitate this kind
of arrangement.

1.5.4 The AppCast Data Structure

An example appcast is shown in Figure 6. It has four distinct parts:

• config warnings: Configuration warnings are typically generated during the application’s
OnStartUp() routine.

• run warnings: Run warnings may be generated any time during the execution of the appli-
cation.

• general messages: A list of app developer-formatted strings having whatever the application
developer thought would best constitute a succinct meaningful status report.

• events: A set of time-stamped events. Exactly what constitutes an event is determined by
the application developer.

29

Figure 6: An appcast consists of four main parts: (1) configuration warnings, (2) run-time warnings, (3) general status
report messages, and (4) run-time events. The bar at the top of the figure is rendered in red due to the presence
of a run-time warning. The "1/1" on this line indicates one configuration warning and one run-time warning. The
"(150)" on this line indicates that it is iteration #150 for this application. This image is a screen shot take from the
uMACView utility described later.

For any given appcast, all fields are optional. Indeed, often an appcast will be devoid of any
configuration or run warnings. It is also not uncommon for an application not to have a notion of
an event.

For reasons explained later, an appcast instance is typically created once upon application
startup. The block of general messages is cleared and overwritten each time an appcast is generated.
Run warnings and events are added any time during the application operation, but are limited in
amount (first-in-first-out/FIFO). This is done to ensure against unbounded growth of the appcast
message, and relieve the app developer from addressing the logic of bounded message growth.
Configuration warnings are unbounded however since they are only generated at startup time and
are typically bounded from above by the number of application configuration lines.

30

1.5.5 A Preview of AppCast Viewing Utilities

An appcast viewer is primarily a utility for viewing appcasts, rendering an appcast to look some-
thing like that shown in Figure 6. It also does a couple other important things. First, it provides
a mechanism to allow the user to navigate between incoming appcasts from multiple vehicles, each
with multiple applications. Second, it implements, under the hood, a protocol between the appcast
viewer utility and the applications, to ensure on-demand appcasting. The latter will be discussed
later in Section 11.10.

The uMAC utility shown on the left in Figure 7 is run from a terminal window. The uMACView

utility shown on the right is a GUI with a bit more capable interface, allowing the user to see
all vehicles, all apps for a chosen vehicle, and the appcast for a single chosen application. The
advantage of the uMAC utility however is that it may be launched remotely after logging in to a
vehicle that may otherwise be unresponsive and in need of some debugging.

Figure 7: Two appcast viewer utilities: On the left is the terminal-based uMAC utility. On the right is the GUI-based
uMACView utility. Both provide access to the same information. While the latter has a bit nicer user interface, the
former may be run remotely while ssh’ing into a fielded vehicle.

While the uMAC and uMACView utilities are completely stand-alone and do not assume the use
of any other tool, a third option exists for users of the pMarineViewer tool. This tool has been
augmented to support an integrated uMACView style interface into the same single window as shown
in Figure 8. The appcasting interface may be toggled on and off by simply hitting the ’a’ key. The
user may also specify the mode upon startup.

31

Figure 8: The pMarineViewer application has been augmented to support appcast viewing in a separate window
pane. The interface is nearly identical to that of the uMACView application. The integration is for better convenience
to existing pMarineViewer users. The appcasting information may be toggled on and off with the ’a’ key.

32

2 pMarineViewer: A GUI for Mission Monitoring and Control

2.1 Overview

The pMarineViewer application is a MOOS application written with FLTK and OpenGL for ren-
dering vehicles and associated information and history during operation or simulation. A screen
shot of a simple one-vehicle mission is shown below in Figure 9.

Figure 9: A pMarineViewer screen-shot executing a simple one-vehicle mission. The track of the vehicle is shown
along with the set of waypoints it will traverse during this mission.

The user is able manipulate a geo display to see multiple vehicle tracks and monitor key infor-
mation about individual vehicles. In the primary interface mode the user is a passive observer, only
able to manipulate what it sees and not able to initiate communications to the vehicles. However
there are hooks available and described later in this section to allow the interface to accept field
control commands. With Release 12.11, appcasting viewing is supported to allow the pMarineViewer

user to view appcasts across multiple fielded vehicles within a single optional window pane. This
is described more fully in Section 2.5.

2.1.1 The Shoreside-Vehicle Topology

In some simple simulation single-vehicle arrangements pMarineViewer may co-exist in the same
MOOS community as the helm and other components of a simulated vehicle. This is the case in
the Alpha example mission. A more typical module topology, however, is that shown in Figure

33

10, where pMarineViewer is running in its own dedicated local MOOS community while simulated
vehicles, or real vehicles on the water, transmit information in the form of a stream of node reports
to the local community.

Figure 10: A common usage of the pMarineViewer is to have it running in a local MOOSDB community while receiving
node reports on vehicle poise from other MOOS communities running on either real or simulated vehicles. The
vehicles can also send messages with certain geometric information such as polygons and points that the view will
accept and render.

A key variable subscribed to by pMarineViewer is the variable NODE REPORT, which has the following
structure given by an example:

NODE_REPORT = "NAME=henry,TYPE=uuv,TIME=1195844687.236,X=37.49,Y=-47.36,SPD=2.40,

HDG=11.17,LAT=43.82507169,LON=-70.33005531,TYPE=KAYAK,MODE=DRIVE,

ALLSTOP=clear,index=36,DEP=0,LENGTH=4"

Reports from different vehicles are sorted by their vehicle name and stored in histories locally in
the pMarineViewer application. The NODE REPORT is generated by the vehicles based on either sensor
information, e.g., GPS or compass, or based on a local vehicle simulator.

In addition to node reports, pMarineViewer subscribes to several other types of information
typically originating in the individual vehicle communities. This include several types of geometric
shapes for which pMarineViewer has been written to handle. This includes points, polygons, lists
of line segments, grids and so on. This is described further in Section 2.3.

In addition to consuming the above information, pMarineViewer may also be configured to post
certain information, usually for command and control purposes. Since this is mission-specific, this
information is completely configured by the user to suit the mission. Posted information may also
be tied to mouse clicks to allow, for example, a vehicle to be deployed to a point clicked by the
users. This is described further in Section 2.1.5.

34

2.1.2 Description of the pMarineViewer GUI Interface

The viewable area of the GUI has three parts as shown in Figure 11 below. In the upper right, there
is a geo display area where vehicles and perhaps other objects are rendered. The blue panes on
the upper left displays appcast information. These panes hold appcast output from any appcast-
enabled MOOS application running on any node, including the shoreside node. This is a new
feature of Release 12.11 and may be toggled off and on with the ’a’ key, and may be configured
to be either open or closed by setting the appcast viewable parameter inside the pMarineViewer

MOOS configuration block.

In the lower pane, certain data fields associated with the active vehicle are updated. Multiple
vehicles may be rendered simultaneously, but only one vehicle, the active will be reflected in the data
fields in the lower pane. Changing the designation of which vehicle is active can be accomplished
by repeatedly hitting the ’v’ key. The active vehicle is always rendered as red, while the non-active
vehicles have a default color of yellow. Individual vehicle colors can be given different default values
(even red, which could be confusing) by the user.

Figure 11: A screen shot of the pMarineViewer application running the alpha example mission. The position, heading,
speed and other information related to the vehicle is reflected in the data fields at the bottom of the viewer.

Properties of the vehicle rendering such as the trail length, size, and color, and vehicle size and
color, and pan and zoom can be adjusted dynamically in the GUI. They can also be set in the
pMarineViewer MOOS configuration block. Both methods of tuning the rendering parameters are
described later in this section. The individual fields of the data section are described below:

• VName: The name of the active vehicle associated with the data in the other GUI data fields. The

35

active vehicle is typically indicated also by changing to the color red on the geo display.

• VType: The platform type, e.g., AUV, Glider, Kayak, Ship or Unknown.

• X(m): The x (horizontal) position of the active vehicle given in meters in the local coordinate system.

• Y(m): The y (vertical) position of the active vehicle given in meters in the local coordinate system.

• Lat: The latitude (vertical) position of the active vehicle given in decimal latitude coordinates.

• Lon: The longitude (horizontal) position of the active vehicle given in decimal longitude coordinates.

• Spd: The speed of the active vehicle given in meters per second.

• Hdg: The heading of the active vehicle given in degrees (0− 359.99).

• Dep(m): The depth of the active vehicle given in meters.

• Age(s): The elapsed time in seconds since the last received node report for the active vehicle.

• Time: Time in seconds since the pMarineViewer process launched.

• Warp: The MOOS Time-Warp value. Simulations may run faster than real-time by this warp factor.
MOOSTimeWarp is set as a global configuration parameter in the .moos file.

• Range: The range (in meters) of the active vehicle to a reference point. By default, this point is
the datum, or the (0,0) point in local coordinates. The reference point may also be set to another
particular vehicle. See Section 2.9 on the ReferencePoint pull-down menu.

• Bearing: The bearing (in degrees) of the active vehicle to a reference point. By default, this point
is the datum, or the (0,0) point in local coordinates. The reference point may also be set to another
particular vehicle. See Section 2.9 on the ReferencePoint pull-down menu.

The age of the node report is likely to remain zero in simulation as shown in the figure, but
when operating on the water, monitoring the node report age field can be the first indicator when
a vehicle has failed or lost communications. Or it can act as an indicator of communications link
quality.

The lower three fields of the window are used for scoping on a single MOOS variable. See
Section 2.6 for information on how to configure the pMarineViewer to scope on any number of
MOOS variables and select a single variable via an optional pull-down menu. The scope fields are:

• Variable: The variable name of the MOOS variable currently being scoped, or "n/a" if no scope
variables are configured.

• Time: The variable name of the MOOS variable currently being scoped, or "n/a" if no scope variables
are configured.

• Value: The actual current value for the presently scoped variable.

2.1.3 The AppCasting, FullScreen and Traditional Display Modes

As mentioned above, appcasting is new to release 12.11, pMarineViewer supports three display
modes. The first mode is the normal mode familiar to pre-12.11 users of pMarineViewer as it was
the only mode. A second mode, the appcasting mode, also shows the three appcasting panes shown
above in Figure 11. The third mode is the full-screen mode which shows only the geo-display part
to maximize viewing of the operation area. The modes may be toggled by single hot-key actions
as shown in the figure.

36

Figure 12: Three viewing modes are supported by pMarineViewer. The normal mode, the appcasting mode which
renders appcast output from any connected vehicle, or the full-screen mode to maximize viewing of the operation
area and vehicles. The modes may be toggled with the hot-keys shown. When typing ’f’ in the full-screen mode, the
viewer will return to the mode prior to entering the full-screen mode. The modes may also be changed via pull-down
menu items, or set to personal preferences in the .moos configuration block.

To launch a mission in the appcasting mode, set appcast viewable=true in the pMarineViewer

configuration block. To launch in the full-screen mode, set full screen=true in the configuration
block instead.

2.1.4 Run-Time and Mission Configuration

Nearly all pMarineViewer configuration parameters may be configured both at run-time, via pull-
down menu selections, and prior to launch via configuration lines in the pMarineViewer configuration
block of the .moos mission configuration file. To reduce the need to consult the documentation, the
text of the pull-down menu selection is identical to the text of the parameter in the configuration
file. Furthermore, most parameter selections are a choice from a fixed set of options. The present
option for a parameter is typically indicated by a radio button in the pull-down menu.

37

Figure 13: Most configuration parameters may be altered with pull-down menu selections. The radio-button shows
the present parameter value and its neighbors show other legal settings. The text of the pull-down menu selection
may be placed verbatim in the .moos configuration block to determine the setting upon the next mission launch.
In general, menu items rendered in blue text are legally accepted parameters for placing in the .moos configuration
block. Items in black are not.

Most parameter options have either a hot key associated with each option as shown in the left in
Figure 13, or a hot key for toggling between options as on the right in the figure.

2.1.5 Command-and-Control

For the most part pMarineViewer is intended to be only a receiver of information from the vehi-
cles and the environment. Adding command and control capability, e.g., widgets to re-deploy or
manipulate vehicle missions, can be readily done, but make the tool more specialized, bloated and
less relevant to a general set of users. However, pMarineViewer does have a few powerful extendible
command and control capabilities under the hood. Each are simply ways to conveniently post to the
MOOSDB, and come in three forms: (a) configurable pull-down menu actions, and (b) contextual
mouse poking with embedded oparea information, and (c) configurable action buttons:

Configurable Pull-Down Menu Actions

The Action pull-down menu described in Section 2.7 provides a way to pre-define a set of MOOS
postings, each selectable from the pull-down menu. For example, the alpha mission is configured
with the below action:

action = RETURN = true

This post to the MOOSDB correlates to a behavior condition of the helm waypoint behavior with
the return position. Actions may also be grouped into a single pull-down selection, discussed in
Section 2.7.

Contextual Mouse Poking with Embedded OpArea Information

The mouse left and right buttons may be configured to make a post to the MOOSDB with value
partly comprised of the point in the oparea under the mouse when clicked. For example, rather
than commanding the vehicle to return to a pre-defined return position as the case above implies,
the user may use this feature to command the vehicle to a point selected by the user at run time
with a mouse click. The configuration might look like:

left_context[return] = RETURN_POINT = points = x=$(XPOS), y=$(YPOS)

left_context[return] = RETURN = true

38

This is discussed further in Section 2.8.

Action Button Configuration

Perhaps the most visible form of command and control is with the few action buttons configurable
for on-screen use. For example, the DEPLOY and RETURN buttons in the lower right corner as in
Figures 9, and 11. These buttons, for example, are configures as follows:

button_one = DEPLOY # DEPLOY=true

button_one = MOOS_MANUAL_OVERIDE=false # RETURN=false

button_two = RETURN # RETURN=true

The general syntax is:

button_one = <label> # <MOOSVar>=<value> # <MOOSVar>=<value> ...

button_two = <label> # <MOOSVar>=<value> # <MOOSVar>=<value> ...

button_three = <label> # <MOOSVar>=<value> # <MOOSVar>=<value> ...

button_four = <label> # <MOOSVar>=<value> # <MOOSVar>=<value> ...

The left-hand side contains one of the four button keywords, e.g., button one. The right-hand side
consists of a ’#’-separated list. Each component in this list is either a ’=’-separated variable-value
pair, or otherwise it is interpreted as the button’s label. The ordering does not matter and the
’#’-separated list can be continued over multiple lines as in the simple example above.

The variable-value pair being poked on a button call will determine the variable type by the
following rule of thumb. If the value is non-numerical, e.g., true, one, it is poked as a string. If it is
numerical it is poked as a double value. If one really wants to poke a string of a numerical nature,
the addition of quotes around the value will suffice to ensure it will be poked as a string.

2.2 The BackView Pull-Down Menu

The BackView pull-down menu deals mostly with panning, zooming and issues related to the
rendering of the background on which vehicles and mission artifacts are rendered. The full menu
is shown in Figure 14. Although panning and zooming is not something typically done via the
pull-down menu, they are included in this menu primarily to remind the user of their hot-keys.
The zooming commands affect the viewable area and apparent size of the objects. Zoom in with
the ’i’ or ’I’ key, and zoom out with the ’o’ or ’O’ key. Return to the original zoom with ctrl+’z’.

2.2.1 Panning and Zooming

Panning is done with the keyboard arrow keys. Three rates of panning are supported. To pan in
20 meter increments, just use the arrow keys. To pan “slowly” in one meter increments, use the
Alt + arrow keys. And to pan “very slowly”, in increments of a tenth of a meter, use the Ctrl +
arrow keys. The viewer supports two types of “convenience” panning. It will pan to put the active
vehicle in the center of the screen with the ’C’ key, and will pan to put the average of all vehicle
positions at the center of the screen with the ’c’ key. These are part of the ’Vehicles’ pull-down
menu discussed in Section 2.4.

39

Figure 14: The BackView menu: This pull-down menu lists the options, with hot-keys, for affecting rendering
aspects of the geo-display background.

2.2.2 Background Images

The background can be in one of two modes; either displaying a gray-scale background, or displaying
a geo image read in as a texture into OpenGL from an image file. The default is the geo display
mode if provided on start up, or the grey-scale mode if no image is provided. The mode can be
toggled by typing the ’b’ or ’B’ key. The geo-display mode can have two sub-modes if two image
files are provided on start-up. This is useful if the user has access to a satellite image and a map
image for the same operation area. The two can be toggled by hitting the back tick key. When in
the grey-scale mode, the background can be made lighter by hitting the ctrl+’b’ key, and darker
by hitting the alt+’b’ key.

To use an image in the geo display, the input to pMarineViewer comes in two files, an image file in
TIFF format, and an information text file correlating the image to the local coordinate system. The
file names should be identical except for the suffix. For example dabob bay.tif and dabob bay.info.
Only the .tif file is specified in the pMarineViewer configuration block of the MOOS file, and the
application then looks for the corresponding .info file. The info file correlates the image to the
local coordinate system and specifies the location of the local (0,0) point. An example is given in
Listing 1.

Listing 1 - An example .info file associated with a background image.

1 // Lines may be in any order, blank lines are ok

2 // Comments begin with double slashes

3

4 datum_lat = 47.731900

40

5 datum_lon = -122.85000

6 lat_north = 47.768868

7 lat_south = 47.709761

8 lon_west = -122.882080

9 lon_east = -122.794189

All four latitude/longitude parameters are mandatory. The two datum lines indicate where
(0, 0) in local coordinates is in earth coordinates. However, the datum used by pMarineViewer is
determined by the LatOrigin and LongOrigin parameters set globally in the MOOS configuration
file. The datum lines in the above information file are used by applications other than pMarineViewer

that are not configured from a MOOS configuration file. The lat north parameters correlate the
upper edge of the image with its latitude position. Likewise for the other three parameters and
boundaries. Two image files may be specified in the pMarineViewer configuration block. This allows
a map-like image and a satellite-like image to be used interchangeably during use. An example of
this is shown in Figure 15 with two images of Dabob Bay in Washington State. Both image files
where created from resources at www.maps.google.com.

Figure 15: Dual background geo images: Two images loaded for use in the geo display mode of pMarineViewer.
The user can toggle between both as desired during operation.

In the configuration block, the images can be specified by:

tiff_file = dabob_bay_map.tif

tiff_file_b = dabob_bay_sat.tif

By default pMarineViewer will look for the files Default.tif and DefaultB.tif in the local directory
unless alternatives are provided in the configuration block.

By default a copies of the background image and info files are not logged by pLogger. This may
be changed by the setting the following parameter: log the image = true. This is only a request to
pLogger in the form of the PLOGGER CMD posting:

41

PLOGGER_CMD = COPY_FILE_REQUEST = /home/jake/images/lake_george.tif

PLOGGER_CMD = COPY_FILE_REQUEST = /home/jake/images/lake_george.info

The result should be that the files are included in the folder created by pLogger with the . tif and
. info suffixes. These may then be used by post-mission analysis tools to re-convey the operation
area.

2.2.3 Local Grid Hash Marks

Hash marks can be overlaid onto the background. By default this mode is off, but can be toggled
with the ’h’ or ’H’ key, or set in the configuration file with the hash viewable parameter. The hash
marks are drawn in a grey-scale which can be made lighter by typing the ctrl+’h’ key, and darker
by typing the alt+’h’ key, or set in the configuration file with the hash shade parameter. The hash
mark spacing may only be set to one of the values shown in the menu. If set to different value, the
closest legal value will be chosen.

2.2.4 Full-Screen Mode

The viewer may be put into full-screen mode by toggling with the ’f’ key. This will result in the
data fields at the bottom of the viewer being replace with a bit more viewing area for the geo
display. As with all other blue items in this pull-down menu, the full-screen mode may be set in
the MOOS configuration block with full screen=true. The default if false. Full-screen mode is
useful when running simulations while connected to a low-resolution projector for example.

2.3 The GeoAttributes Pull-Down Menu

The GeoAttributes pull-down menu allows the user to affect viewing properties of geometric objects
capable of being rendered by the pMarineViewer. The viewer subscribes for and supports the
following geometric objects, typically generated by the helm or other MOOS applications:

• Polygons

• SegLists

• Points

• Vectors

• Circles

• Markers

• RangePulses

• CommsPulses

The viewer will also render the following other geometric objects set either in the configuration file
or interactively by the user:

• Datum

• OpArea

• DropPoints

42

The Datum is simply the point in local coordinates representing (0,0). The pull-down menu
allows the user to toggle off or on this rendering of the datum point as well as adjust its size
and color. The OpArea is used to render the boundaries, if they exist, of an area of operation.
DropPoints (described further in Section 2.3.5) are labeled points the user may drop on the viewing
area for reference or mission planning

Figure 16: The ”GeoAttr” menu: This pull-down menu lists the options and hot keys for affecting the rendering
of geometric objects.

The possible parameters settings for rendering the geometric objects received by pMarineViewer via
MOOS mail is provided in Section 2.10.2.

2.3.1 Polygons, SegLists, Points, Circles and Vectors

The five geometric objects, polygons, seglists, points, circles and vectors, provide a core rendering
capability for applications (like the helm and its behaviors) to render visual artifacts related to the
unfolding of a mission. For example, in Figure 9, a seglist is used to render the vehicle waypoints,
and a labeled point is used to render the vehicles current next waypoint.

Objects are passed to pMarineViewer as strings via normal MOOS mail. An example is given
below for the seglist shown in Figure 9. The string is a comma-separated list of variable=value
pairs. Note the last pair is a label. Labels are used by all five object types to distinguish uniqueness.

VIEW_SEGLIST = pts={60,-40:60,-160:150,-160:180,-100:150,-40},label=waypt_survey

43

Uniqueness is used to either overwrite or erase previously rendered object instances. For example
the above seglist could be “moved” five meters south by posting an identical message with the same
label and adjusted coordinates. The source of the object is also tracked by pMarineViewer. This
is given by the MOOS community from which the message originated, and typically represents
the vehicle’s name. Thus the above seglist could also be “moved” if the posting originated from a
second vehicle community, in the type of arrangement shown in Figure 10.

Parameters Common to Polygons, SegLists, Points, Circles and Vectors

Other optional parameters may be associated with an object to specify rendering preferences. They
include:

• active

• msg

• vertex size:

• vertex color

• edge size

• edge color

• fill color

• fill transparency

For example, the VIEW SEGLIST specification above may be augmented with the below string to
specify edge and vertex size and color preferences:

edge_color=pink,vertex_color=blue,vertex_size=4,edge_size=1

The active parameter may be set to false to indicate that an object, previously received with
the same label, should not be drawn by pMarineViewer. The msg parameter may be used to override
the string rendered as the object’s label. Since labels are used to uniquely identify an object, the
msg parameter may be used to, for example, draw five points all with same rendered text. The
other six parameters are self-explanatory and not necessarily relevant to all objects. For example,
pMarineViewer will ignore an edge size specification when drawing a point, and a fill color will
only be relevant for a polygon and a circle.

Serializing Geometric Objects for pMarineViewer Consumption

Geometric objects are only consumed by pMarineViewer, but it’s worth discussing the issue of
generating and serializing an object into a string. It is possible to simply post a string in the right
format, as with:

string str = "x=5,y=25,label=home,vertex_size=3"; // Not recommended

m_Comms.Notify("VIEW_POINT", str);

It is highly recommended that this be left to the serialization function native to the C++ class.

#include "XYPoint.h"

XYPoint my_point(5, 25); // Recommended

44

my_point.set_label("home");

my_point.set_vertex_size(3);

string str = my_point.get_spec();

m_Comms.Notify("VIEW_POINT", str);

The latter code is less prone to user error, and is more likely to work in future code releases if
the underlying formats need to be altered. (This is the idea behind Google Protocol Buffers, but
here the geometric classes are implemented with various geometry function relations defined in
addition to the serialization and de-serialization.) The full set of interface possibilities for creating
and manipulating geometry objects is beyond the scope of the discussion here however.

2.3.2 Markers

A set of marker object types are defined for rendering characteristics of an operation area such as
buoys, fixed sensors, hazards, or other things meaningful to a user. The six types of markers are
shown in Figure 17. They are configured in the pMarineViewer configuration block of the MOOS
file with the following format:

marker = type=efield,x=100,y=20,label=alpha,color=red,width=4.5

marker = type=square,lat=42.358,lon=-71.0874,color=blue,width=8

Each entry is a string of comma-separated pairs. The order is not significant. The only manda-
tory fields are for the marker type and position. The position can be given in local x-y coordinates
or in earth coordinates. If both are given for some reason, the earth coordinates will take precedent.
The width parameter is given in meters drawn to scale on the geo display. Shapes are roughly 10x10
meters by default. The GUI provides a hook to scale all markers globally with the ALT-m and CTRL-m

hot keys and in the GeoAttributes pull-down menu.

Figure 17: Markers: Types of markers known to the pMarineViewer.

The color parameter is optional and markers have the default colors shown in Figure 17. Any
of the colors described in the Colors Appendix are fair game. The black part of the Gateway and
Efield markers is immutable. The label field is optional and is by default the empty string. Note
that if two markers of the same type have the same non-empty label, only the first marker will be
acknowledged and rendered. Two markers of different types can have the same label.

In addition to declaring markers in the configuration file, markers can be received dynamically
by pMarineViewer through the VIEW MARKER MOOS variable, and thus can originate from any other

45

process connected to the MOOSDB. The syntax is exactly the same, thus the above two markers could
be dynamically received as:

VIEW_MARKER = "type=efield,x=100,y=20,scale=4.3,label=alpha,color=red,width=4.5"

VIEW_MARKER = "type=square,lat=42.358,lon=-71.0874,scale=2,color=blue,width=8"

The effect of a “moving” marker, or a marker that changes color, can be achieved by repeatedly
publishing to the VIEW MARKER variable with only the position or color changing while leaving the
label and type the same. To dynamically alter the text rendered with a marker, the msg=value field
may be used instead. When the message is non-empty, it will be rendered instead of the label text.

2.3.3 Comms Pulses

Comms pulse objects were designed to convey a passing of information from one node to another.
At this writing, they are only used by the uFldNodeComms application, but from the perspective of
pMarineViewer it does not matter the origin. The MOOS variable is VIEW COMMS PULSE. They look
something like that shown in Figure 18. There are two pulses shown in this figure. In this case
they were posted by uFldNodeComms to indicate that the two vehicles are receiving each other’s node
reports.

Figure 18: Comms Pulses: A comms pulse directionally renders communication between vehicles. Here each vehicle
is communicating with the other, and two different colored pulses are rendered.

The term “pulse” is used because the object has a duration (by default three seconds), after
which it will no longer be rendered by pMarineViewer. The pulse will fade (become more trans-
parent) linearly with time as it approaches its expiration. If a subsequent comms pulse is received
with an identical label before the first pulse times out, the second pulse will replace the first, in
the style of other geometric objects discussed previously. Although serializing and de-serializing
comms pulse messages is outside the scope of this discussion, it it worth examining an example
comms pulse message:

VIEW_COMMS_PULSE = sx=91,sy=29,tx=6.7,ty=1.4,beam_width=7,duration=10,fill=0.35,

label=GILDA2HENRY_MSG,fill_color=white,time=1350201497.27

46

As with the object types discussed previously, the construction of the above type messages should
be handled by the XYCommsPulse class along the line of something like:

#include "XYCommsPulse.h"

XYCommsPulse my_pulse(91, 29, 6.7, 1.4);

my_pulse.set_label("GILDA2HENRY_MSG");

my_pulse.set_duration(10);

my_pules.set_beam_width(7);

my_pules.set_fill(0.35);

my_pulse.set_color("fill", "white");

string str = my_pulse.get_spec();

m_Comms.Notify("VIEW_COMMS_PULSE", str);

The white comms pulse shown in Figure 19 indicates that a message has been sent from one
vehicle to the other. The fat end of the pulse indicates the receiving vehicle. The color scheme is
not a convention of pMarineViewer, but rather a convention of the uFldNodeComms application which
generated the object in this case. A white pulse is typically rendered long enough to allow the user
to visually register the information. It also typically does not move with the vehicle, to convey to
the user the vehicle positions at the time of the communication.

Figure 19: Comms Pulses for Messaging: In this figure the white comms pulse indicates that a message is being
sent from one vehicle to another, via uFldNodeComms.

The rendering of comms pulses may be toggled on or off in pMarineViewer via a selection in
the GeoAttr pull-down menu, or via the ’@’ hot key. It is not possible in pMarineViewer to show
just the white comms pulses, and hide the colored node report comms pulses, or vice versa. It
is possible however in the uFldNodeComms configuration to shut off the node report pulses with
view node report pulses=false.

2.3.4 Range Pulses

Range pulse objects were designed to convey a passing of information or sensor energy from one
node to any other node in the vicinity, up to a certain range. At this writing they are only used by
the uFldContactRangeSensor and uFldBeaconRangeSensor applications, but from the perspective of
pMarineViewer it does not matter the origin. The MOOS variable is VIEW RANGE PULSE. They look
something like that shown in Figure 20. Here the pulse is shown over three successive times.

47

Figure 20: Comms Pulses: A comms pulse directionally renders communication between vehicles. Here each vehicle
is communicating with the other, and two different colored pulses are rendered.

The term “pulse” is used because the object has a duration (by default 15 seconds), after which
it will no longer be rendered by pMarineViewer. The pulse will grow in size and fade (become
more transparent) linearly with time as it approaches its expiration. If a subsequent range pulse
is received with an identical label before the first pulse times out, the second pulse will replace
the first, in the style of other geometric objects discussed previously. Although serializing and
de-serializing range pulse messages is outside the scope of this discussion, it it worth examining an
example range pulse message:

VIEW_RANGE_PULSE = x=99.2,y=68.9,radius=50,duration=6,fill=0.9,label=archie_ping,

edge_color=white,fill_color=white,time=2700438154.35,edge_size=1

As with the object types discussed previously, the construction of the above type messages should
be handled by the XYRangePulse class along the line of something like:

#include "XYRangePulse.h"

XYRangePulse my_pulse(99.2, 68.9);

my_pulse.set_label("archie_ping");

my_pulse.set_duration(6);

my_pules.set_edge_size(1);

my_pules.set_radius(50);

my_pules.set_fill(0.9);

my_pulse.set_color("edge", "white");

my_pulse.set_color("fill", "white");

string str = my_pulse.get_spec();

m_Comms.Notify("VIEW_RANGE_PULSE", str);

2.3.5 Drop Points

A user may be interested in determining the coordinates of a point in the geo portion of the
pMarineViewer window. The mouse may be moved over the window and when holding the SHIFT

key, the point under the mouse will indicate the coordinates in the local grid. When holding the
CTRL key, the point under the coordinates are shown in lat/lon coordinates. The coordinates are
updated as the mouse moves and disappear thereafter or when the SHIFT or CTRL keys are release.
Drop points may be left on the screen by hitting the left mouse button at any time. The point
with coordinates will remain rendered until cleared or toggled off. Each click leaves a new point,
as shown in Figure 21.

48

Figure 21: Drop points: A user may leave drop points with coordinates on the geo portion of the pMarineViewer
window. The points may be rendered in local coordinates or in lat/lon coordinates. The points are added by clicking
the left mouse button while holding the SHIFT key or CTRL key. The rendering of points may be toggled on/off,
cleared in their entirety, or reduced by popping the last dropped point.

Parameters regarding drop points are accessible from the GeoAttr pull-down menu. The rendering
of drop points may be toggled on/off by hitting the ’r’ key. Drop points may also be shut off
in the mission configuration file with drop point viewable all=false. The set of drop points may
be cleared in its entirety via the pull-down menu. Or the most recently dropped point may be
removed by typing the CTRL-r key. The pull-down menu may also be used to change the rendering
of coordinates from "as-dropped" where some points are in local coordinates and others in lat/lon
coordinates, to "local-grid" where all coordinates are rendered in the local grid, or "lat-lon"

where all coordinates are rendered in the lat/lon format. By default the mode is "as-dropped".
The startup default mode may be changed with drop point coords=local-grid for example in the
mission file.

49

2.4 The Vehicles Pull-Down Menu

The Vehicles pull-down menu deals with rendering properties of vehicles, vehicle labels, and vehicle
trails. The options are shown in Figure 22. The very first option is to turn on or off the rendering
of all vehicles. The can be done at run time via the menu selection, or toggled with the Ctrl-’a’

hot key. Like all blue options in this menu, the text in the menu item may be placed verbatim in
the mission configuration file to reflect the user’s startup preferences.

Figure 22: The Vehicles menu: This pull-down menu lists the options, with hot-keys, for affecting rendering
vehicles and vehicle track history.

2.4.1 The Vehicle Name Mode

Each vehicle rendered in the viewer has an optional label rendered with it. This label may be
rendered in one of five modes:

• names: Just the vehicle name is rendered.

• names+mode: The vehicle name and the full helm mode is rendered.

• names+shortmode: The vehicle name and the short helm mode is rendered.

• names+depth: The vehicle name and its current depth are rendered.

• off: No label is rendered.

The default is names+shortmode. The names, off and depth modes are self explanatory. The
names+mode and names+shortmode involve information typically provided in vehicle node reports

50

about the state of the IvP helm. The helm uses hierarchical mode declarations as a way of configur-
ing behaviors for missions. The helm mode for example be described with string looking something
like "MODE@ACTIVE:LOITERING". In pMarineViewer the text next to the vehicle would be either this
whole string if configured with the names+mode setting, or just "LOITERING" if configured with the
names+shortmode setting.

The color of the rendered text may be changed from the default of white to any color in Appendix
B with the vehicles name color configuration parameter.

2.4.2 Dealing with Stale Vehicles

A stale vehicle is one who has not been heard from for a long time, perhaps because the vehicle
is disabled, out of range, or recovered from the field. These vehicles can be a distraction. Their
history may be outright cleared as described in Section 2.4.6, but this requires action by the user
or a posting to the MOOSDB.

Stale vehicles are also automatically dealt with by pMarineViewer in another way. After some
number of seconds (60 by default), the vehicle label indicates the staleness. The label may look
something like "henry (Stale Report: 231)" where the number indicates the number of seconds
since the last node report received for this vehicle. After another period of time (300 by default), the
vehicle may no longer rendered. Note this does not remove the vehicle trail or any other geometric
objects posted by the vehicle. To clear these, explicit action must be taken as described in Section
2.4.6. Often just clearing the vehicle itself is sufficient to reduce the distraction.

A few features of this policy are configurable at run time and through the mission configuration
file. The policy of showing stale vehicles is false by default but may be toggled with the Ctrl-’i’

key. It may also be set to be true with the stale vehicles viewable=true parameter. The duration
of time after which a vehicle is reported as stale may be changed from its default of 60 seconds
with the stale report thresh parameter. The duration of time after which a vehicle is no longer
drawn may be changed from its default of 300 seconds with the stale nodraw thresh parameter.

2.4.3 Supported Vehicle Shapes

The shape rendered for a particular vehicle depends on the type of vehicle indicated in the node
report received in pMarineViewer. There are four types that are currently handled, an AUV shape,
a glider shape, a kayak shape, and a ship shape, shown in Figure 23.

Figure 23: Vehicles: Types of vehicle shapes supported by pMarineViewer.

The default shape for an unknown vehicle type is currently set to be the shape “ship”.

51

2.4.4 Vehicle Colors

Vehicles are rendered in one of two colors, the active vehicle color and the inactive vehicle color.
The active vehicle is the one who’s data is being rendered in the data fields at the bottom of the
pMarineViewer window, and who’s name is in the VName: field. The active vehicle may be changed
by selecting "Cycle Vehicle Focus" from the Vehicles pull-down menu, or toggling through with
the ’v’ key. The default color for the active vehicle is red, and the default for the inactive vehicle
is yellow. These can be changed via the pull-down menu, or with the following parameters in the
configuration file:

vehicles_active_color = <color> // default is red

vehicles_inactive_color = <color> // default is yellow

The parameters and colors are case insensitive. All colors of the form described in Appendix B are
acceptable.

2.4.5 Centering the Image According to Vehicle Positions

The center view menu items alters the center of the view screen to be panned to either the position
of the active vehicle, or the position representing the average of all vehicle positions. Once the user
has selected this, this mode remains sticky, that is the viewer will automatically pan as new vehicle
information arrives such that the view center remains with the active vehicle or the vehicle average
position. As soon as the user pans manually (with the arrow keys), the viewer breaks from trying to
update the view position in relation to received vehicle position information. The rendering of the
vehicles can made larger with the ’+’ key, and smaller with the ’-’ key, as part of the VehicleSize

pull-down menu as shown. The size change is applied to all vehicles equally as a scalar multiplier.
Currently there is no capability to set the vehicle size individually, or to set the size automatically
to scale.

2.4.6 Vehicle Trails

Vehicle trail (track history) rendering can be toggled off and on with the ’t’ key. The default
is on. The startup default setting may be changed to off in the mission configuration file with
trails viewable=false.

Trail Color and Point Size

The trail color by default is white. A few other colors are available in the Vehicles pull-down menu.
A color may also be chosen in the mission configuration file with trail color=<color> using any
color listed in Appendix B. The trail point size may range from [1, 10]. The default setting is
2. The size may be changed at runtime by the Vehicles/Trails pull-down menu, or with the ’{’
and ’}’ hot keys. The startup trail size may also be set in the mission configuration file with
trails point size=<int> parameter.

Trail Length and Connectivity

Trails have a fixed-length history by default of 100 points. This may be changed via the Vehicles/-
Trails pull-down menu, or with the hot keys ’(’ and ’)’. The startup default length may also be

52

set in the mission configuration file with trails length=<int> with values in range of [0, 10000].

Individual trail points can be rendered with a line connecting each point, or by just showing
the points. When the node report stream is flowing quickly, typically the user doesn’t need or want
to connect the points. When the viewer is accepting input from an AUV with perhaps a minute
or longer delay in between reports, the connecting of points is helpful. This setting can be toggled
with the ’y’ or key, with the default being off. The startup default may be set to on with the
mission file paramter trails connect viewable=true.

Resetting or Clearing the Trails

A vehicle’s history sometimes needs to be cleared, for example when a vehicle has not been heard
from in a long time, or has been recovered. Its trails and other geometric objects posted to the
viewer can become a distraction. This may be done in a couple ways. First via the Action pull-
down menu, the last menu item allows the user to clear the history of all vehicles or a selected
vehicle. The Ctrl-9 hot key can be used to clear all vehicle histories. A select vehicle history may
also be cleared by posting to the MOOS variable TRAIL RESET with the name of the vehicle.

2.5 The AppCast Pull-Down Menu

With the addition of appcasting to MOOS, pMarineViewer has been augmented to serve as an
appcast viewer (along with the other appcast viewer tools, uMAC, and uMACView). The motivation
for appcasting and how to build appcast enabled MOOS applications are discussed elsewhere in
Section 11. The focus here is on the AppCast menu items and their effect on rendering to the user.

2.5.1 Turning On and Off AppCast Viewing

The AppCast pull-down menu, shown in Figure 24 allows adjustments to be made to the app-
cast rendering. The very first set of menu options allows the user to control whether the set of
appcasting panes is viewed or not. The first two menu items allow the explicit on or off selec-
tion and also indicate the mission configuration parameter to turn appcast panes off by default,
appcast viewable=false. The third menu option allows the user to toggle the present setting and
show that the ’a’ key can be alternately used as shortcut for toggling.

53

Figure 24: The AppCast menu: This pull-down menu lists the options, with hot-keys, for affecting rendering
aspects of the appcast panels, and policy for soliciting appcasts from known vehicles and applications.

2.5.2 Adjusting the AppCast Viewing Panes Height and Width

The next set of menu items allow the relative size of the appcasting panes to be adjusted. The
width of the three panes may be increased or decreased with the left and right arrow keys, and the
height of the lower appcasting window relative to the two upper windows may be adjusted with
the up and down arrow keys. In both cases, along with the arrow keys, the user must also hold
down the Ctrl and Alt keys. Alternatively the Ctrl and Shift keys may be uses. Both modes
are supported since user key bindings vary between users. The Alt + arrow keys are common in
Ubuntu for switching work spaces for example.

The appcast pane extents may also be set to the user’s liking in the mission configuration file
with the parameters appcast width and appcast height. The allowable range of values for each may
be seen by pulling down the ”AppCast Window Width” and ”AppCast Window Height” sub-menus
of the AppCast pull-down menu.

2.5.3 Adjusting the AppCast Refresh Mode

The appcast refresh mode refers to the policy of sending appcast requests to known vehicles and
applications. This is discussed more fully in Section 11.10.4, but summarized here. Appcasting apps
are implemented to be lazy with respect to generating appcasts - they will not generate them unless
asked. And even when asked, the request comes with an expiration after which, if no new request
has been received, the application returns to the lazy mode of producing no appcasts. So, for
pMarineViewer to function as an appcast viewer, under the hood it must be also generating appcast
requests (APPCAST REQ postings) to the MOOSDB. The refresh mode refers to this under-the-hood

54

policy.

In the paused refresh mode, pMarineViewer is not generating any appcast requests at all. This
is not the default and typically not very helpful, but it may be useful when the viewer is situated
in the field with only a low-bandwidth connection to remote vehicles. The refresh mode may be set
to paused via the pull-down menu selection, with the CTRL+Spacebar hot key, or set in the mission
configuration file with refresh mode=paused.

In the events refresh mode, the default mode, pMarineViewer is generating appcast requests only
to the selected vehicle and the selected MOOS application. Even this is only partly true. In fact
it is generating another kind of appcast request to all vehicles and apps, but this kind of request
comes with the caveat that an app is only to generate an appcast report if a new run warning has
been detected. Otherwise these apps remain lazy. In this mode you should expect to see regular
appcasts received for the selected app, and updates for the other apps only if something worthy of
a run warning has occurred. You can confirm this for yourself by looking at the counter reflecting
the number of appcasts received for any application. This counter is under the AC column in the
upper panes. The refresh mode may be set to events via the pull-down menu selection, with the
CTRL+’e’ hot key, or set in the mission configuration file with refresh mode=events. The latter
would be redundant however since this is the default mode.

In the streaming refresh mode, pMarineViewer is generating appcast requests to all vehicles and
all apps to generate appcasts all the time. This mode is a bandwidth hog, but it may be useful at
times, especially to debug why a particular application is silent. If it is not generating and appcast
in this mode, then something may indeed be wrong. The refresh mode may be set to streaming via
the pull-down menu selection, with the CTRL+’s’ hot key, or set in the mission configuration file
with refresh mode=streaming.

2.5.4 Adjusting the AppCast Fonts

The font size of the text in the appcasting panes may be adjusted. There are three panes:

• Nodes Pane: The upper left pane shows the list of nodes (typically synonymous with vehicles),
presently known to the viewer.

• Procs Pane: The upper right pane show the list of apps, for the chosen node, presently known
to the viewer.

• AppCast Pane: The bottom pane shows the contents of the presently selected appcast report.

For each pane the possible font settings are large, medium, small, and xsmall. The default
for the upper panes is medium, and the default for the appcast pane is small. Font sizes may be
changed via the pull-down menu or set to the user’s liking in the mission configuration file with
nodes font size, procs font size, and appcast font size parameters.

2.5.5 Adjusting the AppCast Color Scheme

A few different color schemes governing the three appcast panes are available. The default color
scheme is "indigo", reflected in the Figure 24 for example. The other two color schemes are "white"

and "beige". The color scheme may be changed via the pull-down menu, toggled with the ALT+’a’

hot key, or set to the user’s liking in the mission configuration file with appcast color scheme

parameter.

55

2.6 The MOOS-Scope Pull-Down Menu

The MOOS-Scope pull-down menu allows the user to configure pMarineViewer to scope on one or
more variables in the MOOSDB. The viewer allows visual scoping on only a single variable at a
time, but the user can select different variables via the pull-down menu, or toggle between the
current and previous variable with the ’/’ key, or cycle between all registered variables with the
CTRL+’/’ key. The scope fields are on the bottom of the viewer as shown in Figure 25.

Figure 25: The Scope Menu: This pull-down menu allows the user to adjust which pre-configured MOOS variable
is to be scoped, or to add a new variable to the scope list.

The three fields show (a) the variable name, (b) the last time is was updated, and (c) the current
value of the variable. Configuration of the menu is done in the MOOS configuration block with
entries similar to the following (which correlate to the particular items in the pull-down menu in
Figure 25):

scope = RETURN, WPT_STAT, VIEW_SEGLIST, VIEW_POINT, VIEW_POLYGON

scope = MVIEWER_LCLICK, MVIEWER_RCLICK

The keyword scope is not case sensitive, but the MOOS variables are. If no entries are provided
in the MOOS configuration block, the pull-down menu contains a single item, the "Add Variable"

item. By selecting this, the user will be prompted to add a new MOOS variable to the scope
list. This variable will then immediately become the actively scoped variable, and is added to the
pull-down menu.

2.7 The Action Pull-Down Menu

The Action pull-down menu allows the user to invoke pre-define pokes to the MOOSDB (the
MOOSDB to which the pMarineViewer is connected). While hooks for a limited number of pokes

56

are available by configuring on-screen buttons (Section 2.1.5), the number of buttons is limited to
four. The “Action” pull-down menu allows for as many entries as will reasonably be shown on
the screen. Each action, or poke, is given by a variable-value pair, and an optional grouping key.
Configuration is done in the MOOS configuration block with entries of the following form:

action = menu_key=<key> # <MOOSVar>=<value> # <MOOSVar>=<value> # ...

If no such entries are provided, this pull-down menu will not appear. The fields to the right of the
action are separated by the ’#’ character for convenience to allow several entries on one line. If one
wants to use the ’#’ character in one of the variable values, putting double-quotes around the value
will suffice to treat the ’#’ character as part of the value and not the separator. If the pair has the
key word menu key on the left, the value on the right is a key associated with all variable-value pairs
on the line. When a menu selection is chosen that contains a key, then all variable-value pairs with
that key are posted to the MOOSDB. The following configuration will result in the pull-down menu
depicted in Figure 26.

action = menu_key=deploy # DEPLOY = true # RETURN = false

action+ = menu_key=deploy # MOOS_MANUAL_OVERIDE=false

action = RETURN=true

The action+ variant hints to the viewer that a line should be rendered in the pull-down menu
separating it from following items.

Figure 26: The Action menu: The variable value pairs on each menu item may be selected for poking or writing
the MOOSDB. The three variable-value pairs above the menu divider will be poked in unison when any of the three
are chosen, because they were configured with the same key, <deploy>, shown to the right on each item.

The variable-value pair being poked on an action selection will determine the variable type by the
following rule of thumb. If the value is non-numerical, e.g., true, one, it is poked as a string. If

57

it is numerical it is poked as a double value. If one really wants to poke a string of a numerical
nature, the addition of quotes around the value will suffice to ensure it will be poked as a string.
For example:

action = Vehicle=Nomar # ID="7"

As with any other publication to the MOOSDB, if a variable has been previously posted with one
type, subsequent posts of a different type will be ignored.

2.8 The Mouse-Context Pull-Down Menu

The Mouse-Context pull-down menu is an optional menu - it will not appear unless it is configured
for use. It is used for changing the context of left and right mouse clicks on the operation area.

2.8.1 Generic Poking of the MOOSDB with the Operation Area Position

When the user clicks the left or right mouse in the geo portion of the pMarineViewer window, the
variables MVIEWER LCLICK and MVIEWER RCLICK are published respectively with the operation area
location of the mouse click, and the name of the active vehicle. A left mouse click may result in a
publication similar to:

MVIEWER_LCLICK = x=19.0,y=57.0,lat=43.8248027,lon=-70.3290334,vname=henry,counter=1

A counter is maintained by pMarineViewer and is incremented and included on each post. The
above style posting presents a generic way to convey to other MOOS applications an operation
area position. In this case the other MOOS applications need to conform to this generic output.
But, with a bit of further configuration, a similar custom post to the MOOSDB is possible to shift
the burden of conformity away from the other MOOS applications where typically a user does not
have the ability to change the interface.

2.8.2 Custom Poking of the MOOSDB with the Operation Area Position

Custom configuration of mouse clicks is possible by (a) allowing the MOOS variable and value
to be defined by the user, and (b) exposing a few macros in the custom specification to embed
operation area information. Configuration is done in the MOOS configuration block with entries
of the following form:

left_context[<key>] = <var-data-pair>

right_context[<key>] = <var-data-pair>

The left context and right context keywords are case insensitive. If no entries are provided,
this pull-down menu will not appear. The <key> component is optional and allows for groups of
variable-data pairs with the same key to be posted together with the same mouse click. This is the
selectable context in the Mouse-Context pull-down menu. If the <key> is empty, the defined posting
will be made on all mouse clicks regardless of the grouping, as is the case with MVIEWER LCLICK and
MVIEWER RCLICK.

58

Macros may be embedded in the string to allow the string to contain information on where
the user clicked in the operation area. These patterns are: $(XPOS) and $(YPOS) for the local x

and y position respectively, and $(LAT), and $(LON) for the latitude and longitude positions. The
pattern $(IX) will expand to an index (beginning with zero by default) that is incremented each
time a click/poke is made. This index can be configured to start with any desired index with the
lclick ix start and rclick ix start configuration parameters for the left and right mouse clicks
respectively. The following configuration will result in the pull-down menu depicted in Figure 27.

left_context[surface_point] = SPOINT = x=$(XPOS), y=$(YPOS), vname=$(VNAME)

left_context[surface_point] = COME_TO_SURFACE = true

left_context[return_point] = RETURN_POINT = point=$(XPOS),$(YPOS), vname=$(VNAME)

left_context[return_point] = RETURN_HOME = true

left_context[return_point] = RETURN_HOME_INDEX = $(IX)

right_context[loiter_point] = LOITER_POINT = lat=$(LAT), lon=$(LON)

right_context[loiter_point] = LOITER_MODE = true

Note in the figure that the first menu option is "no-action" which shuts off all MOOS pokes
associated with any defined groups (keys). In this mode, the MVIEWER LCLICK and MVIEWER RCLICK

pokes will still be made, along with any other poke configured without a <key>.

Figure 27: The Mouse-Context menu: Keywords selected from this menu will determine which groups of MOOS
variables will be poked to the MOOSDB on left or mouse clicks. The variable values may have information embedded
indicating the position of the mouse in the operation area at the time of the click.

2.9 The Reference-Point Pull-Down Menu

The “Reference-Point” pull-down menu allows the user to select a reference point other than the
datum, the (0,0) point in local coordinates. The reference point will affect the data displayed in
the Range and Bearing fields in the viewer window. This feature was originally designed for field
experiments when vehicles are being operated from a ship. An operator on the ship running the
pMarineViewer would receive position reports from the unmanned vehicles as well as the present

59

position of the ship. In these cases, the ship is the most useful point of reference. Prior versions of
this code would allow for a single declaration of the ship name, but the the current version allows
for any number of ship names as a possible reference point. This allows the viewer to display the
bearing and range between two deployed unmanned vehicles for example. Configuration is done in
the MOOS configuration block with entries of the following form:

reference_vehicle = vehicle

If no such entries are provided, this pull-down menu will not appear. When the menu is present, it
looks like that shown in Figure 28. When the reference point is a vehicle with a known heading, the
user is able to alter the Bearing field from reporting either the relative bearing or absolute bearing.
Hot keys are defined for each.

Figure 28: The Reference-Point menu: This pull-down menu of the pMarineViewer lists the options for selecting
a reference point. The reference point determines the values for the Range and Bearing fields in the viewer for the
active vehicle. When the reference point is a vehicle with known heading, the user also may select whether the
Bearing is the relative bearing or absolute bearing.

60

Mini Exercise #1: Poking a Vehicle into the Viewer.

Issues Explored: (1) Posting a MOOS message resulting in a vehicle rendered in pMarineViewer. (2)
Erasing and moving the vehicle.

• Try running the Alpha mission again from the Helm documentation. Note that when the simu-
lation is first launched, a kayak-shaped vehicle sits at position (0,0).

• Use the pMarineViewer MOOS-Scope utility to scope on the variable NODE REPORT LOCAL. Either
select "Add Variable" from the MOOS-Scope pull-down menu, or type the short-cut key ’a’.
Type the NODE REPORT LOCAL variable into the pop-up window, and hit Enter. The scope field at
the bottom of pMarineViewer should read something like:

NODE REPORT LOCAL = "NAME=alpha,TYPE=KAYAK,MOOSDB TIME=2327.07,UTC TIME=10229133704.48,

X=0.00,Y=0.00,LAT=43.825300,LON=-70.330400,SPD=0.00,HDG=180.00,YAW=180.00000,DEPTH=0.00,

LENGTH=4.0,MODE=PARK,ALLSTOP=ManualOverride

This is the posting that resulted in the vehicle currently rendered in the pMarineViewer window.
This was likely posted by the pNodeReporter application, but a node report can be poked directly
as well to experiment.

• Using the uPokeDB tool, try poking the MOOSDB as follows:

$ uPokeDB alpha.moos NODE REPORT="NAME=bravo,TYPE=glider,X=100,Y=-90,HDG=88,SPD=1.0,

UTC TIME=NOW,DEPTH=92,LENGTH=8"

Note the appearance of the glider at position (100,-90).

2.10 Configuration Parameters for pMarineViewer

The blue items in pull-down menus are also available as mission file configuration parameters. The
configuration parameter is identical to the pull-down menu text. For example in the BackView
menu shown in Figure 14, the menu item full screen=true may also be set in the pMarineViewer

configuration block verbatim with full screen=true.

2.10.1 Configuration Parameters for the BackView Menu

The parameters in Listing 2 relate to the BackView menu described more fully in Section 2.2. Pa-
rameters in blue below correlate to parameters in blue in the pull-down menu. For these parameters,
the text in the pull-down menu is identical to a similar entry in the configuration file.

Listing 2.2: Configuration Parameters for pMarineViewer BackView Menu.

back shade: Shade of gray background when no image is used. Legal value range: [0, 1].
Zero is black, one is white.

full screen: If true, viewer is in full screen mode (no appcasts, no fields rendered at the
bottom). Legal values: true, false. Section 2.2.4.

hash delta: Sets the hash line spacing. Legal values: 50, 100, 200, 500, 1000. The
default is 100. Section 2.2.3.

hash shade: Shade of hash marks. Legal value range: [0, 1]. Zero is black, one is white.
Section 2.2.3.

61

hash viewable: If true, hash lines are rendered over the op area. Legal values: true, false.
The default is false. Section 2.2.3.

log the image: If true, a request is posted to pLogger to log a copy of the image and info
file. Legal values: true, false. The default is false. Section 2.2.2.

tiff file: Filename of a tiff file background image. Section 2.2.2.

tiff file b: Filename of another tiff file background image. Section 2.2.2.

tiff type: Use the first tiff image if set to true. Legal values: true, false. The default
is true. Section 2.2.2.

tiff viewable: Use the tiff background image if set to true. Otherwise a gray screen is used
as a background. Legal values: true, false. The default it true. Section
2.2.2.

view center: Sets the center of the viewing image in x,y local coordinates. Legal values:
(double,double). The default is (0,0).

2.10.2 Configuration Parameters for the GeoAttributes Menu

The parameters in Listing 3 relate to the GeoAttributes pull-down menu described more fully in
Section 2.3. Parameters in blue below correlate to parameters in blue in the pull-down menu. For
these parameters, the text in the pull-down menu is identical to a similar entry in the configuration
file.

Listing 2.3: Configuration Parameters for pMarineViewer Geometry Menu.

circle viewable all: If false, circles are suppressed from rendering. Legal values: true,
false. The default is true. Section 2.3.1.

circle viewable labels: If false, circle labels are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.1.

comms pulse viewable all: If false, comms pulses are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.3.

datum viewable: If false, the datum is suppressed from rendering. Legal values: true,
false. The default is true. Sections 2.2.2 and 2.3.

datum color: The color used for rendering the datum. Legal values: Any color
listed in the Colors Appendix. The default is red. Sections 2.2.2
and 2.3.

datum size: The size of the point used to render the datum. Legal values: In-
tegers in the range [1, 10]. The default is 2. Sections 2.2.2 and
2.3.

drop point viewable all: If false, drop points are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.5.

drop point coords: Specifies whether the drop point labels are in earth or local coordi-
nates. Legal values are: as-dropped, lat-lon, local-grid. The default
is as-dropped. Section 2.3.5.

62

drop point vertex size: The size of the point used to render a drop point. Legal values:
Integers in the range [1, 10]. The default is 2. Section 2.3.5.

grid viewable all: If false, grids are suppressed from rendering. Legal values: true,
false. The default is true.

grid viewable labels: If false, grid labels are suppressed from rendering. Legal values:
true, false. The default is true.

grid viewable opaqueness: The degree to which grid renderings are opaque. Legal range: [0, 1].
The default is 0.3.

marker A marker may be stated in the configuration file with the same
format of the VIEW MARKER message. Section 2.3.2.

marker scale: The scale applied to marker renderings. Legal range: [0.1, 100]. The
default is 1.0. Section 2.3.2.

marker viewable all: If false, markers are suppressed from rendering. Legal values: true,
false. The default is true. Section 2.3.2.

marker edge width: Markers are rendered with an outer black edge. The edge may be
set thicker to aid in viewing. Legal values: Integer values in the
range [1, 10]. The default is 1. Section 2.3.2.

marker viewable labels: If false, marker labels are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.2.

oparea viewable all: If false, oparea lines are suppressed from rendering. Legal values:
true, false. The default is true.

oparea viewable labels: If false, oparea label is suppressed from rendering. Legal values:
true, false. The default is true.

point viewable all: If false, points are suppressed from rendering. Legal values: true,
false. The default is true. Section 2.3.1.

point viewable labels: If false, point labels are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.1.

polygon viewable all: If false, polygons are suppressed from rendering. Legal values: true,
false. The default is true. Section 2.3.1.

polygon viewable labels: If false, polygon labels are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.1.

range pulse viewable all: If false, range pulses are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.3.

seglist viewable all: If false, seglists are suppressed from rendering. Legal values: true,
false. The default is true. Section 2.3.1.

seglist viewable labels: If false, seglist labels are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.1.

vector viewable all: If false, vectors are suppressed from rendering. Legal values: true,
false. The default is true. Section 2.3.1.

vector viewable labels: If false, vector labels are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.3.1.

63

2.10.3 Configuration Parameters for the Vehicles Menu

The parameters in Listing 4 relate to the Vehicles pull-down menu described more fully in Section
2.4. Parameters in blue below correlate to parameters in blue in the pull-down menu. For these
parameters, text in the pull-down menu is identical to a similar entry in the configuration file.

Listing 2.4: Configuration Parameters for pMarineViewer Vehicles Pull-Down Menu.

bearing lines viewable: If false, bearing lines will be suppressed from rendering. Legal val-
ues: true, false. The default is true.

center view: Sets the pan position to be either directly above the active vehicle,
or the average of all vehicles. Legal values: active, average. The
default is neither, resulting in the pan position being set to either
(0,0) or set via other configuration parameters. Section 2.4.5.

stale nodraw thresh: Number of seconds after which a vehicle report will be considered
stale enough to no longer draw. If stale vehicles viewable is true
however, the vehicle will be drawn anyway regardless of this setting.
Legal values: Any non-negative number. The default is 300. Section
2.4.2.

stale report thresh: Number of seconds after which a vehicle report will be considered
stale. Legal values: Any non-negative number. The default is 60.
Section 2.4.2.

stale vehicles viewable: If false, stale vehicles are suppressed from rendering. Staleness oc-
curs after 300 seconds by default. Legal values: true, false. The
default is true. Section 2.4.2.

trails color: The color of trail points rendered behind vehicles to indicate recent
vehicle position history. Legal values: Any color listed in the Colors
Appendix. The default is white. Section 2.4.6.

trails connect viewable: If true the vehicle trail points are each connected by a line. Useful
when node reports have large gaps in time. Legal values: true, false.
The default is true. Section 2.4.6.

trails length: The number of points retained for the rendering of vehicle trails.
Legal values: Integers in the range [1, 100000]. The default is 100.
Section 2.4.6.

trails point size: The size of the points rendering the vehicle trails. Legal values:
Integers in the range [1, 10]. The default is 1. Section 2.4.6.

trails viewable: If false, vehicle trails are suppressed from rendering. Legal values:
true, false. The default is true. Section 2.4.6.

vehicles active color: The color of the active vehicle (the one who’s data is being shown
in the bottom data fields). Legal values: Any color listed in the
Colors Appendix. The default is red. Section 2.4.4.

vehicles inactive color: The color of inactive vehicles. Legal values: Any color listed in the
Colors Appendix. The default is yellow. Section 2.4.4.

vehicles shape scale: The scale factor applied to vehicle size rendering. Legal values in
the range: [0.1, 100]. The default is 1.0. Section 2.4.3.

64

vehicles name mode: Sets the mode for rendering the vehicle label. Legal values are:
names, names+mode, names+shortmode, names+depth, off. The
default is names+shortmode. Section 2.4.1.

vehicles name color: Sets the color for rendering the vehicle label. Legal values are any
color in Appendix B. The default is white. Section 2.4.4.

vehicles viewable: If false, vehicles are suppressed from rendering. Legal values: true,
false. The default is true. Section 2.4.

2.10.4 Configuration Parameters for the AppCast Menu

The parameters in Listing 5 relate to the AppCast pull-down menu described more fully in Section
2.5. Parameters in blue below correlate to parameters in blue in the pull-down menu. For these
parameters, text in the pull-down menu is identical to a similar entry in the configuration file.

Listing 2.5: Configuration Parameters for pMarineViewer AppCast Pull-Down Menu.

appcast color scheme: The color scheme used in all three appcasting panes, affecting back-
ground color and font color. Legal values: white, indigo, beige. The
default is indigo. Section 2.5.5.

appcast font size: The font size uses in the appcast pane of the set of appcasting panes.
Legal values: large, medium, small, xsmall. The default is small.
Section 2.5.4.

appcast height: The height of the appcasting bottom pane as a percentage of the
total pMarineViewer window height. Legal values: [30, 35, 40, 45,...,
85, 90]. The default is 75. Section 2.5.2.

appcast viewable: If true, the appcasting set of panes are rendered on the left side of
the viewer. Legal values: true, false. The default is true. Section
2.5.1.

appcast width: The width of the appcasting panes as a percentage of the total
pMarineViewer window width. Legal values: [20, 25, 30, 35,..., 65,
70]. The default is 30. Section 2.5.2.

nodes font size: the font size uses in the nodes pane of the set of appcasting panes.
Legal values: large, medium, small, xsmall. The default is medium.
Section 2.5.4.

procs font size: The font size uses in the procs pane of the set of appcasting panes.
Legal values: large, medium, small, xsmall. The default is medium.
Section 2.5.4.

refresh mode: Determines the manner in which appcast requests are sent to apps.
Legal values: paused, events, streaming. The default is events.
Section 2.5.3.

2.10.5 Configuration Parameters for the Scope, MouseContext and Action Menus

Listing 2.6: Configuration Parameters the Scope, MouseContext and Action Menus.

65

scope: A comma separated list of MOOS variables to scope. Section 2.6.

oparea: A specification of the operation area boundary for optionally rendering.

button one: A configurable command and control button. Section 2.1.5.

button two: A configurable command and control button. Section 2.1.5.

button three: A configurable command and control button. Section 2.1.5.

button four: A configurable command and control button. Section 2.1.5.

action: A MOOS variable-value pair for posting, available under the Action pull-down
menu. Section 2.7.

left context: Allows the custom configuration of left mouse click context. Section 2.8.

right context: Allows the custom configuration of right mouse click context. Section 2.8.

lclick ix start: Starting index for the left mouse index macro. Section 2.8.

rclick ix start: Starting index for the right mouse index macro. Section 2.8.

2.11 Publications and Subscriptions for pMarineViewer

The interface for pMarineViewer, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ pMarineViewer --interface or -i

2.11.1 Variables Published by pMarineViewer

It is possible to configure pMarineViewer to poke the MOOSDB via either the Action pull-down menu
(Section 2.7), or via configurable GUI buttons (Section 2.1.5). It may also publish to the MOOSDB
variables configured to mouse clicks (Section 2.8). So the list of variables that pMarineViewer

publishes is somewhat user dependent, but the following few variables may be published in all
configurations.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 11.10.4.

• APPCAST REQ <COMMUNITY>: As an appcast viewer, pMarineViewer also generates outgoing ap-
pcast requests to MOOS communities it is aware of, including its own MOOS community.
These postings are typically bridged to the other named MOOS community with the variable
renamed simply to APPCAST REQ when it arrives in the other community.

• HELM MAP CLEAR: This variable is published once when the viewer connects to the MOOSDB. It is
used in the pHelmIvP application to clear a local buffer used to prevent successive identical
publications to its variables.

• MVIEWER LCLICK: When the user clicks the left mouse button, the position in local coordinates,
along with the name of the active vehicle is reported. This can be used as a command and
control hook as described in Section 2.8.

• MVIEWER RCLICK: This variable is published when the user clicks with the right mouse button.
The same information is published as with the left click.

• PLOGGER CMD: This variable is published with a "COPY FILE REQUEST" to log a copy of the image
and info file, only if log the image is set to true. Section 2.2.2.

66

2.11.2 Variables Subscribed for by pMarineViewer

• APPCAST: As an appcast viewer, pMarineViewer also subscribes for appcasts from other other
applications and communities to provide the content for its own viewing capability.

• APPCAST REQ: As an appcast enabled MOOS application, pMarineViewer also subscribes for
appcast requests. Each incoming message is a request to generate and post a new appcast
report, with reporting criteria, and expiration. Section 11.10.4.

• NODE REPORT: This is the primary variable consumed by pMarineViewer for collecting vehicle
position information.

• NODE REPORT LOCAL: This serves the same purpose as the above variable. In some simulation
cases this variable is used.

• TRAIL RESET: When the viewer receives this variable it will clear the history of trail points
associated with each vehicle. This is used when the viewer is run with a simulator and the
vehicle position is reset and the trails become discontinuous.

• VIEW CIRCLE: A string representation of an XYCircle object.

• VIEW COMMS PULSE: A string representation of an XYCommsPulse object.

• VIEW GRID: A string representation of a XYConvexGrids object.

• VIEW GRID CONFIG: A string representation of a XYGrid configuration.

• VIEW GRID DELTA: A string representation of a XYGrid configuration.

• VIEW POINT: A string representation of an XYPoint object.

• VIEW POLYGON: A string representation of an XYPolygon object.

• VIEW SEGLIST: A string representation of an XYSegList object.

• VIEW MARKER: A string designation of a marker type, size and location.

• VIEW RANGE PULSE: A string representation of an XYRangePulse object.

• VIEW VECTOR: A string representation of an XYVector object

67

3 uHelmScope: Scoping on the IvP Helm

3.1 Overview

The uHelmScope application is a console based tool for monitoring output of the IvP helm, i.e., the
pHelmIvP process. The helm produces a few key MOOS variables on each iteration that pack in a
substantial amount of information about what happened during a particular iteration. The helm
scope subscribes for and parses this information, and writes it to a console window for the user
to monitor. The user can dynamically pause or alter the output format to suit one’s needs, and
multiple scopes can be run simultaneously. The helm scope in no way influences the performance
of the helm - it is strictly a passive observer.

The example console output shown in Listing 7 is used for explaining the uHelmScope fields.

Listing 7 - Example uHelmScope output.

1 (alpha)(PAUSED)=========== uHelmScope Report ============= DRIVE (133)

2 Helm Iteration: 85

3 IvP Functions: 1

4 Mode(s):

5 SolveTime: 0.00 (max=0.01)

6 CreateTime: 0.00 (max=0.01)

7 LoopTime: 0.00 (max=0.02)

8 Halted: false (0 warnings)

9 Helm Decision: [speed,0,4,21] [course,0,359,360]

10 speed = 2

11 course = 114

12 Behaviors Active: ---------- (1)

13 waypt_survey [21.29] (pwt=100) (pcs=6) (cpu=0.08) (upd=0/0)

14 Behaviors Running: --------- (0)

15 Behaviors Idle: ------------ (1)

16 waypt_return [always]

17 Behaviors Completed: ------- (0)

18

19

20 # MOOSDB-SCOPE ------------------------------------ (Hit ’#’ to en/disable)

21 #

22 # VarName Source Time Commty VarValue

23 # ----------------- ------------ ----- ------ -----------------------

24 # DEPLOY pMari..iewer 25.05 alpha "true"

25 # IVPHELM_STATEVARS pHelmIvP 5.42 alpha "DEPLOY,MISSION,RETURN"

26 # MISSION n/a n/a n/a

27 # RETURN pMari..iewer 25.05 alpha "false" 8

28

29

30 @ BEHAVIOR-POSTS TO MOOSDB ----------------------- (Hit ’@’ to en/disable)

31 @

32 @ MOOS Var Behavior Iter Value

33 @ ------------ ------------ ---- --

34 @ BHV_STATUS waypt_return 1 name=waypt_return,p..te=idle,updates=n/a

35 @ ------------ ------------ ---- --

36 @ CYCLE_INDEX waypt_survey 1 0

37 @ VIEW_POINT waypt_survey 1 x=60,y=-40,active=f..r=red,vertex_size=4

38 @ VIEW_SEGLIST waypt_survey 1 pts={60,-40:60,-160.._size=4,edge_size=1

39 @ WPT_INDEX waypt_survey 1 0

40 @ WPT_STAT waypt_survey 84 vname=alpha,behavio..es=0,dist=30,eta=15

There are three groups of information in the uHelmScope output on each report to the console -
the general helm overview (lines 1-17), a MOOSDB scope for a select subset of MOOS variables (lines

68

20-27), and a report on the MOOS variables published by the helm on the current iteration (lines
30-40). The output of each group is explained in the next three subsections.

3.2 The Helm Summary Section of the uHelmScope Output

The first block of output produced by uHelmScope provides an overview of the helm. This is
lines 1-17 in Listing 7, but the number of lines may vary with the mission and state of mission
execution. This block is virtually identical to the appcast report generated by the helm itself. So
another way of doing uHelmScope style scoping is with an appcast viewing tool (uMAC, uMACView,
and pMarineViewer). But with these tools, you would only see part of the information found in
uHelmScope. The MOOSDB-Scope and Behaviors-Post portion of of uHelmScope is not part of the
appcast report posted by the helm.

3.2.1 The Helm Status (Lines 1-8)

The integer value at the end of line 1 indicates the number of uHelmScope reports written to the
console. This can confirm to the user that an action that should result in a new report generation
has indeed worked properly. The integer on line 2 is the counter kept by the helm, incremented on
each helm iteration. The value on Line 3 represents the the number of IvP functions produced by
the active helm behaviors, one per active behavior. The solve-time on line 5 represents the time, in
seconds, needed to solve the IvP problem comprised the n IvP functions. The number that follows
in parentheses is the maximum solve-time observed by the scope. The create-time on line 6 is the
total time needed by all active behaviors to produce their IvP function output. The loop time on
line 7 is simply the sum of lines 5 and 6.

The Boolean on line 8 is true only if the helm is halted on an emergency or critical error
condition. Also on line 8 is the number of warnings generated by the helm. This number is
reported by the helm and not simply the number of warnings observed by the scope. This number
coincides with the number of times the helm writes a new message to the variable BHV WARNING.

3.2.2 The Helm Decision (Lines 9-11)

The helm decision space, i.e., IvP domain, is displayed on line 9. Each decision variable is given
by its name, low value, high value, and the number of decision points. So [speed,0,4,21] repre-
sents values {0, 0.25, 0.5, ..., 3.75, 4.0}. The following lines used to display the actual helm
decision. Occasionally the helm may be configured with one of its decision variables configured
to be optional. The helm may not produce a decision on that variable on some iteration if no
behaviors are reasoning about that variable. In this case the label "varbalk" may be shown next
to the decision variable to indicate no decision.

3.2.3 The Helm Behavior Summary (Lines 12-17)

Following this is a list of all the active, running, idle and completed behaviors. At any point in
time, each instantiated IvP behavior is in one of these four states and each behavior specified in
the behavior file should appear in one of these groups. Technically all active behaviors are also
running behaviors but not vice versa. So only the running behaviors that are not active (i.e.,
the behaviors that could have, but chose not to produce an objective function), are listed in the

69

“Behaviors Running:” group. Immediately following each behavior the time, in seconds, that the
behavior has been in the current state is shown in parentheses. For the active behaviors (see line
13) this information is followed by the priority weight of the behavior, the number of pieces in the
produced IvP function, and the amount of CPU time required to build the function. If the behavior
also is accepting dynamic parameter updates the last piece of information on line 13 shows how
many successful updates where made against how many attempts. A failed update attempt also
generates a helm warning, counted on line 8. The idle and completed behaviors are listed by default
one per line. This can be changed to list them on one long line by hitting the ’b’ key interactively.

3.3 The MOOSDB-Scope Section of the uHelmScope Output

A built-in generic scope function is built into uHelmScope, not different in style from uXMS. The
scope ability in uHelmScope provides two advantages: first, it is simply a convenience for the user to
monitor a few key variables in the same screen space. Second, uHelmScope automatically registers
for the variables that the helm reasons over to determine the behavior activity states. It will register
for all variables appearing in behavior conditions, runflags, activeflags, inactiveflags, endflags and
idleflags. It will also register for variables involved in the helm hierarchical mode definitions. The
list of these variables is provided by the helm itself when it publishes IVPHELM STATEVARS.

For example, the output in Listing 7 was derived from scoping on the alpha mission, and
launching from the terminal with:

$ uHelmScope alpha.moos IVPHELM STATEVARS

In this case the variable IVPHELM STATEVARS itself is added to the scope list, and the value of this
variable contains the three other variables on the scope list, reported by the helm to be involved
in conditions or flags. The MISSION variable has not been written to because MISSION="complete"

is the endflag of the return behavior in the alpha mission. At the point where this snapshot was
taken, this behavior had not completed.

The lines comprising the MOOSDB-Scope section of the uHelmScope output are all preceded by
the ’#’ character. This is to help discern this block from the others, and as a reminder that the
whole block can be toggled off and on by typing the ’#’ character. The columns in Listing 7 are
truncated to a set maximum width for readability. The default is to have truncation turned on. The
mode can be toggled by the console user with the ’t’ character, or set in the MOOS configuration
block or with a command line switch. A truncated entry in the VarValue column has a ’+’ at the
end of the line. Truncated entries in other columns will have “..” embedded in the entry. Line 24
shows an example of both kinds of truncation.

The variables included in the scope list can be specified in the uHelmScope configuration block
of a MOOS file. In the MOOS file, the lines have the form:

var = <MOOSVar>, <MOOSVar>, ...

An example configuration is given in Listing 11. Variables can also be given on the command line.
Duplicates requests, should they occur, are simply ignored. Occasionally a console user may want
to suppress the scoping of variables listed in the MOOS file and instead only scope on a couple
variables given on the command line. The command line switch -c will suppress the variables listed

70

in the MOOS file - unless a variable is also given on the command line. In line 26 of Listing 7,
the variable MISSION is a virgin variable, i.e., it has yet to be written to by any MOOS process and
shows n/a in the five output columns. By default, virgin variables are displayed, but their display
can be toggled by the console user by typing ’v’.

3.4 The Behavior-Posts Section of the uHelmScope Output

The Behavior-Posts section is the third group of output in uHelmScope. It lists MOOS variables
and values posted by the helm. Each variable was posted by a particular helm behavior and the
grouping in the output is accordingly by behavior. Unlike the variables in the MOOSDB-Scope
section, entries in this section only appear if they were written by the helm. The lines comprising
the Behavior-Posts section of the uHelmScope output are all preceded by the ’@’ character. This is
to help discern this block from the others, and as a reminder that the whole block can be toggled
off and on by typing the ’@’ character. As with the output in the MOOSDB-Scope output section,
the output may be truncated. A value that has been truncated will contain the ".." characters
around the middle of the string as in lines 34, 37-38, and 40.

3.5 Console Key Mapping and Command Line Usage

User input is accepted at the console during a uHelmScope session, to adjust either the content or
format of the reports. It operates in a couple different refresh modes. In the paused refresh mode,
after a report is posted to the console no further output is generated until the user requests it. In
the streaming refresh mode, new helm summaries are displayed as soon as they are received. The
refresh mode is displayed in the report on the very first line as in Listing 7.

The key mappings can be summarized in the console output by typing the ’h’ key, which also
sets the refresh mode to paused. The key mappings shown to the user are shown in Listing 8.

Listing 8 - Key mapping summary shown after hitting ’h’ in a console.

1 KeyStroke Function

2 --------- --

3 Getting Help:

4 h Show this Help msg - ’r’ to resume

5

6 Modifying the Refresh Mode:

7 Spc Refresh Mode: Pause (after updating once)

8 r Refresh Mode: Streaming (throttled)

9 R Refresh Mode: Streaming (unthrottled)

10

11 Modifying the Content Mode:

12 d Content Mode: Show normal reporting (default)

13 w Content Mode: Show behavior warnings

14 l Content Mode: Show life events

15 m Content Mode: Show hierarchical mode structure

16

17 Modifying the Content Format or Filtering:

18 b Toggle Show Idle/Completed Behavior Details

19 ‘ Toggle truncation of column output

20 v Toggle display of virgins in MOOSDB-Scope output

21 # Toggle Show the MOOSDB-Scope Report

22 @ Toggle Show the Behavior-Posts Report

71

23

24 Hit ’r’ to resume outputs, or SPACEBAR for a single update

Several of the same preferences for adjusting the content and format of the uHelmScope output
can be expressed on the command line, with a command line switch. Command line usage is shown
in Listing 9, and may be obtained from the command line by invoking:

$ uHelmScope --help

Listing 9 - Command line usage of uHelmScope.

1 ===

2 Usage: uHelmScope file.moos [OPTIONS] [MOOS Variables]

3 ===

4

5 Options:

6 --alias=<ProcessName>

7 Launch uHelmScope with the given process name rather

8 than uHelmScope.

9 --clean, -c

10 MOOS variables specified in given .moos file are excluded

11 from the MOOSDB-Scope output block.

12 --example, -e

13 Display example MOOS configuration block.

14 --help, -h

15 Display this help message.

16 --interface, -i

17 Display MOOS publications and subscriptions.

18 --noscope,-x

19 Suppress MOOSDB-Scope output block.

20 --noposts,-p

21 Suppress Behavior-Posts output block.

22 --novirgins,-g

23 Suppress virgin variables in MOOSDB-Scope output block.

24 --streaming,-s

25 Streaming (unpaused) output enabled.

26 --trunc,-t

27 Column truncation of scope output is enabled.

28 --version,-v

29 Display the release version of uHelmScope.

30

31 MOOS Variables

32 MOOS_VAR1 MOOSVAR_2, ..., MOOSVAR_N

33

34 Further Notes:

35 (1) The order of command line arguments is irrelvant.

36 (2) Any MOOS variable used in a behavior run condition or used

37 in hierarchical mode declarations will be automatically

38 subscribed for in the MOOSDB scope.

The command line invocation also accepts any number of MOOS variables to be included in the
MOOSDB-Scope portion of the uHelmScope output. Any argument on the command line that does
not end in .moos, and is not one of the switches listed above, is interpreted to be a requested
MOOS variable for inclusion in the scope list. Thus the order of the switches and MOOS variables

72

do not matter. These variables are added to the list of variables that may have been specified in
the uHelmScope configuration block of the MOOS file. Scoping on only the variables given on the
command line can be accomplished using the -c switch. To support the simultaneous running of
more than one uHelmScope connected to the same MOOSDB, uHelmScope generates a random number
N between 0 and 10,000 and registers with the MOOSDB as uHelmScope N.

3.6 Helm-Produced Variables Used by uHelmScope

There are six variables published by the helm to which uHelmScope subscribes. These provide critical
information for generating uHelmScope reports.

The first two variables, IVPHELM STATE and IVPHELM SUMMARY are published on each iteration of
the helm. The former is published regardless of the helm state. This variable serves as the helm
heartbeat. The latter is only published when the helm is in the DRIVE state. The below examples
give a feel for the content:

IVPHELM_STATE = "DRIVE"

IVPHELM_SUMMARY = "iter=66,ofnum=1,warnings=0,utc_time=1209755370.74,solve_time=0.00,

create_time=0.02,loop_time=0.02,var=speed:3.0,var=course:108.0,

halted=false,running_bhvs=none,

active_bhvs=waypt_survey$6.8$100.00$1236$0.01$0/0,

modes=MODE@ACTIVE:SURVEYING,idle_bhvs=waypt_return55.3n/a,

completed_bhvs=none"

The IVPHELM SUMMARY variable contains all the dynamic information included in the general helm
overview (top) section of the uHelmScope output. It is a comma-separated list of var=val pairs.
The helm publishes this in a journal style, ommitting certain content if they are unchanged between
iterations. When uHelmScope launches, it publishes to the variable IVPHELM REJOURNAL which the
helm interprets as a request to send a full-content message on the next iteration, before resuming
journaling.

The IVPHELM LIFE EVENT is posted only when a behavior is spawned or dies. For missions without
dynamic behavior spawning, this variable will only be posted upon startup for each initial static
behavior. Note that the helm only publishes life events as they occur, so if the helm scope is
launched after the helm, earlier events may not be reflected in the life event report. The below
example gives a feel for the content of this variable:

IVHELM_LIFE_EVENT = "time=814.09, iter=3217, bname=bng-line-bng-line132--104,

btype=BHV_BearingLine, event=spawn,

seed=name=bng-line132--104#bearing_point=132,-104"

The IVPHELM DOMAIN, IVPHELM STATEVARS, and IVPHELM MODESET variables are typically only produced
once, upon startup.

IVPHELM_DOMAIN = "speed,0,4,21:course,0,359,360"

IVPHELM_STATEVARS = "RETURN,DEPLOY"

IVPHELM_MODESET = "---,ACTIVE#---,INACTIVE#ACTIVE,SURVEYING#ACTIVE,RETURNING"

73

The IVP DOMAIN variable also contributes to this section of output by providing the IvP domain used
by the helm. The IVPHELM STATEVARS variable affects the MOOSDB-Scope section of the uHelmScope

output by identifying which MOOS variables are used by behaviors in conditions, runflags, endflags
and idleflags.

3.7 Configuration Parameters for uHelmScope

Configuration for uHelmScope amounts to specifying a set of parameters affecting the terminal
output format. An example configuration is shown in Listing 11, with all values set to the defaults.
Launching uHelmScope with a MOOS file that does not contain a uHelmScope configuration block is
perfectly reasonable.

Listing 3.10: Configuration Parameters for uHelmScope.

behaviors concise: If true, the idle and completed behaviors are reported all on one line rather
than separate lines. Legal values: true, false. The default is true.

display bhv posts: If true, the behavior-posts section of the report is shown. This can also be
toggled at run time with the ’@’ key. Legal values: true, false. The default
is true. Section 3.4.

display moos scope: If true, the MOOS variable scope section of the report is shown. This can
also be toggled at run time with the ’#’ key. Legal values: true, false. The
default is true. Section 3.3.

display virgins: If true, variables in the MOOS scope section of the report is shown will be
shown even if they have never been written to. This can also be toggled at
run time with the ’g’ key. Legal values: true, false. The default is true.
Section 3.3.

paused: If true, uHelmScope launches in the paused mode. Legal values: true, false.
Default value is true.

tuncated output: If true, output in the MOOS-scope or behavior-scope section of the report
is truncated. This can also be toggled at run time with the ’‘’ key. Legal
values: true, false. The default is false.

var: A comma-separated list of variables to scope on in the MOOS-Scope block.
Multiple lines may be provided. Section 3.3.

An example configuration file may be obtained from the command line with:

$ uHelmScope --example or -e

This will show the output shown in Listing 11 below.

Listing 11 - Example configuration of the uHelmScope application.

1 ===

2 uHelmScope Example MOOS Configuration

3 ===

74

4

5 ProcessConfig = uHelmScope

6 {

7 AppTick = 1 // MOOSApp default is 4

8 CommsTick = 1 // MOOSApp default is 4

9

10 paused = false // default

11

12 display_moos_scope = true // default

13 display_bhv_posts = true // default

14 display_virgins = true // default

15 truncated_output = false // default

16 behaviors_concise = true // default

17

18 var = NAV_X, NAV_Y, NAV_SPEED, NAV_DEPTH // MOOS vars are

19 var = DESIRED_HEADING, DESIRED_SPEED // case sensitive

20 }

Each of the parameters can also be set on the command line, or interactively at the console, with
one of the switches or keyboard mappings listed in Section 3.5. A parameter setting in the MOOS
configuration block will take precedence over a command line switch.

3.8 Publications and Subscriptions for uHelmScope

The interface for uHelmScope, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uHelmScope --interface

3.8.1 Variables Published by uHelmScope

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 11.10.4.

• IVPHELM REJOURNAL: A request to the helm to rejournal its summary output. Section 3.6.

3.8.2 Variables Subscribed for by uHelmScope

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• <USER-DEFINED>: Variables identified for scoping by the user in the uHelmScope will be sub-
scribed for. See Section 3.3.

• <HELM-DEFINED>: As described in Section 3.3, the variables scoped by uHelmScope include
any variables involved in the preconditions, runflags, idleflags, activeflags, inactiveflags, and
endflags for any of the behaviors involved in the current helm configuration.

• IVPHELM LIFE EVENT: A description of a helm life event, the birth or death of a behavior and
the manner in which it was spawned. See Section 3.6.

• IVPHELM SUMMARY: A comprehensive summary of the helm status including behavior status
summaries and most recent helm decision. See Section 3.6.

75

• IVPHELM STATEVARS: A helm-produced list of MOOS variables involved in the logic of deter-
mining behavior activation. Any variable involved in mode conditions or behavior conditions.
See Section 3.6.

• IVPHELM DOMAIN: The specification of the IvP Domain presently used by the helm. See Section
3.6.

• IVPHELM MODESET: A description of the helm’s hierarchical mode specification. See Section 3.6.

• IVPHELM STATE: A short description of the helm state: either STANDBY, PARK, DRIVE, or DISABLED.
See Section 3.6.

76

4 pNodeReporter: Summarizing a Node’s Position and Status

4.1 Overview

The pNodeReporter MOOS application runs on each vehicle (real or simulated) and generates node-
reports (as a proxy for AIS reports) for sharing between vehicles, depicted in Figure 29. The process
serves one primary function - it repeatedly gathers local platform information and navigation data
and creates an AIS like report in the form of the MOOS variable NODE REPORT LOCAL. The NODE REPORT

messages are communicated between the vehicles and the shore or shipside command and control
through an inter-MOOSDB communications process such as pShare or via acoustic modem. Since
a node or platform may both generate and receive reports, the locally generated reports are labeled
with the LOCAL suffix and bridged to the outside communities without the suffix. This is to ensure
that processes running locally may easily distinguish between locally generated and externally
generated reports.

Figure 29: Typical pNodeReporter usage: The pNodeReporter application is typically used with pShare or acoustic
modems to share node summaries between vehicles and to a shoreside command-and-control GUI.

To generate the local report, pNodeReporter registers for the local NAV * vehicle navigation
data and creates a report in the form of a single string posted to the variable NODE REPORT LOCAL.
An example of this variable is given in below in Section 4.2.1. The pMarineViewer and pHelmIvP

applications are two modules that consume and parse the incoming NODE REPORT messages.

The pNodeReporter utility may also publish a second report, the PLATFORM REPORT. While the
NODE REPORT summary consists of an immutable set of data fields described later in this sec-
tion, the PLATFORM REPORT consists of data fields configured by the user and may therefore vary
widely across applications. The user may also configure the frequency in which components of the
PLATFORM REPORT are posted within the report.

77

4.2 Using pNodeReporter

4.2.1 Overview Node Report Components

The primary output of pNodeReporter is the node report string. It is a comma-separated list of
key-value pairs. The order of the pairs is not significant. The following is an example report:

NODE_REPORT_LOCAL = "NAME=alpha,TYPE=UUV,TIME=1252348077.59,X=51.71,Y=-35.50,

LAT=43.824981,LON=-70.329755,SPD=2.00,HDG=118.85,YAW=118.84754,

DEPTH=4.63,LENGTH=3.8,MODE=MODE@ACTIVE:LOITERING"

The TIME reflects the Coordinated Universal Time as indicated by the system clock running on the
machine where the MOOSDB is running. Speed is given in meters per second, heading is in degrees
in the range [0, 360), depth is in meters, and the local x-y coordinates are also in meters. The
source of information for these fields is the NAV * navigation MOOS variables such as NAV SPEED.
The report also contains several components describing characteristics of the physical platform,
and the state of the IvP Helm, described next.

If desired, pNodeReporter may be configured to use a different variable than NODE REPORT LOCAL

for its node reports, by setting the configuration parameter node report output to MY REPORT for ex-
ample. Most applications that subscribe to node reports, subscribe to two variables, NODE REPORT LOCAL

and NODE REPORT. This is because node reports are meant to be bridged to other MOOS communi-
ties (typically with pShare but not necessarily). A node report should be broadcast only from the
community that generated the report. In practice, to ensure that node reports that arrive in one
community are not then sent out to other communities, the node reports generated locally have
the LOCAL suffix, and when they are sent to other communities they are sent to arrive with the new
variable name, minus the suffix.

4.2.2 Helm Characteristics

The node report contains one field regarding the current mode of the helm, MODE. Typically the
pNodeReporter and pHelmIvP applications are running on the same platform, connected to the same
MOOSDB. When the helm is running, but disengaged, i.e., in manual override mode, the MODE field
in the node report simply reads "MODE=DISENGAGED". When or if the helm is detected to be not
running, the field reads "MODE=NOHELM-SECS", where SECS is the number of seconds since the last
time pNodeReporter detected the presence of the helm, or "MODE=NOHELM-EVER" if no helm presence
has ever been detected since pNodeReporter has been launched.

How does pNodeReporter know about the health or status of the helm? It subscribes to two
MOOS variables published by the helm, IVPHELM STATE and IVPHELM SUMMARY. These are described
more fully in [2], but below are typical example values:

IVPHELM_STATE = "DRIVE"

IVPHELM_SUMMARY = "iter=72,ofnum=1,warnings=0,time=127349406.22,solve_time=0.00,

create_time=0.00,loop_time=0.00,var=course:209.0,var=speed:1.2,

halted=false,running_bhvs=none,modes=MODE@ACTIVE:LOITERING,

active_bhvs=loiter$17.8$100.00$9$0.04$0/0,completed_bhvs=none

idle_bhvs=waypt_return$17.8$0/0:station-keep17.8n/a

78

The IVPHELM STATE variable is published on each iteration of the pHelmIvP process regardless of
whether the helm is in manual override ("PARK") mode or not, and regardless of whether the value
of this variable has changed between iterations. It is considered the ”heartbeat” of the helm. This
is the variable monitored by pNodeReporter to determine whether a "NOHELM" message is warranted.
By default, a period of five seconds is used as a threshold for triggering a "NOHELM" warning. This
value may be changed by setting the nohelm threshold configuration parameter.

When the helm is indeed engaged, i.e., not in manual override mode, the value of IVPHELM STATE

posting simply reads "DRIVE", but the helm further publishes the IVPHELM SUMMARY variable simi-
lar to the above example. If the user has chosen to configure the helm using hierarchical mode
declarations (as described in [2]), the IVPHELM SUMMARY posting will include a component such
as "modes=MODE@ACTIVE:LOITERING" as above. This value is then included in the node report by
pNodeReporter. If the helm is not configured with hierarchical mode declarations, the node report
simply reports "MODE=DRIVE".

4.2.3 Platform Characteristics

The node report contains three fields regarding the platform characteristics, NAME, TYPE, and LENGTH.
The name of the platform is equivalent to the name of the MOOS community within which
pNodeReporter is running. The MOOS community is declared as a global MOOS parameter (outside
any given process’ configuration block) in the .moos mission file. The TYPE and LENGTH parameters
are set in the pNodeReporter configuration block. They may alternatively derive their values from
a MOOS variable posted elsewhere by another process. The user may configure pNodeReporter

to use this external source by naming the MOOS variables with the platform length src and
platform type src parameters. If both the source and explicit values are set, as for example:

plstform_length = 12 // meters

platform_length_src = SYSTEM_LENGTH // A MOOS Variable

then the explicit length of 12 would be used only if the MOOS variable SYSTEM LENGTH remained
unwritten to by any other MOOS application connected to the MOOSDB. The platform length
and type may be used by other platforms as a parameter affecting collision avoidance algorithms
and protocol. They are also used in the pMarineViewer application to allow the proper platform
icon to be displayed at the proper scale.

If the platform type is known, but no information about the platform length is known, certain
rough default values may be used if the platform type matches one of the following: "kayak” maps
to 4 meters, "uuv" maps to 4 meters, "auv" maps to 4 meters, "ship" maps to 18 meters, "glider"
maps to 3 meters.

4.2.4 Dealing with Local versus Global Coordinates

A primary component of the node report is the current position of the vehicle. The pNodeReporter

application subscribes for the following MOOS variables to garner this information: NAV X, NAV Y in
local coordinates, and the pair NAV LAT, NAV LONG in global coordinates. These two pairs should be
consistent, but what if they aren’t? And what if pNodeReporter is receiving mail for one pair but
not the other? Three distinct policy choices are supported:

79

• The default policy: node reports include exactly what is given. If NAV X and NAV Y are being
received only, then there will be no entry in the node report for global coordinates, and vice
versa. If both pairs are being received, then both pairs are reported. No attempt is made
to check or ensure that they are consistent. This is the default policy, equivalent to the
configuration cross fill policy=literal.

• If one of the two pairs is not being received, pNodeReporter will fill in the missing pair from
the other. This policy can be chosen with the configuration cross fill policy=fill-empty.

• If one of the two pairs has been received more recently, the older pair is updated by converting
from the other pair. The older pair may also be in a state where it has never been received.
This policy can be chosen with the configuration cross fill policy=fill-latest.

4.2.5 Processing Alternate Navigation Solutions

Under normal circumstances, node reports are generated reflecting the current navigation solution
as defined by the incoming NAV * variables. The pNodeReporter application can handle the case
where the vehicle also publishes an alternate navigation solution, as defined by a sister set of
incoming MOOS variables separate from the NAV * variables. In this case pNodeReporter will monitor
both sets of variables and may generate two node reports on each iteration. The following two
configuration parameters are needed to activate this capability:

alt_nav_prefix = <prefix> // example: NAV_GT_

alt_nav_name = <node-name> // example: _GT

The configuration parameter, alt nav prefix, names a prefix for the alternate incoming naviga-
tion variables. For example, alt nav prefix=NAV GT would result in pNodeReporter subscribing for
NAV GT X, NAV GT Y and so on. A separate vehicle state would be maintained internally based on this
alternate set of navigation information and a second node report would be generated.

A second node report would be published under the same MOOS variable, NODE REPORT LOCAL,
but the NAME component of the report would be distict base on the value provided in the alt nav name

parameter. If a name is provided that does not begin with an underscore character, that name is
used. If the name does begin with an underscore, the name used in the report is the otherwise
configured name of the vehicle plus the suffix.

4.3 The Optional Blackout Interval Option

Under normal circumstances, the pNodeReporter application will post a node report once per iter-
ation, the gap between postings being determined solely by the app tick parameter (Figure 30).
However, there are times when it is desirable to add an artificial delay between postings. Node
reports are typically only useful as information sent to another node, or to a shoreside computer
rendering fielded vehicles, and there are often dropped node report messages due to the uncertain
nature of communications in the field, whether it be acoustic communications, wifi, or satellite link.

Applications receiving node reports usually implement provisions that take dropped messages
into account. A collision-avoidance or formation-following behavior, or a contact manager, may

80

extrapolate a contact position from its last received position and trajectory. A shoreside command-
and-control GUI such as pMarineViewer may render an interpolation of vehicle positions between
node reports. To test the robustness of applications needing to deal with dropped messages, a way
of simulating the dropped messages is desired. One way is to add this to the simulation version of
whatever communications medium is being used. For example, there is an acoustic communications
simulator where the dropping of messages may be simulated, where the probability of a drop may
even be tied to the range between vehicles. Another way is to simply simulate the dropped message
at the source, by adding delay to the posting of reports by pNodeReporter.

By setting the blackout interval parameter, pNodeReporter may be configured to ensure that
a node report is not posted until at least the duration specified by this parameter has elapsed, as
shown in Figure 31.

Figure 30: Normal schedule of node report postings: The pNodeReporter application will post node reports
once per application iteration. The duration of time between postings is directly tied to the frequency at which
pNodeReporter is configured to run, as set by the standard MOOS AppTick parameter.

Figure 31: The optional blackout interval parameter: The schedule of node report postings may be altered by
the setting the BLACKOUT INTERVAL parameter. Reports will not be posted until at least the time specified by the
blackout interval has elapsed since the previous posting.

An element of unpredictability may be added by specifying a value for the blackout variance

parameter. This parameter is given in seconds and defines an interval [−t, t] from which a value
is chosen with uniform probability, to be added to the duration of the blackout interval. This
variation is re-calculated after each interval determination. The idea is depicted in Figure 32.

81

Figure 32: Blackout intervals with varying duration: The duration of a blackout interval may be configured to
vary randomly within a user-specified range, specified in the blackout variance parameter.

Message dropping is typically tied semi-predictably to characteristics of the environment, such
as range between nodes, water temperature or platform depth, an so on. This method of simulating
dropped messages captures none of that. It is however simple and allows for easily proceeding with
the testing of applications that need to deal with the dropped messages.

4.4 Configuration Parameters for pNodeReporter

The following parameters are defined for pNodeReporter. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated so in parentheses.

Listing 4.12: Configuration Parameters for pNodeReporter.

alt nav prefix: Source for processing alternate nav reports. Section 4.2.5.

alt nav name: Node name in posting alternate nav reports. Section 4.2.5.

blackout interval: Minimum duration, in seconds, between reports (0). Section 4.3.

blackout variance: Variance in uniformly random blackout duration. Legal values: any non-
negative value. The default is zero. Section 4.3.

cross fill policy: Policy for handling local versus global nav reports ("literal"). Section
4.2.4.

node report output: MOOS variable used for the node report (NODE REPORT LOCAL). Section 4.2.1.

nohelm threshold: Seconds after which a quiet helm is reported as AWOL. Legal values: any
non-negative value. The default is 5 seconds. Section 4.2.2.

platform length: The reported length of the platform in meters. Legal values: any non-
negative value. The default is zero. Section 4.2.3.

plat report output: The Platform report MOOS variable. Legal values: conventions for MOOS
variable names. The default is PLATFORM REPORT LOCAL. Section 4.6.

plat report input: A component of the optional platform report. Section 4.6.

platform type: The reported type of the platform. Legal values: any string. The default is
"unknown". Section 4.2.3.

An Example MOOS Configuration Block

An example MOOS configuration block is provided in Listing 13 below. To see an example MOOS
configuration block from the console, enter the following:

82

$ pNodeReporter --example or -e

This will show the output shown in Listing 13 below.

Listing 13 - Example configuration of pNodeReporter.

1 ===

2 pNodeReporter Example MOOS Configuration

3 ===

4 Blue lines: Default configuration

5

6 ProcessConfig = pNodeReporter

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Configure key aspects of the node

12 platform_type = glider // or {uuv,auv,ship,kayak}

13 platform_length = 8 // meters. Range [0,inf)

14

15 // Configure optional blackout functionality

16 blackout_interval = 0 // seconds. Range [0,inf)

17

18 // Configure the optional platform report summary

19 plat_report_input = COMPASS_HEADING, gap=1

20 plat_report_input = GPS_SAT, gap=5

21 plat_report_input = WIFI_QUALITY, gap=1

22 plat_report_output = PLATFORM_REPORT_LOCAL

23

24 // Configure the MOOS variable containg the node report

25 node_report_output = NODE_REPORT_LOCAL

26

27 // Threshold for conveying an absense of the helm

28 nohelm_threshold = 5 // seconds

39

30 // Policy for filling in missing lat/lon from x/y or v.versa

31 crossfill_policy = literal // or {fill-empty,use-latest}

32

33 // Configure monitor/reporting of dual nav solution

34 alt_nav_prefix = NAV_GT

35 alt_nav_name = _GT

36 }

4.5 Publications and Subscriptions for pNodeReporter

The interface for pNodeReporter, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ pNodeReporter --interface or -i

4.5.1 Variables Published by pNodeReporter

The primary output of pNodeReporter to the MOOSDB is the node report and the optional plat-
form report:

83

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

• NODE REPORT LOCAL: Primary summary of the node’s navigation and helm status. Section 4.2.1.

• PLATFORM REPORT LOCAL: Optional summary of certain platform characteristics. Section 4.2.3.

4.5.2 Variables Subscribed for by pNodeReporter

Variables subscribed for by pNodeReporter are summarized below. A more detailed description of
each variable follows. In addition to these variables, any MOOS variable that the user requests to
be included in the optional PLATFORM REPORT will also be automatically subscribed for.

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• IVPHELM STATE: A indicator of the helm state produced by pHelmIvP, e.g., "PARK", "DRIVE"

"DISABLED", or "STANDBY".

• IVPHELM ALLSTOP: A indicator of the helm allstop produced by pHelmIvP, e.g., "clear", or a
reason why the vehicle is at zero speed.

• IVPHELM SUMMARY: A summary report produced by the IvP Helm (pHelmIvP).

• NAV X: The ownship vehicle position on the x axis of local coordinates.

• NAV Y: The ownship vehicle position on the y axis of local coordinates.

• NAV LAT: The ownship vehicle position on the y axis of global coordinates.

• NAV LONG: The ownship vehicle position on the x axis of global coordinates.

• NAV HEADING: The ownship vehicle heading in degrees.

• NAV YAW: The ownship vehicle yaw in radians.

• NAV SPEED: The ownship vehicle speed in meters per second.

• NAV DEPTH: The ownship vehicle depth in meters.

If pNodeReporter is configured to handle a second navigation solution as described in Section 4.2.5,
the corresponding additional variables described in that section will also be automatically sub-
scribed for.

4.5.3 Command Line Usage of pNodeReporter

The pNodeReporter application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The basic command line usage for
the pNodeReporter application is the following:

Listing 14 - Command line usage for the pNodeReporter application.

0 Usage: pNodeReporter file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch pNodeReporter with the given process name

5 rather than pNodeReporter.

6 --example, -e

7 Display example MOOS configuration block.

84

8 --help, -h

9 Display this help message.

0 --version,-v

11 Display the release version of pNodeReporter.

4.6 The Optional Platform Report Feature

The pNodeReporter application allows for the optional reporting of another user-specified list of
information. This report is made by posting the PLATFORM REPORT LOCAL variable. An alternative
variable name may be used by setting the PLAT REPORT SUMMARY configuration parameter. This report
may be configured by specifying one or more components in the pNodeReporter configuration block,
of the following form:

plat_report_input = <variable>, gap=<duration>, alias=<variable>

If no component is specified, then no platform report will be posted. The <variable> element
specifies the name of a MOOS variable. This variable will be automatically subscribed for by
pNodeReporter and included in (not necessarily all) postings of the platform report. If the variable
BODY TEMP is specified, a component of the report may contain "BODY TEMP=98.6". An alias for a
MOOS variable may be specified. For example, alias=T, for the BODY TEMP component would result
in "T=98.6" in the platform report instead.

How often is the platform report posted? Certainly it will not be posted any more often than
the apptick parameter allows, but it may be posted far more infrequently depending on the user
configuration and how often the values of its components are changing. The platform report is
posted only when one or more of its components requires a re-posting. A component requires a
re-posting only if (a) its value has changed, and (b) the time specified by its gap setting has elapsed
since the last platform report that included that component. When a PLATFORM REPORT LOCAL posting
is made, only components that required a posting will be included in the report.

The wide variation in configurations of the platform report allow for reporting information
about the node that may be very specific to the platform, not suitable for a general-purpose node
report. As an example, consider a situation where a shoreside application is running to monitor
the platform’s battery level and whether or not the payload compartment has suffered a breach,
i.e., the presence of water is detected inside. A platform report could be configured as follows:

plat_report_input = ACME_BATT_LEVEL, gap=300, alias=BATTERY_LEVEL

plat_report_input = PAYLOAD_BREACH

This would result in an initial posting of:

PLATFORM_REPORT_LOCAL = "platform=alpha,utc_time=1273510720.99,BATTERY_LEVEL=97.3,

PAYLOAD_BREACH=false"

In this case, the platform uses batteries made by the ACME Battery Company and the interface to
the battery monitor happens to publish its value in the variable ACME BATT LEVEL, and the software
on the shoreside that monitors all vehicles in the field accepts the generic variable BATTERY LEVEL,

85

so the alias is used. It is also known that the ACME battery monitor output tends to fluctuate a
percentage point or two on each posting, so the platform report is configured to include a battery
level component no more than once every five minutes, (gap=300). The MOOS process monitoring
the indication of a payload breach is known to have few false alarms and to publish its findings
in the variable PAYLOAD BREACH. Unlike the battery level which has frequent minor fluctuations and
degrades slowly, the detection of a payload breach amounts to the flipping of a Boolean value and
needs to be conveyed to the shoreside as quickly as possible. Setting gap=0, the default, ensures
that a platform report is posted on the very next iteration of pNodeReporter, presumably to be read
by a MOOS process controlling the platform’s outgoing communication mechanism.

4.7 An Example Platform Report Configuration Block for pNodeReporter

Listing 15 below shows an example configuration block for pNodeReporter where an extensive plat-
form report is configured to report information about the autonomous kayak platform to support a
“kayak dashboard” display running on a shoreside computer. Most of the components in the plat-
form report are specific to the autonomous kayak platform, which is precisely why this information
is included in the platform report, and not the node report.

Listing 15 - An example pNodeReporter configuration block.

1 //--

2 // pNodeReporter config block

3

4 ProcessConfig = pNodeReporter

5 {

6 AppTick = 2

7 CommsTick = 2

8

9 platform_type = KAYAK

10 platform_length = 3.5 // Units in meters

11 nohelm_thresh = 5 // The default

12 blackout_interval = 0 // The default

13 blackout_variance = 0 // The default

14

15 node_report_output = NODE_REPORT_LOCAL // The default

16 plat_report_output = PLATFORM_REPORT_LOCAL // The default

17

18 plat_report_input = COMPASS_PITCH, gap=1

19 plat_report_input = COMPASS_HEADING, gap=1

20 plat_report_input = COMPASS_ROLL, gap=1

21 plat_report_input = DB_UPTIME, gap=1

22 plat_report_input = COMPASS_TEMPERATURE, gap=1, alias=COMPASS_TEMP

23 plat_report_input = GPS_MAGNETIC_DECLINATION, gap=10, alias=MAG_DECL

24 plat_report_input = GPS_SAT, gap=5

25 plat_report_input = DESIRED_RUDDER, gap=0.5

26 plat_report_input = DESIRED_HEADING, gap=0.5

27 plat_report_input = DESIRED_THRUST, gap=0.5

28 plat_report_input = GPS_SPEED, gap=0.5

29 plat_report_input = DESIRED_SPEED, gap=0.5

30 plat_report_input = WIFI_QUALITY, gap=0.5

31 plat_report_input = WIFI_QUALITY, gap=1.0

32 plat_report_input = MOOS_MANUAL_OVERRIDE, gap=1.0

33 }

86

5 uXMS: Scoping the MOOSDB from the Console

5.1 Overview

uXMS is a terminal based MOOS app for scoping the MOOSDB. It has no graphic library build
dependencies and is easily launched from the command line to scope on just what the user wants,
from everything to just one important variable. For example, typing the following on the command
line after say the alpha example mission is launched, will result in Figure 33.

$ uXMS alpha.moos NAV X NAV Y DEPLOY RETURN IVPHELM STATE

Figure 33: A simple scope on five variables with uXMS: A line is used for each variable showing the variable
name, the time of the most recent posting, the source, and the current value.

Scoping on the MOOSDB is a very important tool in the process of development and debugging.
The uXMS tool has a substantial set of configuration choices for making this job easier by bringing
just the right data to the user’s attention. The default usage, as shown above, is fairly simple, but
there are other options discussed in this section that are worth exploiting by the more experienced
user.

• Use with appcasting: uXMS is appcast enabled meaning its terminal reports may be viewed
with tools other than the terminal window. It is possible to configure multilple uXMS scopes
to automatically launch with a mission and viewer each of them in remote appcast viewing
tools. More on this topic in Section 5.9.

• Scoping on history: uXMS may be configured to scope on the history of a variable to view
not just its current state but recent values.

• Remote low-bandwidth scoping: uXMS can be launched and connected to a remote MOOSDB
over a low-bandwidth link, with refresh requests made only on the user’s request. uXMS can
also be on a remote vehicle via an ssh session.

• Dynamic changes to the scope list: The set of scoped variables may be altered dynamically
by selecting MOOS apps to include or exclude from the scope list.

At any time the user may hit the ’h’ key to see a list of help commands.

87

5.2 The uXMS Refresh Modes

Reports such as the one shown in Figure 33 are generated either automatically or specifically when
the user asks for it. The latter is important in situations where bandwidth is low. This feature was
the original motivation for developing uXMS. When a new report is sent to the terminal is determined
by the refresh mode. The three refresh modes are shown in Figure 34 along with the key strokes
for switching between modes.

Figure 34: Refresh Modes: The uXMS refresh mode determines when a new report is written to the screen. The
user may switch between modes with the shown keystrokes.

The refresh mode may be changed by the user as uXMS is running, or it may be given an initial mode
value on startup from the command line with --mode=paused, --mode=streaming, or --mode=events.
The latter is the default. It may also be set in the uXMS configuration block in the mission file with
the refresh mode parameter. The current refresh mode is shown in parentheses in the report header
as shown in Figure 33 where it is in the events refresh mode.

5.2.1 The Streaming Refresh Mode

In the streaming refresh mode, a new report is generated and written to stdout on every iteration
of the uXMS application. The frequency is limited from above by the apptick setting in the MOOS
configuration block. It is also limited from above by the parameter term report interval, which is
by default 0.6 seconds. Each report written to the terminal will show an incremented counter at
the end of the first line, in parentheses. This counter represents the uXMS iteration counter. This
mode may be entered by hitting the ’r’ key, or chosen as the initial refresh mode at startup from
the command line with the --mode=streaming option.

5.2.2 The Events Refresh Mode

In the events refresh mode, the default refresh mode, a new report is generated only when new
mail is received for one of the scoped variables. Note this does not necessarily mean that the value
of the variable has changed, only that it has been written to again by some process. As with
the streaming mode, the report frequency is limited by the apptick and the term report interval

setting. This mode is useful in low-bandwidth situations where a user cannot afford the streaming
refresh mode, but may be monitoring changes to one or two variables. This mode may be entered
by hitting the ’e’ key, or chosen as the initial refresh mode at startup from the command line with
the --mode=events option.

88

5.2.3 The Paused Refresh Mode

In the paused refresh mode, the report will not be updated until the user specifically requests a new
update by hitting the spacebar key. This mode is the preferred mode in low bandwidth situations,
and simply as a way of stabilzing the rapid refreshing output of the other modes so one can actually
read the output. This mode is entered by the spacebar key and subsequent hits refresh the output
once. To launch uXMS in the paused mode, use the --mode=paused command line switch.

5.3 The uXMS Content Modes

The contents of the uXMS report vary between one of a few modes. In the scoping mode, a snapshot
of a subset of MOOS variables is generated, similar to what is shown in Figure 33. In the history
mode the recent history of changes to a single MOOS variable is reported.

Figure 35: Content Modes: The uXMS content mode determines what data is included in each new report. The
two major modes are the scoping and history modes. In the former, snapshots of one or more MOOS variables are
reported. In the latter, the recent history of a single variable is reported.

5.3.1 The Scoping Content Mode

The scoping mode has two sub-modes as shown in Figure 35. In the first sub-mode, the SelectVars
sub-mode, the only variables shown are the ones the user requested. They are requested on the
command-line upon start-up (Section 5.5), or in the uXMS configuration block in the .moos file
provided on startup, or both. One may also select variables for viewing by specifying one or MOOS
processes with the command line option --src=<process>,<process>,.... All variables from these
processes will then be included in the scope list.

In the AllVars sub-mode, all MOOS variables in the MOOSDB are displayed, unless explicitly
filtered out. The most common way of filtering out variables in the AllVars sub-mode is to provide
a filter string interactively by typing the ’/’ key and entering a filter. Only lines that contain this
string as a substring in the variable name will then be shown. The filter may also be provided on
startup with the --filter=pattern command line option.

In both sub-modes, variables that would otherwise be included in the report may be masked
out with two further options. Variables that have never been written to by any MOOS process
are referred to as virgin variables, and by default are shown with the string "n/a" in their value
column. These may be shut off from the command line with --mask=virgin, or in the MOOS
configuration block by including the line display virgins=false. Similarly, variables with an
empty string value may be masked out from the command line with --mask=empty, or with the
line display empty strings=false in the MOOS configuration block of the .moos file.

89

5.3.2 The History Content Mode

In the history content mode, the recent values for a single MOOS variable are reported. Contrast
this with the scoping mode where a snapshot of a variable value is displayed, and that value may
have changed several times between successive reports. The output generated in this mode may
look like that in Figure 36 which shows the desired heading of a vehicle going into the first turn of
the alpha mission. This uXMS session can by launched from the command line with:

$ uXMS alpha.moos --history=DESIRED HEADING

Figure 36: A uXMS scope on a single variable history: A vehicle’s desired heading is monitored as it goes
into the first turn of the alpha mission. Values in parentheses indicate the number of successive postings without a
change of value.

The output structure in the history mode is the same as in the scoping mode in terms of what
data is in the columns and header lines. Each line however is dedicated to the same variable and
shows the progression of values through time. To save screen real estate, successive mail received
for with identical source and value will consolidated on one line, and the number in parentheses is
merely incremented for each such identical mail. For example, the last line shown in Figure 36, the
value of DESIRED HEADING has remained the same for 57 consecutives posts to the MOOSDB.

The output in the history mode may be adjusted in a few ways:

90

• Modifying the number of history lines: The number of lines of history may be increased or
descreased by hitting the ’>’ or ’<’ keys respectively. A maximum of 100 and minimum of
5 lines is allowed. The default is 40.

• Setting the history variable: The history variable may be set on the command line with
--history=VAR, or set in the the mission file with history var=<MOOSVar>. If set in both, the
command line setting takes precedent.

• Hiding the history variable: To increase the available real estate on each line, the variable name
column my be supressed or restored by toggling the ’j’ key. The history variable is shown by
default but may be configured to be off upon startup by setting display history var=false

in the mission file.

Presently there is no way to dynamically change the history variable, or scope on more than one
variable’s history. (But you can open more than one uXMS session to scope on more than one
variable’s history.)

5.3.3 The Processes Content Mode

In the processes content mode running processes may be monitored and selected for either including
or excluding variables from the selected processes. This mode may be toggled with the ’p’ key.
For example, launching the alpha mission and then uXMS from the command line:

$ uXMS alpha.moos DESIRED HEADING

After uXMS is launched, toggle into the procesess content mode with the ’p’. This should present
something similar to Figure 37.

Figure 37: A uXMS processes content mode: All processes known to the scope (via the DB CLIENTS variable)
are shown. The Mail column shows the time since mail has been received from the client. The Client column shows
the time since the client has shown up on the DB CLIENTS list.

The first two columns show the processes known to uXMS and a process ID randomly assigned to
each process. These IDs may be used select a process as explaine shortly. The last two columns
show the time since mail was last received and the time since the process last appeared on the
DB CLIENTS list. Try killing one of the processes and see what happens.

91

By default uXMS tries to make use of information produced by uProcessWatch. The first line
in the body of the report in Figure 37 shows the contents of the PROC WATCH SUMMARY variable. In
this example, mail has only been received from pHelmIvP and uProcessWatch. The former because
uXMS was launched from the command line scoping on DESIRED HEADING, and the latter because
uXMS is automatically configured to received the PROC WATCH SUMMARY mail from uProcessWatch. If
uProcessWatch is not running the report will simply state so.

Perhaps the most useful feature of the processes content mode is the ability to select a process to
either include or exclude variables published by that process on the watch list. To include variables
from a process, type the ’+’ key, and a menu and prompt like that shown in Figure 38

Figure 38: Adding watch-list variables based process inclusion: All processes known to the scope (via the
DB CLIENTS variable) are shown. Each process has a single-character ID which may be entered at the prompt to select
the process for inclusion.

Once a process has been selected, uXMS will subscribe for all variables published by the selected
process. Note this is different from subscribing for mail solely produced by the selected MOOS app
since the same variable(s) may be also published by other MOOS applications. The example in
Figure 38 is also from the alpha mission. If the pMarineViewer application were selected, a scoping
report something like that below in Figure 39 would result.

Figure 39: Augmented scoping report: The variables published by pMarineViewer are now included in the
scoping report after this process was selected for inclusion.

Once a process has been added or excluded, its status will be indicated next time the processes

92

mode is entered, with either a ’+’ or ’-’ next to the process ID. For example, the report shown in
Figure 40 below is generated after hitting the ’-’ key to select a process for exclusion. The plus
sign next to the pMarineViewer indicates that it has been selected for inclusion previously.

Figure 40: Excluding watch-list variables based on process origin: The process list includes an indicator
to the left of the ID showing whether the process is presently included (’+’) or excluded (’-’). In this case the
pMarineViewer application has been included but no action has been taken regarding any other processes.

When a process or application has been selected for exclusion, this is handled in the following way.
When a scoping report is being generated, if a particular variable has most recently been set by an
excluded process, it is not include in the scoping report. Note, it may have also been published by
another application not on the exclusion list.

5.4 Configuration File Parameters for uXMS

Configuraton of uXMS may be done from a configuration file (.moos file), from the command line, or
both. Generally the parameter settings given on the command line override the settings from the
.moos file, but using the configuration file is a convenient way of ensuring certain settings are in
effect on repeated command line invocations. The following is short description of the parameters:

Listing 5.16: Configuration Parameters for uXMS.

colormap: Associates a color for the line of text reporting the given variable.

content mode: Set content mode to either scoping, history, procs, or help.

display all: If true, all variables are reported in the scoping content mode.

display aux source: If true, non-null auxilliary source is shown in place of source.

display community: If true, the Community column is rendered.

display history var: If false, history var not shown in history mode.

display source: If true, the Source column is rendered.

display time: If true, the Time column is rendered.

display virgins: If false, variables never written to the MOOSDB are not reported.

history var: Names the MOOS variable reported in the history mode.

93

refresh mode: Determines when new reports are written to the screen.

source: Names a MOOS app for which all variables will be scoped.

term report interval: Time (secs) between report updates (default 0.6).

trunc data: If true, variable string values are truncated.

var: A comma-separated list of variables to scope on in the scoping mode.

An Example uXMS Configuration Block

An example configuration is given in Listing 17. This may also be elicited from the command line:

$ uXMS --example

Listing 17 - An example uXMS configuration block.

1 ProcessConfig = uXMS

2 {

3 AppTick = 4

4 CommsTick = 4

5

6 var = NAV_X, NAV_Y, NAV_SPEED, NAV_HEADING

7 var = PROC_WATCH_SUMMARY

8 var = PROC_WATCH_EVENT

9 source = pHelmIvP, pMarineViewer

10

11 history_var = DB_CLIENTS

12

13 display_virgins = true // default

14 display_source = false // default

15 display_aux_source = false // default

16 display_time = false // default

17 display_community = false // default

18 display_all = false // default

19 trunc_data = 40 // default is no trucation.

20

21 term_report_interval = 0.6 // default (seconds)

22

23 color_map = pHelmIvP, red // All postings by pHelmIvP red

24 color_map = NAV_SPEED, blue // Only var NAV_SPEED is blue

25

26 refresh_mode = events // default (or streaming/paused)

27 content_mode = scoping // default (or history,procs)

28 }

5.4.1 The colormap Configuration Parameter

Most of the the configurable options deal with content and layout of the information in the terminal
window, but color can also be used to faciliate monitoring one or more variables. The parameter

colormap = <variable/app>, <color>

94

is used to request that a line the report containing the given variable or produced by the given
MOOS application (source) is rendered in the given color. The choices for color are limited to red,
green, blue, cyan, and magenta.

5.4.2 The content mode Configuration Parameter

The content mode determines what information is generated in each report to the terminal output
(Section 5.3). This mode is set with the following parameter:

content_mode = <mode-type> // Default is "scoping"

The default setting is "scoping" to select the scoping content mode described in Section 5.3.1. It
may also be set to "history" to select the history mode described in Section 5.3.2, or set to "procs"

to select the processes mode described in Section 5.3.3.

5.4.3 The display* Configuration Parameters

In the scoping and history content modes, the uXMS report has columns of data that may be
optionally turned off to conserve real estate, the Time, Source and Community columns as shown
in Figures 33, 36, and 39. By default they are turned off, and they may be toggled on and off by the
user at run time. Their initial state may also be configured with the following three parameters:

display_community = <Boolean> // Default is false

display_source = <Boolean> // Default is false

display_time = <Boolean> // Default is false

display_aux_source = <Boolean> // Default is false

The display aux source parameter, when true, not only activates this column, but also indicates
that the auxilliary source is to be shown instead of the source. Not all MOOS variable postings
have the auxilliary source field filled in. In the case of variables posted by the helm, however, this
field contains the both the helm iteration and name of the behavior. If the auxilliary source is
empty for a particular variable, the primary source is shown instead. To be clear what is being
shown, the auxilliary source is always contained in brackets. For example, [241:waypoint return],
may indicate the variable was posted by the helm on iteration 241 by the waypoint return behavior.

The display all parameter determines whether the scope list contains only those variables
specified by the user, or all MOOS variables pubished by any MOOS process. The latter is useful
at times when you can’t quite remember the variable name you’re looking for or who publishes it.
When displaying all variables, certain variables may be masked out by selecting a process (MOOS
app) to exclude, as described in Section 5.3.3. It may also be enabled with the ’A’ key, and disabled
with the ’a’ key at the terminal at run time. It may also be enabled from the command line with
the --all or -a switches.

display_all = <Boolean> // Default is false

95

Using the dipplay virgins parameter, the report content may be further modified to mask out
lines containing variables that have never been written to, and variables with an empty-string
value. This is done with the below configuration line. It may also be toggled with the ’v’ key at
the terminal at run time, and it may also be specified from the command line with the --novirgins

or -g switches.

display_virgins = <Boolean> // Default is true

In the history mode, the name of the variable is the same on each line. This makes it clear what
variable is being shown, but takes up screen real estate and is redundant. It may be suppressed by
setting display history var to false in the mission file. It may also be toggled with the ’j’ key at
the terminal at run time.

display_history_var = <Boolean> // Default is true

5.4.4 The history var Configuration Parameter

The variable reported in the history mode is set with the below configuration line:

history_var = <MOOSVar>

The history report only allows for one variable, and multiple instances of the above line will simply
honor the last line provided. The history variable is also automatically added to the watch list
used in the scoping mode. The history variable may also be set on the command line when uXMS is
launched from the terminal, with --history=<MOOS-variable>. If set in both places, the command
line choice overrides the choice in the mission file.

5.4.5 The refresh mode Configuration Parameter

The refresh mode determines when new reports are generated to the screen, as discussed in Section
5.2. It is set with the below configuration line:

refresh_mode = <mode> // Valid modes are "paused", "streaming", "events"

The initial refresh mode is set to "events" by default. The refresh mode set in the configuration
file may be overridden from the command line with --mode=paused|events|streaming, or chosen
interactively at run time with the ’e’ key for events, the spacebar key for paused, or the ’r’ key
for streaming.

5.4.6 The source Configuration Parameter

The variable scope list may be set or augmented by naming a particular MOOS app source with
the below parameter:

source = <MOOSApp>, <MOOSApp>, ...

96

With this, uXMS will subscribe for any MOOS variable published by the named application(s). Since
variables may be published by multiple applications, don’t be surprised to see postings made by
other applications. This is not a request to receive mail only from the named source(s). Sources
may also be chosen from the command line with the --src=<MOOSApp>,<MOOSApp>,... command
line switch. Sources may also be included or excluded dynamically in the processes content mode
as described in Section 5.3.3, with the ’+’ and ’-’ keys.

5.4.7 The term report interval Configuration Parameter

The term report interval is a parameter defined for all AppCasting MOOS applications. It spec-
ifies the amount of time between success updates to the terminal. Report updates are not based
on the application’s apptick since this may be considerably faster than the human may absorb and
wastes CPU resources. The default refresh rate is 0.6 seconds between refreshes. This may be
overridden with:

term_report_interval = <Non-Zero Value> // Default is 0.6 seconds

The interval may also be specified on the command line with the --termint=<Non-Zero Value>

switch. The accepted range, in seconds, is [0, 10]. Keep in mind that report frequency cannot be
any faster than the actual apptick set for uXMS.

5.4.8 The trunc data Configuration Parameter

The current value of a MOOS variable is shown in the VarValue column in both the scoping and
history content modes. This value may be quite long and overwrap several lines and make things
hard to read. The user can choose to truncate the content by setting trunc data parameter:

trunc_data = <unsigned int> // Default is zero (no truncating)

Values are accepted in the range [10, 1000]. Truncated string output will be further indicated by
adding a trailing "..." to the end of the output. Truncation may be toggled on/off at run time
by hitting the ’‘’ (back-tick) key. The default truncation length is 40 characters. The length of
truncated output may also be adjusted at run time with the ’{’ and ‘}’ keys.

5.4.9 The var Configuration Parameter

The variables reported on in the scoping mode, the scope list, are declared with configuration lines
of the form:

var = <MOOSVar>, <MOOSVar>, ...

Multiple such lines, each perhaps with multiple variables, are accommodated. The scope list may
be augmented on the command line by simply naming variables as command line arguments. The
scope list provided on the command line may replace the list given in the configuration file if the
--clean command line option is also invoked.

97

5.5 Command Line Usage of uXMS

Many of the parameters available for setting the .moos file configuration block can also be affected
from the command line. The command line configurations always trump any configurations in the
.moos file. As with the uPokeDB application, the server host and server port information can be
specified from the command line too to make it easy to open a uXMS window from anywhere within
the directory tree without needing to know where the .moos file resides. A uXMS session can be
launched to connect to the MOOSDB of a remote vehicle on the network, if the IP address and
port number are known, with:

$ uXMS --server host=10.25.0.191 --server port=9000 --src=pHelmIvP

The basic command line usage for the uXMS application is the following:

$ uXMS --help

Listing 18 - Command line usage for the uXMS tool.

1 Usage: uXMS [file.moos] [OPTIONS]

2 Options:

3 --alias=<ProcessName>

4 Launch uXMS with the given process name rather than uXMS.

5 --all,-a

6 Show ALL MOOS variables in the MOOSDB

7 --clean,-c

8 Ignore scope variables in file.moos

9 --colormap=<MOOSVar>,<color>

10 Display all entries where the variable, source, or community

11 has VAR as substring. Allowable olors: blue, red, magenta,

12 cyan, or green.

13 --colorany=<MOOSVar>,<MOOSVar>,...

14 Display all entries where the variable, community, or source

15 has VAR as substring. Color auto-chosen from unused colors.

16 --example, -e

17 Display example MOOS configuration block.

18 --help,-h

19 Display this help message.

20 --history=<MOOSVar>

21 Allow history-scoping on variable

22 --interface,-i

23 Display MOOS publications and subscriptions.

24 --novirgins,-g

25 Don’t display virgin variables

26 --mode=[paused,EVENTS,streaming]

27 Determine display mode. Paused: scope updated only on user

28 request. Events: data updated only on change to a scoped

29 variable. Streaming: updates continuously on each app-tick.

30 --server_host=<IPAddress>

31 Connect to MOOSDB at IP=value, not from the .moos file.

32 --server_port=<PortNumber>

33 Connect to MOOSDB at port=value, not from the .moos file.

34 --show=[source,time,community,aux]

35 Turn on data display in the named column, source, time, or

36 community. All off by default enabling aux shows the

98

37 auxilliary source in the souce column.

38 --src=<MOOSApp>,<MOOSApp>, ...

39 Scope only on vars posted by the given MOOS processes

40 --trunc=value [10,1000]

41 Truncate the output in the data column.

42 --termint=value [0,10] (default is 0.6)

43 Minimum real-time seconds between terminal reports.

44 --version,-v

45 Display the release version of uXMS.

46

47 Shortcuts

48

49 -t Short for --trunc=25

50 -p Short for --mode=paused

51 -s Short for --show=source

52 -st Short for --show=source,time

Using the --clean switch will cause uXMS to ignore the variables or sources specified in the .moos

file configuration block and only scope on the variables specified on the command line (otherwise
the union of the two sets of variables is used). Typically this is done when a user wants to quickly
scope on a couple variables and doesn’t want to be distracted with the longer list specified in the
.moos file. Arguments on the command line other than the ones described above are treated as
variable requests.

If the server host or the server port are not provided on the command line, and a MOOS file
is also not provided, the user will be prompted for the two values. Since the most common scenario
is when the MOOSDB is running on the local machine (“localhost”) with port 9000, these are the
default values and the user can simply hit the return key.

$ uXMS

$ Enter Server: [localhost]

The server is set to "localhost"

$ Enter Port: [9000] 9123

$ The port is set to "9123"

5.6 Console Interaction with uXMS at Run Time

Many of the launch-time configuration parameters may be altered at run time through interaction
with the console window. For example, the displaying of the Source column is configured to be false
by default, may be configured in the mission file with display source=true, and may be configured
on the command line with --show=source. It may also be toggled at run time by typing the ’s’

character at the console window. A list of run-time key mappings may be shown at any time
by typing the ’h’ key for help. Re-hitting this key resumes prior scoping. Listing 19 shows the
contents of the help menu.

Listing 19 - The help-menu on the uXMS console.

1 KeyStroke Function (HELP)

2 --------- ---------------------------

3 s Toggle show source of variables

4 t Toggle show time of variables

5 c Toggle show community of variables

6 v Toggle show virgin variables

99

7 x Toggle show Auxilliary Src if non-empty

8 d Content Mode: Scoping Normal

9 h Content Mode: Help. Hit ’R’ to resume

10 p Content Mode: Processes Info

11 z Content Mode: Variable History

12 > or < Show More or Less Variable History

13 } or { Show More or Less Truncated VarValue

14 / Begin entering a filter string

15 ‘ Toggle Data Field truncation

16 ? Clear current filter

17 a Revert to variables shown at startup

18 A Display all variables in the database

19 u/SPC Refresh Mode: Update then Pause

20 r Refresh Mode: Streaming

21 e Refresh Mode: Event-driven refresh

5.7 Running uXMS Locally or Remotely

The choice of uXMS as a scoping tool was designed in part to support situations where the target
MOOSDB is running on a vehicle with low bandwidth communications, such as an AUV sitting on
the surface with only a weak RF link back to the ship. There are two distinct ways one can run
uXMS in this situation and its worth noting the difference. One way is to run uXMS locally on one’s
own machine, and connect remotely to the MOOSDB on the vehicle. The other way is to log onto
the vehicle through a terminal, run uXMS remotely, but in effect connecting locally to the MOOSDB
also running on the vehicle.

The difference is seen when considering that uXMS is running three separate threads. One accepts
mail delivered by the MOOSDB, one executes the iterate loop of uXMS where reports are written
to the terminal, and one monitors the keyboard for user input. If running uXMS locally, connected
remotely, even though the user may be in paused mode with no keyboard interaction or reports
written to the terminal, the first thread still may have a communication requirement perhaps larger
than the bandwidth will support. If running remotely, connected locally, the first thread is easily
supported since the mail is communicated locally. Bandwidth is consumed in the second two
threads, but the user controls this by being in paused mode and requesting new reports judiciously.

5.8 Connecting multiple uXMS processes to a single MOOSDB

Multiple versions of uXMS may be connected to a single MOOSDB. This is to simultaneously allow
several people a scope onto a vehicle. Although MOOS disallows two processes of the same name
to connect to MOOSDB, uXMS generates a random number between 0-999 and adds it as a suffix to
the uXMS name when connected. Thus it may show up as something like uXMS 871 if you scope on
the variable DB CLIENTS. In the unlikely event of a name collision, the user can just try again.

5.9 Using uXMS with Appcasting

Appcasting allows a really useful way of using uXMS, especially in the case of multiple deployed
vehicles. Prior to appcasting, the only way to use uXMS is through a terminal window. With
appcasting the uXMS report may also be published to the MOOSDB for remote viewing via a uMAC

utility or with pMarineViewer.

100

For example, consider a case where some number of vehicles are deployed, each with an interface
to their batteries, compass and GPS. The interfaces may be named iBatteryMonitor, iCompass, and
iGPS. Each interface publishes several MOOS variables including health status messages. A mission
could be configurd with three uXMS processes launched at mission startup with something similar
to:

Listing 20 - Launching several uXMS processes with appcasting.

1 ProcessConfig = ANTLER

2 {

3 MSBetweenLaunches = 200

4

5 Run = MOOSDB @ NewConsole = false

6 // Other MOOS Apps

7 Run = iGPS @ NewConsole = false

8 Run = iBatteryMonitor @ NewConsole = false

9 Run = iCompas @ NewConsole = false

10 Run = uXMS @ NewConsole = false ~ uXMS_GPS

11 Run = uXMS @ NewConsole = false ~ uXMS_BATTERY_MONITOR

12 Run = uXMS @ NewConsole = false ~ uXMS_COMPASS

13 }

14

15 ProcessConfig = uXMS_GPS

16 {

17 SOURCE = iGPS

18 }

19 ProcessConfig = uXMS_BATTERY_MONITOR

20 {

21 SOURCE = iBatteryMonitor

22 }

23 ProcessConfig = uXMS_COMPASS

24 {

25 SOURCE = iCompass

26 }

With this configuration the three uXMS processes will launch, each without a terminal window open,
and each with a different descriptive name. The uXMS reports are accessible with any of the appcast
viewing tools, uMAC, uMACView, and pMarineViewer. In the latter two tools for example, the uXMS

reports may appear in a menu selection like that shown in Figure 41.

101

Figure 41: Appcasting and uXMS: Multiple vehicles are each configured with three dedicated uXMS processes to
scope on variables particular to a given device or sensor. The uMAC viewer interface allows the user to select any
vehicle and select a uXMS report to see the desired information for that vehicle and device.

In this way the user may monitor the health of these three instruments across all fielded vehicles
with a single GUI without having to write any special code for these devices.

5.10 Publications and Subscriptions for uXMS

The interface for uXMS, in terms of publications and subscriptions, is described below. This same
information may also be obtained from the terminal with:

$ uXMS --interface

5.10.1 Variables Published by uXMS

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 5.9.

5.10.2 Variables Subscribed for by uXMS

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 5.9.

• DB CLIENTS: To handle requests to scope on all variables.

• DB UPTIME: To determine the MOOSDB start time. All uXMS times reported are times since
MOOSDB started.

• PROC WATCH SUMMARY: As a convenience this summary is displayed in the processes content
mode. It is posted by uProcessWatch.

102

• USER-DEFINED: The variables subscribed for are those on the scope list, augmented with the
var and source parameters described in Sections 5.4.6 and 5.4.9.

103

6 uTimerScript: Scripting Events to the MOOSDB

6.1 Overview

The uTimerScript application allows the user to script a set of pre-configured posts to a MOOSDB.
In its most basic form, it may be used to initialize a set of variables to the MOOSDB, and immedi-
ately terminate itself if a quit event is included. The following configuration block, if placed in the
alpha example mission, would mimic the posts to the MOOSDB behind the DEPLOY button, simply
disabling manual control, deploying the vehicle and quitting the script: Listing 6.21.

Listing 21: A Simple Timer Script.

ProcessConfig = uTimerScript

{

event = var=MOOS_MANUAL_OVERIDE, val=false

event = var=DEPLOY, val=true

event = quit

}

Additionally, uTimerScript may be used with the following advanced functions:

• Each entry in the script may be scheduled to occur after a specified amount of elapsed time.

• Event timestamps may be given as an exact point in time relative to the start of the script,
or a range in times with the exact time determined randomly at run-time.

• The execution of the script may be paused, or fast-forwarded a given amount of time, or
forwarded to the next event on the script by writing to a MOOS variable.

• The script may be conditionally paused based on user defined logic conditions over one or
more MOOS variables.

• The variable value of an event may also contain information generated randomly.

• The script may be reset or repeated any given number of times.

• The script may use its own time warp, which can be made to vary randomly between script
executions.

In short, uTimerScript may be used to effectively simulate the output of other MOOS applications
when those applications are not available. A few examples are provided, including a simulated GPS
unit and a crude simulation of wind gusts.

6.2 Using uTimerScript

Configuring a script minimally involves the specification of one or more events, with an event
comprising of a MOOS variable and value to be posted and an optional time at which it is to be
posted. Scripts may also be reset on a set policy, or from a trigger by an external process.

6.2.1 Configuring the Event List

The event list or script is configured by declaring a set of event entries with the following format:

event = var=<MOOSVar>, val=<value>, [time=<time-of-event>]

104

The keywords event, var, val, and time are not case sensitive, but the values <moos-variable> and
<var-value> are case sensitive. The <var-value> type is posted either as a string or double based
on the following heuristic: if the <var-value> has a numerical value it is posted as a double, and
otherwise posted as a string. If one wants to post a string with a numerical value, putting quotes
around the number suffices to have it posted as a string. Thus val=99 posts a double, but var="99"

posts a string. If a string is to be posted that contains a comma such as "apples, pears", one must
put the quotes around the string to ensure the comma is interpreted as part of <var-value>. The
value field may also contain one or more macros expanded at the time of posting, as described in
Section 6.4.

6.2.2 Setting the Event Time or Range of Event Times

The value of <time-of-event> is given in seconds and must be a numerical value greater or equal to
zero. The time represents the amount of elapsed time since the uTimerScript was first launched and
un-paused. The list of events provided in the configuration block need not be in order - they will
be ordered by the uTimerScript utility. The <time-of-event> may also be specified by a interval
of time, e.g., time=0:100, such that the event may occur at some point in the range with uniform
probability. The only restrictions are that the lower end of the interval is greater or equal to zero,
and less than or equal to the higher end of the interval. By default the timestamps are calculated
once from their specified interval, at the the outset of uTimerScript. The script may alternatively
be configured to recalculate the timestamps from their interval each time the script is reset, by
setting the shuffle parameter to true. This parameter, and resetting in general, are described in
the next Section 6.2.3.

6.2.3 Resetting the Script

The timer script may be reset to its initial state, resetting the stored elapsed-time to zero and
marking all events in the script as pending. This may occur either by cueing from an event outside
uTimerScript, or automatically from within uTimerScript. Outside-cued resets can be triggered by
posting UTS RESET with the value ="reset", or "true". The reset var parameter names a MOOS
variable that may be used as an alternative to UTS RESET. It has the format:

reset var = <moos-variable> // Default is UTS RESET

The script may be also be configured to auto-reset after a certain amount of time, or immediately
after all events are posted, using the reset time parameter. It has the format:

reset time = <time-or-condition> // Default is "none"

The <time-or-condition> may be set to "all-posted" which will reset after the last event is posted.
If set to a numerical value greater than zero, it will reset after that amount of elapsed time,
regardless of whether or not there are pending un-posted events. If set to "none", the default, then
no automatic resetting is performed. Regardless of the reset time setting, prompted resets via the
UTS RESET variable may take place when cued.

The script may be configured to accept a hard limit on the number of times it may be reset.
This is configured using the reset max parameter and has the following format:

reset max = <amount> // Default is "nolimit"

105

The <amount> specified may be any number greater or equal to zero, where the latter, in effect,
indicates that no resets are permitted. If unlimited resets are desired (the default), the case
insensitive argument "unlimited" or "any" may be used.

The script may be configured to recalculate all event timestamps specified with a range of values
whenever the script is reset. This is done with the following parameter:

shuffle = true // Default is "false"

The script may be configured to reset or restart each time it transitions from a situation where
its conditions are not met to a situation where its conditions are met, or in other words, when the
script is ”awoken”. The use of logic conditions is described in more detail in Section 6.3.1. This is
done with the following parameter:

upon awake = restart // Default is "n/a", no action

Note that this does not apply when the script transitions from being paused to un-paused as
described in Section 6.3.1. See the example in Section 6.9.1 for a case where the upon awake feature
is handy.

6.3 Script Flow Control

The script flow may be affected in a number of ways in addition to the simple passage of time. It
may be (a) paused by explicitly pausing it, (b) implicitly paused by conditioning the flow on one
or more logic conditions, (c) fast-forwarded directly to the next scheduled event, or fast-forwarded
some number of seconds. Each method is described in this section.

6.3.1 Pausing the Timer Script

The script can be paused at any time and set to be paused initially at start time. The paused param-
eter affects whether the timer script is actively unfolding at the outset of launching uTimerScript.
It has the following format:

paused = <Boolean>

The keyword paused and the string representing the Boolean are not case sensitive. The Boolean
simply must be either "true" or "false". By setting paused to true, the elapsed time calculated
by uTimerScript is paused and no variable-value pairs will be posted. When un-paused the elapsed
time begins to accumulate and the script begins or resumes unfolding. The default value of paused
is false.

The script may also be paused through the MOOS variable UTS PAUSE which may be posted by
some other MOOS application. The values recognized are "true", "false", or "toggle", all case
insensitive. The name of this variable may be substituted for a different one with the pause var

parameter in the uTimerScript configuration block. It has the format:

pause var = <MOOSVar> // Default is UTS PAUSE

If multiple scripts are being used (with multiple instances of uTimerScript connected to the MOOSDB),
setting the pause var to a unique variable may be needed to avoid unintentionally pausing or un-
pausing multiple scripts with single write to UTS PAUSE.

106

6.3.2 Conditional Pausing of the Timer Script and Atomic Scripts

The script may also be configured to condition the “paused-state” to depend on one or more logic
conditions. If conditions are specified in the configuration block, the script must be both un-paused
as described above in Section 6.3.1, and all specified logic conditions must be met in order for the
script to begin or resume proceeding. The logic conditions are configured as follows:

condition = <logic-expression>

The <logic-expression> syntax is described in Appendix A, and may involve the simple comparison
of MOOS variables to specified literal values, or the comparison of MOOS variables to one another.
See the script configuration in Section 6.9.1 for one example usage of logic expressions.

An atomic script is one that does not check conditions once it has posted its first event, and
prior to posting its last event. Once a script has started, it is treated as unpausable with respect
to the the logic conditions. This is configured with:

script atomic = <Boolean>

It can however be paused and unpaused via the pause variable, e.g., UTS PAUSE, as described in
Section 6.3.1. If the logic conditions suddenly fail in an atomic script midway, the check is simply
postponed until after the script completes and is perhaps reset. If the conditions in the meanwhile
revert to being satisfied, then no interruption should be observable.

6.3.3 Fast-Forwarding the Timer Script

The timer script, when un-paused, moves forward in time with events executed as their event
times arrive. However, the script may be moved forwarded by writing to the MOOS variable
UTS FORWARD. If the value received is zero (or negative), the script will be forwarded directly to the
point in time at which the next scheduled event occurs. If the value received is positive, the elapsed
time is forwarded by the given amount. Alternatives to the MOOS variable UTS FORWARD may be
configured with the parameter:

forward var = <MOOSVar> // Default is UTS FORWARD

If multiple scripts are being used (with multiple instances of uTimerScript connected to the MOOSDB),
setting the forward var to a unique variable may be needed to avoid unintentionally fast forwarding
multiple scripts with single write to UTS FORWARD.

6.3.4 Quitting the Timer Script

The timer script may be configured with a special event, the quit event, resulting in disconnection
with the MOOSDB and a process exit. This is done with the configuration:

event = quit [time=<time-of-event>]

Before quitting, a final posting to the MOOSDB is made with the variable EXITED NORMALLY. The
value is "uTimerScript", or its alias if an alias was used. This indicates to any other watchdog
process, such as uProcessWatch, that the exiting of this script is not a reason for concern. When
uTimerScript receives its own posting in the next incoming mail, it assumes all pending posts have
been made and will then quit.

107

6.4 Macro Usage in Event Postings

Macros may be used to add a dynamic component to the value field of an event posting. This
substantially expands the expressive power and possible uses of the uTimerScript utility. Recall
that the components of an event are defined by:

event = var=<MOOSVar>, val=<var-value>, time=<time-of-event>

The <var-value> component may contain a macro of the form $[MACRO], where the macro is
either one of a few built-in macros available, or a user-defined macro with the ability to represent
random variables. Macros may also be combined in simple arithmetic expressions to provide further
expressive power. In each case, the macro is expanded at the time of the event posting, typically
with different values on each successive posting.

6.4.1 Built-In Macros Available

There are five built-in macros available: $[DBTIME], $[UTCTIME], $[COUNT], $[TCOUNT], and $[IDX].
The first macro expands to the estimated time since the MOOSDB started, similar to the value in
the MOOS variable DB UPTIME published by the MOOSDB. An example usage:

event = var=DEPLOY RECEIVED, val=$[DBTIME], time=10:20

The $[UTCTIME] macro expands to the UTC time at the time of the posting. The $[COUNT]

macro expands to the integer total of all posts thus far in the current execution of the script, and is
reset to zero when the script resets. The $[TCOUNT] macro expands to the integer total of all posts
thus far since the application began, i.e., it is a running total that is not reset when the script is
reset.

The $[DBTIME], $[UTCTIME], $[COUNT], and $[TCOUNT] macros all expand to numerical values,
which if embedded in a string, will simply become part of the string. If the value of the MOOS
variable posting is solely this macro, the variable type of the posting is instead a double, not a
string. For example val=$[DBTIME] will post a type double, whereas val="time:$[DBTIME]" will post
a type string.

The $[IDX] macro is similar to the $[COUNT] macro in that it expands to the integer value
representing an event’s count or index into the sequence of events. However, it will always post as
a string and will be padded with zeros to the left, e.g., "000", "001", ... and so on.

6.4.2 User Configured Macros with Random Variables

Further macros are available for use in the <var-value> component of an event, defined and config-
ured by the user, and based on the idea of a random variable. In short, the macro may expand to a
numerical value chosen within a user specified range, and recalculated according to a user-specified
policy. The general format is:

rand var = varname=<variable>, min=<value>, max=<value>, key=<key name>

The <variable> component defines the macro name. The <low value> and <high value> compo-
nents define the range from which the random value will be chosen uniformly. The <key name> de-
termines when the random value is reset. The following three key names are significant: "at start",

108

"at reset", and "at post". Random variables with the key name "at start" are assigned a random
value only at the start of the uTimerScript application. Those with the "at reset" key name also
have their values re-assigned whenever the script is reset. Those with the "at post" key name also
have their values re-assigned after any event is posted.

6.4.3 Support for Simple Arithmetic Expressions with Macros

Macros that expand to numerical values may be combined in simple arithmetic expressions with
other macros or scalar values. The general form is:

{<value> <operator> <value>}

The <value> components may be either a scalar or a macro, and the <operator> component may
be one of ’+’, ’-’, ’*’, ’/’. Nesting is also supported. Below are some examples:

{$[FOOBAR] * 0.5}

{-2-$[FOOBAR]}

{$[APPLES] + $[PEARS]}

{35 / {$[FOOBAR]-2}}

{$[DBTIME] - {35 / {$[UTCTIME]+2}}}

If a macro should happen to expand to a string rather than a double (numerical) value, the string
evaluates to zero for the sake of the remaining evaluations.

6.5 Time Warps, Random Time Warps, and Restart Delays

A time warp and initial start delay may be optionally configured into the script to change the event
schedule without having to edit all the time entries for each event. They may also be configured to
take on a new random value at the outset of each script execution to allow for simulation of events
in nature or devices having a random component.

6.5.1 Random Time Warping

The time warp is a numerical value in the range (0,∞], with a default value of 1.0. Lower values
indicate that time is moving more slowly. As the script unfolds, a counter indicating "elapsed time"

increases in value as long as the script is not paused. The "elapsed time" is multiplied by the time
warp value. The time warp may be specified as a single value or a range of values as below:

time_warp = <value>

time_warp = <low-value>:<high-value>

When a range of values is specified, the time warp value is calculated at the outset, and re-calculated
whenever the script is reset. See the example in Section 6.9.2 for a use of random time warping to
simulate random wind gusts.

109

6.5.2 Random Initial Start and Reset Delays

A start delay may be provided with the delay start parameter, given in seconds in the range
[0,∞], with a default value of 0. The effect of having a non-zero delay of n seconds is to have
elapsed time=n at the outset of the script, on the first time through the script only. Thus a delay
of n seconds combined with a time warp of 0.5 would result in observed delay of 2 ∗n seconds. The
start delay may be specified as a single value or a range of values as below:

delay_start = <value>

delay_start = <low-value>:<high-value>

To specify a delay applied at the beginning if the script after a reset, use the delay reset parameter
instead.

delay_reset = <value>

delay_reset = <low-value>:<high-value>

When a range of values is specified, the start ore reset delay value is calculated at the outset, and
re-calculated whenever the script is reset. See the example in Section 6.9.1 for a use of random
start delays to the simulate the delay in acquiring satellite fixes in a GPS unit on an UUV coming
to the surface.

6.5.3 Status Messages Posted to the MOOSDB by uTimerScript

The uTimerScript periodically publishes a string to the MOOS variable UTS STATUS indicating the
status of the script. This variable will be published on each iteration if one of the following
conditions is met: (a) two seconds has passed since the previous status message posted, or (b) an
event has been been posted, or (c) the paused state has changed, or (d) the script has been reset,
or (e) the state of script logic conditions has changed. A posting may look something like:

UTS_STATUS = "name=RND_TEST, elapsed_time=2.00, posted=1, pending=5, paused=false,

conditions_ok=true, time_warp=3, start_delay=0, shuffle=false,

upon_awake=restart, resets=2/5"

In this case, the script has posted one of six events (posted=1, pending=5). It is actively unfolding,
since paused=false (Section 6.3.1) and conditions ok=true (Section 6.3.2). It has been reset twice
out of a maximum of five allowed resets (resets=2/5, Section 6.2.3). Time warping is being deployed
(time warp=3, Section 6.5), there is no start delay in use (start delay=0, Section 6.5.2). The shuffle
feature is turned off (shuffle=false, Section 6.2.3). The script is not configured to reset upon
re-entering the un-paused state (awake reset=false, Section 6.2.3).

When multiple scripts are running in the same MOOS community, one may want to take
measures to discern between the status messages generated across scripts. One way to do this is to
use a unique MOOS variable other than UTS STATUS for each script. The variable used for publishing
the status may be configured using the status var parameter. It has the following format:

status var = <MOOSVar> // Default is UTS STATUS

110

Alternatively, a unique name may be given to each to each script. All status messages from all
scripts would still be contained in postings to UTS STATUS, but the different script output could be
discerned by the name field of the status string. The script name is set with the following format.

script name = <string> // Default is "unnamed"

6.6 Terminal and AppCast Output

The script configuration and progress of script execution may also be monitored from an open
console window where uTimerScript is launched, or through an appcast viewer. Example output
is shown below in Listing 22. On line 2, the name of the local community or vehicle name is listed
on the left. On the right, "0/0(450) indicates there are no configuration or run warnings, and the
current iteration of uFldTimerScript is 450.

Lines 4-16: Script Configuration

Lines 4-11 show the script configuration. Line 5 shows the number of elements in the script and
in parentheses the last element to have been posted. Line 6 shows the number of times the script
has restarted. Line 7 shows the present time warp and the range of time warps possible on each
script restart in brackets (Section 6.5.1. Lines 8-9 show the delay applied at the start and after
a script reset (Section 6.5.2). Line 10 indicates the script is presently not paused (Section 6.3.1).
Line 11 indicates the script presently meets any prevailing logic conditions (Section 6.3.2). Lines
13-16 show that there are two random variables defined for this script that may be used in event
definitions. They are both uniform random variables. The first varies over possible directions, and
the second over possible speed magnitudes. Section 6.4.2.

Listing 22 - Example uTimerScript console and appcast output.

1 ===

2 uTimerScript charlie 0/0(450)

3 ===

4 Current Script Information:

5 Elements: 10(8)

6 Reinits: 2

7 Time Warp: 1.09 [0.2,2]

8 Delay Start: 0

9 Delay Reset: 23.66 [10,60]

10 Paused: false

11 ConditionsOK: true

12

13 RandomVar Type Min Max Parameters

14 --------- ------- --- --- ----------

15 ANG uniform 0 359

16 MAG uniform 1.5 3.5

17

18 P/Tot P/Loc T/Total T/Local Variable/Var

19 ----- ----- -------- ------- ------------

20 19 9 196.77 72.15 DRIFT_VECTOR_ADD = 193,-0.6

21 20 0 219.42 24.08 DRIFT_VECTOR_ADD = 12,0.4

22 21 1 220.93 25.71 DRIFT_VECTOR_ADD = 12,0.4

23 22 2 222.95 27.91 DRIFT_VECTOR_ADD = 12,0.4

111

24 23 3 224.96 30.09 DRIFT_VECTOR_ADD = 12,0.4

25 24 4 226.46 31.73 DRIFT_VECTOR_ADD = 12,0.4

26 25 5 228.47 33.91 DRIFT_VECTOR_ADD = 12,-0.4

27 26 6 230.49 36.10 DRIFT_VECTOR_ADD = 12,-0.4

28

29 ===

30 Most Recent Events (3):

31 ===

32 [192.78]: Script Re-Start. Warp=0.48922, DelayStart=0.0, DelayReset=54.1

33 [44.80]: Script Re-Start. Warp=1.61692, DelayStart=0.0, DelayReset=18.9

34 [0.51]: Script Start. Warp=1, DelayStart=0.0, DelayReset=0.0

Lines 18-27: Recent Script Postings

Lines 18-27 show recent postings to the MOOSDB by the script. The first column shows the total
postings so far for the script. The second column shows the index within the script. In the above
example, there are ten elements in the script. The most recent posting on line 27, shows the script
has been reset twice and the most recent posting is of the seventh element of the script (index 6).
The third column shows the total time since script started, and the fourth column shows the time
since the script was re-started. Note the time delay between lines 20 and 21, due to the delay reset

shown on line 9. The last column shows the actual variable value pair posted.

Lines 29-34: Recent Events

Lines 29-34 show recent events (other than event postings). In this case it shows the script has
been started, and re-started twice. Notice the delay reset on line 32 is different than that on line 9.
The delay reset time of 23.66 seconds shown on line 9 is the delay reset to be applied on the next
reset.

6.7 Configuration File Parameters for uTimerScript

The following parameters are defined for uTimerScript. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated.

Listing 23: Configuration Parameters for uTimerScript.

condition: A logic condition that must be met for the script to be un-paused. Section
6.3.2.

delay reset: Number of seconds added to each event time, on each script reset. Legal
values: any non-negative numerical value, or range of values separated by
a colon. The default is zero. Section 6.5.2.

delay start: Number of seconds, or range of seconds, added to each event time, on first
pass only. Legal values: any non-negative numerical value, or range of
values separated by a colon. The default is zero. Section 6.5.2.

event: A description of a single event in the timer script. Section 6.2.1.

forward var: A MOOS variable for taking cues to forward time. The default is
UTS FORWARD). Section 6.3.3.

112

paused: A Boolean indicating whether the script is paused upon launch. Legal
values: true, false. The default is false. Section 6.3.1.

pause var: A MOOS variable for receiving pause state cues (UTS PAUSE). Section 6.3.1.

rand var: A declaration of a random variable macro to be expanded in event values.
Section 6.4.2.

reset max: The maximum amount of resets allowed. Legal values: any non-negative
integer, or the string "nolimit". The default is "nolimit". Section 6.2.3.

reset time: The time or condition when the script is reset Legal values: Any non-
negative number, or the strings "none", "all-posted", or "end". The default
is "none". Section 6.2.3.

reset var: A MOOS variable for receiving reset cues. The default is UTS RESET.

script atomic: When true, a started script will complete if conditions suddenly fail. Legal
values: true, false. The default is false.

script name: Unique (hopefully) name given to this script. The default is "unnamed".

shuffle: If true, timestamps are recalculated on each reset of the script. Legal
values: true, false. The default is true. Section 6.2.3.

status var: A MOOS variable for posting status summary. The default is UTS STATUS.
Section 6.5.3

time warp: Rate at which time is accelerated in executing the script. Legal values: any
non-negative number. The default is zero. Section 6.5.

upon awake: Reset or re-start the script upon conditions being met after failure ("n/a").
Section 6.2.3.

verbose: If true, progress output is generated to the console (true).

6.8 Publications and Subscriptions for uTimerScript

The interface for uTimerScript, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uTimerScript --interface

6.8.1 Variables Published by uTimerScript

The primary output of uTimerScript to the MOOSDB is the set of configured events, but one other
variable is published on each iteration, and another upon purposeful exit with the event=quit event
configuration.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 6.6.

• EXITED NORMALLY: A posting made when the script contains and executes a event=quit event,
to let other applications know that the disconnection of uTimerScript is not a concern for
alarm.

• UTS STATUS: A status string of script progress. Section 6.5.3.

113

6.8.2 Variables Subscribed for by uTimerScript

The uTimerScript application will subscribe for the following four MOOS variables to provide
optional control over the flow of the script by the user or other MOOS processes:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• EXITED NORMALLY: When uTimerScript receives its own posting, it is assumed that all outgoing
posts needed to be made before quitting have been received by the MOOSDB. Upon this
receipt åuTimerScript will quit. See Section 6.3.4.

• UTS NEXT: When received with the value "next", the script will fast-forward in time to the
next event. See Section 6.3.3.

• UTS RESET: When received with the value of either "true" or "reset", the timer script will be
reset. See Section 6.2.3.

• UTS FORWARD: When received with a numerical value greater than zero, the script will fast-
forward by the indicated time. See Section 6.3.3.

• UTS PAUSE: When received with the value of "true", "false", "toggle", the script will change
its pause state correspondingly. See Section 6.3.1.

In addition to the above MOOS variables, uTimerScript will subscribe for any variables involved
in logic conditions, described in Section 6.3.2.

6.8.3 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uTimerScript --example

This will show the output shown in Listing 24 below.

24 - Example configuration of the uTimerScript application.

1 ===

2 uTimerScript Example MOOS Configuration

3 ===

4 Blue lines: Default configuration

5

6 ProcessConfig = uTimerScript

7 {

8 AppTick = 4

9 CommsTick = 4

10

11 // Logic condition that must be met for script to be unpaused

12 condition = WIND_GUSTS = true

13 // Seconds added to each event time, on each script pass

14 delay_reset = 0

15 // Seconds added to each event time, on first pass only

16 delay_start = 0

17 // Event(s) are the key components of the script

18 event = var=SBR_RANGE_REQUEST, val="name=archie", time=25:35

114

19 // A MOOS variable for taking cues to forward time

20 forward_var = UTS_FORWARD // or other MOOS variable

21 // If true script is paused upon launch

22 paused = false // or {true}

23 // A MOOS variable for receiving pause state cues

24 pause_var = UTS_PAUSE // or other MOOS variable

25 // Declaration of random var macro expanded in event values

26 randvar = varname=ANG, min=0, max=359, key=at_reset

27 // Maximum number of resets allowed

28 reset_max = nolimit // or in range [0,inf)

29 // A point when the script is reset

30 reset_time = none // or {all-posted} or range (0,inf)

31 // A MOOS variable for receiving reset cues

32 reset_var = UTS_RESET // or other MOOS variable

33 // If true script will complete if conditions suddenly fail

34 script_atomic = false // or {true}

35 // A hopefully unique name given to the script

36 script_name = unnamed

37 // If true timestamps are recalculated on each script reset

38 shuffle = true

39 // If true progress is generated to the console

40 verbose = true // or {false}

41 // Reset or restart script upon conditions being met after failure

42 upon_awake = n/a // or {reset,resstart}

43 // A MOOS variable for posting the status summary

44 status_var = UTS_STATUS // or other MOOS variable

45 // Rate at which time is accelerated in execuing the script

46 time_warp = 1

47 }

6.9 Examples

The examples in this section demonstrate the constructs thus far described for the uTimerScript

application. In each case, the use of the script obviated the need for developing and maintaining a
separate dedicated MOOS application.

6.9.1 A Script Used as Proxy for an On-Board GPS Unit

Typical operation of an underwater vehicle includes the periodic surfacing to obtain a GPS fix to
correct navigation error accumulated while under water. A GPS unit that has been out of satellite
communication for some period normally takes some time to re-acquire enough satellites to resume
providing position information. From the perspective of the helm and configuring an autonomy
mission, it is typical to remain at the surface only long enough to obtain the GPS fix, and then
resume other aspects of the mission at-depth.

Consider a situation as shown in Figure 42, where the autonomy system is running in the
payload on a payload computer, receiving not only updated navigation positions (in the form of
NAV DEPTH, NAV X, and NAV Y), but also a ”heartbeat” signal each time a new GPS position has been
received (GPS RECEIVED). This heartbeat signal may be enough to indicate to the helm and mission
configuration that the objective of the surface excursion has been achieved.

115

Figure 42: Simulating a GPS Acknowledgment: In a physical operation of the vehicle, the navigation solution and
a GPS UPDATE RECEIVED heartbeat are received from the main vehicle (front-seat) computer via a MOOS module acting
as an interface to the front-seat computer. In simulation, the navigation solution is provided by the simulator without
any GPS UPDATE RECEIVED heartbeat. This element of simulation may be provided with uTimerScript configured to
post the heartbeat, conditioned on the NAV DEPTH information and a user-specified start delay to simulate GPS
acquisition delay.

In simulation, however, the simulator only produces a steady stream of navigation updates with no
regard to a simulated GPS unit. At this point there are three choices: (a) modify the simulator to
fake GPS heartbeats and satellite delay, (b) write a separate simple MOOS application to do the
same simulation. The drawback of the former is that one may not want to branch a new version of
the simulator, or even introduce this new complexity to the simulator. The drawback of the latter
is that, if one wants to propagate this functionality to other users, this requires distribution and
version control of a new MOOS application.

A third and perhaps preferable option (c) is to write a short script for uTimerScript simulating
the desired GPS characteristics. This achieves the objectives without modifying or introducing new
source code. The below script in Listing 25 gets the job done.

Listing 25 - A uTimerScript configuration for simulating aspects of a GPS unit.

1 //--

2 // uTimerScript configuration block

3

4 ProcessConfig = uTimerScript

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 paused = false

10 reset_max = unlimited

11 reset_time = end

12 condition = NAV_DEPTH < 0.2

13 upon_awake = restart

14 delay_start = 20:120

15 script_name = GPS_SCRIPT

16

17 event = var=GPS_UPDATE_RECEIVED, val="RCVD_$[COUNT]", time=0:1

18 }

116

This script posts a GPS UPDATE RECEIVED heartbeat message roughly once every second, based on
the event time "time=0:1" on line 17. The value of this message will be unique on each posting
due to the $[COUNT] macro in the value component. See Section 6.4.1 for more on macros. The
script is configured to restart each time it awakes (line 13), defined by meeting the condition of
(NAV DEPTH < 0.2) which is a proxy for the vehicle being at the surface. The delay start simulates
the time needed for the GPS unit to reacquire satellite signals and is configured to be somewhere
in the range of 20 to 120 seconds (line 14). Once the script gets past the start delay, the script is
a single event (line 17) that repeats indefinitely since reset max is set to unlimited and reset time

is set to end in lines 10 and 11. This script is used in the IvP Helm example simulation mission
labeled "s4 delta" illustrating the PeriodicSurface helm behavior.

6.9.2 A Script as a Proxy for Simulating Random Wind Gusts

Simulating wind gusts, or in general, somewhat random external periodic drift effects on a vehicle,
are useful for testing the robustness of certain autonomy algorithms. Often they don’t need to be
grounded in very realistic models of the environment to be useful, and here we show how a script
can be used simulate such drift effects in conjunction with the uSimMarine application.

The uSimMarine application is a simple simulator that produces a stream of navigation infor-
mation, NAV X, NAV Y, NAV SPEED, NAV DEPTH, and NAV HEADING (Figure 43), based on the vehicle’s last
known position and trajectory, and currently observed values for actuator variables. The simulator
also stores local state variables reflecting the current external drift in the x-y plane, by default zero.
An external drift may be specified in terms of a drift vector, in absolute terms with the variable
USM DRIFT VECTOR, or in relative terms with the variables USM DRIFT VECTOR ADD.

Figure 43: Simulated Wind Gusts: The uTimerScript application may be configured to post periodic sequences
of external drift values, used by the uSimMarine application to simulate wind gust effects on its simulated vehicle.

The script in Listing 26 makes use of the uSimMarine interface by posting periodic drift vectors.
It simulates a wind gust with a sequence of five posts to increase a drift vector (lines 18-22), and
complementary sequence of five posts to decrease the drift vector (lines 24-28) for a net drift of
zero at the end of each script execution.

Listing 26 - A uTimerScript configuration for simulating simple wind gusts.

0 //--

117

1 // uTimerScript configuration block

2

3 ProcessConfig = uTimerScript

4 {

5 AppTick = 2

6 CommsTick = 2

7

8 paused = false

9 reset_max = unlimited

10 reset_time = end

11 delay_reset = 10:60

12 time_warp = 0.25:2.0

13 script_name = WIND

14 script_atomic = true

15

16 randvar = varname=ANG, min=0, max=359, key=at_reset

17 randvar = varname=MAG, min=0.5, max=1.5, key=at_reset

18

19 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=0

20 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=2

21 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=4

22 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=6

23 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*0.2}", time=8

24

25 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=10

26 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=12

27 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=14

28 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=16

29 event = var=USM_DRIFT_VECTOR_ADD, val="$[ANG],{$[MAG]*-0.2}", time=18

30 }

The drift angle is chosen randomly in the range of [0, 359] by use of the random variable macro
$[ANG] defined on line 16. The peak magnitude of the drift vector is chosen randomly in the range
of [0.5, 1.5] with the random variable macro $[MAG] defined on line 17. Note that these two macros
have their random values reset each time the script begins, by using the key=at reset option, to
ensure a stream of wind gusts of varying angles and magnitudes.

The duration of each gust sequence also varies between each script execution. The default
duration is about 20 seconds, given the timestamps of 0 to 18 seconds in lines 19-29. The time warp

option on line 12 affects the duration with a random value chosen from the interval of [0.25, 2.0].
A time warp of 0.25 results in a gust sequence lasting about 80 seconds, and 2.0 results in a gust of
about 10 seconds. The time between gust sequences is chosen randomly in the interval [10, 60] by
use of the delay restart parameter on line 11. Used in conjunction with the time warp parameter,
the interval for possible observed delays between gusts is [5, 240]. The reset time parameter set to
end, on line 10 is used to ensure that the script posts all drift vectors to avoid any accumulated drifts
over time. The reset max parameter is set to "unlimited" to ensure the script runs indefinitely.

118

7 pBasicContactMgr: Managing Platform Contacts

7.1 Overview

The pBasicContactMgr application deals with information about other known vehicles in its vicinity.
It is not a sensor application, but rather handles incoming “contact reports” which may represent
information received by the vehicle over a communications link, or may be the result of on-board
sensor processing. By default the pBasicContactMgr posts to the MOOSDB summary reports about
known contacts, but it also may be configured to post alerts, i.e., MOOS variables, with select
content about one or more of the contacts.

Figure 44: The pBasicContactMgr Application: The pBasicContactMgr utility receives NODE REPORT information
from other MOOS applications and manages a list of unique contact records. It may post additional user-configurable
alerts to the MOOSDB based on the contact information and user-configurable conditions. The source of contact
information may be external (via communications) or internal (via on-board sensor processing). The pSensor and
iCommsDevice modules shown here are fictional applications meant to convey these two sources of information
abstractly.

The pBasicContactMgr application is partly designed with simultaneous usage of the IvP Helm in
mind. The alerts posted by pBasicContactMgr may be configured to trigger the dynamic spawning
of behaviors in the helm, such as collision-avoidance behaviors. The pBasicContactMgr application
does not perform sensor fusion, and does not reason about or post information regarding the
confidence it has in the reported contact position relative to ground truth. These may be features
added in the future, or perhaps may be features of an alternative contact manager application
developed by a third party source.

7.2 Using pBasicContactMgr

The operation of pBasicContactMgr consists of posting user-configured alerts, and the posting of
several MOOS variables, the CONTACTS * variables, indicating the status of the contact manager.

119

7.2.1 Contact Alert Messages

Alert messages are used to alert other MOOS applications when a contact has been detected within
a certain range of ownship. Multiple alert types may be configured, each keyed on the alert id. A
single alert type may be defined over several lines, where each line contains the alert id of the alert
type being configured. Alerts are configured in the mission file with the alert parameter as follows:

alert = id=<alert-id>, var=<MOOSVar>, pattern=<string>

alert = id=<alert-id>, alert_range=<distance>, cpa_range=<distance>

alert = id=<alert-id>, alert_range_color=<color>, cpa_range_color=<color>

The var=<MOOSVar> component indicates the MOOS variable posted for the given alert. The
pattern=<string> component may be any string with any, none, or all of the following macros
available for expansion:

$[VNAME]: The name of the contact.

$[X]: The position of the contact in local x coordinates.

$[Y]: The position of the contact in local y coordinates.

$[LAT]: The latitude position of the contact in earth coordinates.

$[LON]: The longitude position of the contact in earth coordinates.

$[HDG]: The reported heading of the contact.

$[SPD]: The reported speed of the contact.

$[DEP]: The reported depth of the contact.

$[VTYPE]: The reported vessel type of the contact.

$[UTIME]: The UTC time of the last report for the contact.

If the right-hand side of the pattern=<string> component contains its own parsing separators, it is
recommended that the entire <alert-pattern> string is put within double quotes to ensure proper
parsing, as in Line 11 in Listing 29.

The alert range=<distance> component represents a threshold range to a contact, in meters.
When a contact moves within this range, an alert will be generated. If this distance is left unspeci-
fied, a default value will be used. The default value for all alert types is 1000 meters. This fallback
default alert range may be changed with the configuration parameter default alert range.

The cpa range=<distance> component also represents a threshold range, in meters. Typically
this cpa range is greater than the alert range parameter. When a contact is noted to be within
the cpa range, the contact and ownship trajectories are considered, to calculate the closest point of
approach (CPA). If the CPA range is determined to be within the alert range, an alert is generated,
even if the present range between ownship and contact is outside the alert range.

The alert range color=<color> component indicates a desired color for rendering the alert range

circle. Rendering is done by pBasicContactMgr by posting to the variable VIEW CIRCLE, typically han-
dled by pMarineViewer. The default value is "gray70". The cpa range color=<color> component
similarly indicates a desired color for rendering the cpa range circle. The default value is "gray30".
See Appendix B for more on colors.

120

The posting of rendering circles by pBasicContactMgr may be disabled in one of three ways.
First, they may be disabled outright for all alerts all the time by setting display radii=false in
the MOOS configuration block. Second, they may be turned off by posting BCM DISPLAY RADII=false

to the MOOSDB at any time. This hook may be configured into a button or action-pull-down menu
item in pMarineViewer for example. This will override any static setting in the MOOS configuration
block. The third method for disabling the circles is to specify the color "invisible" for any one of
the alert ranges. This value is interpreted at least in pMarineViewer as in indication that it is not
to be drawn. The latter method provides a finer-grained control of rendering some circles but not
others.

See lines 10-13 in Listing 29 for an example alert configuration.

7.2.2 Contact Alert Triggers

Alerts are triggered for all contacts based on range between ownship and the reported contact
position. It is assumed that each incoming contact report minimally contains the contact’s name
and present position. An alert will be triggered if the current range to the contact falls within the
distance given by alert range, as in Contact-A in Figure 45.

Figure 45: Alert Triggers in pBasicContactMgr: An alert may be triggered by pBasicContactMgr if the contact
is within the alert range, as with Contact-A. It may also be triggered if the contact is within the cpa range, and
the contact’s CPA distance is within the alert range, as with Contact-B. Contact-C shown here would not trigger
an alert since its CPA distance is its current range and is not within the alert range. Contact-D also would not
trigger an alert despite the fact that its CPA with ownship is apparently small, since its current absolute range is
greater than cpa range.

The contact manager may also be configured with a second trigger criteria consisting of another

121

range to contact. The cpa range may be set individually for a given user defined alert, but also has
a default value which may be set in the configuration file:

alert cpa range = <distance>

The cpa range is typically larger than the alert range. (Its influence is effectively disabled when or if
it is set to be equal to or less than the alert range.) When a contact is outside the alert range, but
within the cpa range, as with Contact-B in Figure 45, the closest point of approach (CPA) between
the contact and ownship is calculated given their presently-known position and trajectories. If the
CPA distance falls below the alert range value, an alert is triggered.

7.2.3 Contact Alert Record Keeping

The contact manager keeps a record of all known contacts for which it has received a report. This
list is posted in the MOOS variable CONTACTS LIST, in a comma-separated string such as:

CONTACTS LIST = "delta,gus,charlie,henry"

Once an alert is generated for a contact it is put on the alerted list and this subset of all contacts
is posted in the MOOS variable CONTACTS ALERTED. Each entry in the list names a vehicle and alert
id separated by a comma, such as:

CONTACTS ALERTED = "(delta,avd)(charlie,avd)"

Likewise, those contacts for which no alert has been generated are in the unalerted list and this
is reflected in the MOOS variable CONTACTS UNALERTED. Again, each entry is comprised of both a
vehicle name and alert id separated by a comma.

CONTACTS UNALERTED = "(gus,avd)(henry,avd)"

Contact records are not maintained indefinitely and eventually are retired from the records after
some period of time during which no new reports are received for that contact. The period of time
is given by the contact max age configuration parameter. The list of retired contacts is posted in
the MOOS variable CONTACTS RETIRED:

CONTACTS RETIRED = "bravo,foxtrot,kilroy"

A contact recap of all non-retired contacts is also posted in the MOOS variable CONTACTS RECAP:

CONTACTS_RECAP = "name=ike,age=11.3,range=193.1 # name=gus,age=0.7,range=48.2 # \

name=charlie,age=1.9,range=73.1 # name=henry,age=4.0,range=18.2"

Note: Each of these five MOOS variables is published only when its contents differ from its previous
posting.

7.2.4 Contact Resolution

An alert is generated by the contact manager for a given contact once, when the alert trigger criteria
is first met. In the iteration when the criteria is met, the contact is moved from the unalerted list
to the alerted list, the alert is posted to the MOOSDB, and no further alerts are posted despite

122

any future calculations of the trigger criteria. One exception to this is when the pBasicContactMgr

receives notice that a contact has been resolved, through the MOOS variable CONTACT RESOLVED.
When a contact is resolved, it is moved from the alerted list back on to the un-alerted list.

7.3 Deferring to Earth Coordinates over Local Coordinates

Incoming node reports contain the position information of the contact and may be specified in either
local x-y coordinates, or earth latitude longitude coordinates or both. By default pBasicContactMgr
uses the local coordinates for calculations and the earth coordinates are merely redundant. It may
instead be configured, with the contact local coords parameter, to have its local coordinates set
from the earth coordinates if the local coordinates are missing:

contact_local_coords = lazy_lat_lon

It may also be configured to always use the earth coordinates, even if the local coordinates are set:

contact_local_coords = force_lat_lon

The default setting is verbatim, meaning no action is taken to convert coordinates. If either of the
other two above settings are used, the latitude and longitude coordinates of the local datum, or (0,0)
point must be specified in the MOOS mission file, with LatOrigin and LongOrigin configuration
parameters. (They are typically present in all mission files anyway.)

7.4 Usage of the pBasicContactMgr with the IvP Helm

The IvP helm may used in conjunction with the contact manager to coordinate the dynamic
spawning of certain helm behaviors where the instance of the behavior is dedicated to a helm
objective associated with a particular contact. For example, a collision avoidance behavior, or a
behavior for maintaining a relative position to a contact for achieving sensing objectives, would be
examples of such behaviors. One may want to arrange for a new behavior to be spawned as the
contact becomes known. The helm needs a cue in the form of a MOOS variable posting to trigger
a new behavior spawning, and this is easily arranged with the alerts in the pBasicContactMgr.

On the flip-side of a new behavior spawning, a behavior may eventually declare itself completed
and remove itself from the helm. The conditions leading to completion are defined within the
behavior implementation and configuration. No cues external to the helm are required to make
that happen. However, once an alert has been generated by the contact manager for a particular
contact, it is not generated again, unless it receives a message that the contact has been resolved.
Therefore, if the helm wishes to received future alerts related to a contact for which it has received
an alert in the past, it must declare the contact resolved to the contact manager as discussed in
Section 7.2.4. This would be important, for example, in the following scenario: (a) a collision
avoidance behavior is spawned for a new contact that has come within range, (b) the behavior
completes and is removed from the helm, presumably because the contact has slipped safely out
of range, (c) the contact or ownship turns such that a collision avoidance behavior is once again
needed for the same contact.

123

An example mission is available for showing the use of the contact manager and its coordination
with the helm to spawn behaviors for collision avoidance. This mission is m2 berta and is described
in the IvP Helm documentation. In this mission two vehicles are configured to repeatedly go in
and out of collision avoidance range, and the contact manager repeatedly posts alerts that result
in the spawning of a collision avoidance behavior in the helm. Each time the vehicle goes out of
range, the behavior completes and dies off from the helm and is declared to the contact manager
to be resolved.

7.5 Terminal and AppCast Output

The status of the contact manager may be monitored from from an open console window where
pBasicContactMgr is launched. Example output is shown below in Listing 27.

Listing 27 - Example pBasicContactMgr terminal and appcast output.

1 ===

2 pBasicContactMgr gilda 0/0 (379)

3 ===

4 Alert Configurations (1):

5 ---------------------

6 Alert ID = avd

7 VARNAME = CONTACT_INFO

8 PATTERN = name=$[VNAME]#contact=$[VNAME]

9 RANGE = 40, green

10 CPA_RANGE = 45, invisible

11

12 Alert Status Summary:

13 ----------------------

14 List: henry

15 Alerted:

16 UnAlerted: (henry,avd)

17 Retired:

18 Recap: vname=henry,range=136.55,age=2.05

19

20 Contact Status Summary:

21 ----------------------

22 Contact Range Alerts Alerts Alerts

23 Total Active Resolved

24 ------- ----- ------ ------ --------

25 henry 136.6 1 0 1

26

27

28 Recent Events (3):

29 [159.35]: Resolved: (henry,all_alerts)

30 [159.35]: TryResolve: (henry,all_alerts)

31 [104.53]: CONTACT_INFO=name=henry#contact=henry

On line 2, the "0/0" indicates there were no configuration warnings and no run-time warnings (thus
far). The "(379)" represents the iteration counter of pBasicContactMgr. In lines 4-10, the alerts
configured by the user in the MOOS configuration block are shown. If multiple alerts types are
configured, they would each be listed here separated by their alert id.

124

In lines 12-18, the record-keeping status of the contact manager is output. These five lines are
equivalent to the content of the CONTACTS * variables described in Section 7.2.3. In lines 20-25, the
status and alert history for each known contact is shown. Finally, in lines 28, a limited list of recent
events is shown. Typically an event is either an alert generated or an alert resolved. The alert
resolution is split into two events, the alert resolution attempt, and the actual resolution. This may
help draw the user’s attention if an alert is attempted but failed.

7.6 Configuration Parameters for pBasicContactMgr

The following parameters are defined for pBasicContactMgr. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated so.

Listing 7.28: Configuration Parameters for pBasicContactMgr.

alert: A description of a single alert. Section 7.2.1.

contact local coords: Determines if the local coordinates of incoming node reports are
filled by translated latitude longitude coordinates. Legal values:
verbatim, lazy lat lon, force lat lon. The default is verbatim,
meaning no translation action is taken.

default alert range: The range to a contact, in meters, within which an alert is posted.
Legal values: any positive number. The default is 1000. Section
7.2.1.

default cpa range: The range to a contact, in meters, within which an alert is posted
if the closest point of approach (CPA) falls within this range.
Legal values: any positive number. The default is 1000. Section
7.2.1.

default alert range color: The default color for rendering the alert range radius. Legal val-
ues: any color in Appendix B. The default is gray70. Section
7.2.1.

default cpa range color: The default color for rendering the cpa range radius. Legal values:
any color in Appendix B. The default is gray30. Section 7.2.1.

contact max age: Seconds between reports before a contact is dropped from the
list. Legal values: any non-negative number. The default is 3600.
Section 7.2.3.

display radii: If true, the two alert ranges are posted as viewable circles. Legal
values: true, false. The default is false.

7.6.1 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ pBasicContactMgr --example or -e

125

This will show the output shown in Listing 29 below.

Listing 29 - Example configuration of the pBasicContactMgr application.

0 ===

1 pBasicContactMgr Example MOOS Configuration

2 ===

3

4 ProcessConfig = pBasicContactMgr

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 // Alert configurations (one or more, keyed by id)

10 alert = id=avd, var=CONTACT_INFO

11 alert = id=avd, pattern="name=avd_$[VNAME] # contact=$[VNAME]"

12 alert = id=avd, alert_range=80, alert_range_color=white

13 alert = id=avd, cpa_range=95, cpa_range_color=gray50

14

15 // Properties for all alerts

16 default_alert_range = 1000 // meters. Range [0,inf)

17 default_cpa_range = 1000 // meters. Range [0,inf)

18

19 // Policy for retaining potential stale contacts

20 contact_max_age = 3600 // seconds. Range [0,inf)

21

22 // Configuring other output

23 display_radii = false // or {true}

24 }

7.7 Publications and Subscriptions for pBasicContactMgr

The interface for pBasicContactMgr, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ pBasicContactMgr --interface or -i

7.7.1 Variables Published by pBasicContactMgr

The primary output of pBasicContactMgr to the MOOSDB is the set of user-configured alerts.
Other variables are published on each iteration where a change is detected on its value:

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 7.5.

• CONTACTS LIST: A comma-separated list of contacts.

• CONTACTS RECAP: A comma-separated list of contact summaries.

• CONTACTS ALERTED: A list of contacts for which alerts have been posted.

• CONTACTS UNALERTED: A list of contacts for which alerts are pending, based on the range criteria.

• CONTACTS RETIRED: A list of contacts removed due to the information staleness.

• CONTACT MGR WARNING: A warning message indicating possible mishandling of or missing data.

126

• VIEW CIRCLE: A rendering of the alert ranges.

Some examples:

CONTACTS_LIST = gus,joe,ken,kay

CONTACTS_ALERTED = gus,kay

CONTACTS_UNALERTED = ken,joe

CONTACTS_RETIRED = bravo,foxtrot,kilroy

CONTACTS_RECAP = name=gus,age=7.3,range=13.1 # name=ken,age=0.7,range=48.1 # \

name=joe,age=1.9,range=73.1 # name=kay,age=4.0,range=18.2

7.7.2 Variables Subscribed for by pBasicContactMgr

The pBasicContactMgr application will subscribe for the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• BCM DISPLAY RADII: If false, no postings will be made for rendering the alert and cpa range
circles.

• CONTACT RESOLVED: A name of a contact that has been declared resolved, possibly with a
particular alert specified.

• NAV X: Present position of ownship in local x coordinates.

• NAV Y: Present position of ownship in local y coordinates.

• NAV HEADING: Present ownship heading in degrees.

• NAV SPEED: Present ownship speed in meters per second.

• NODE REPORT: A report about a known contact.

7.7.3 Command Line Usage of pBasicContactMgr

The pBasicContactMgr application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. To see command-line options enter
the following from the command-line:

$ pBasicContactMgr --help

This will show the output shown in Listing 30 below.

Listing 30 - Command line usage for the pBasicContactMgr application.

1 ===

2 Usage: pBasicContactMgr file.moos [OPTIONS]

3 ===

4

5 SYNOPSIS:

6 ------------------------------------

7 The contact manager deals with other known vehicles in its

8 vicinity. It handles incoming reports perhaps received via a

9 sensor application or over a communications link. Minimally

10 it posts summary reports to the MOOSDB, but may also be

127

11 configured to post alerts with user-configured content about

12 one or more of the contacts.

13

14 Options:

15 --alias=<ProcessName>

16 Launch pBasicContactMgr with the given process

17 name rather than pBasicContactMgr.

18 --example, -e

19 Display example MOOS configuration block.

20 --help, -h

21 Display this help message.

22 --interface, -i

23 Display MOOS publications and subscriptions.

24 --version,-v

25 Display the release version of pBasicContactMgr.

26

27 Note: If argv[2] does not otherwise match a known option,

28 then it will be interpreted as a run alias. This is

29 to support pAntler launching conventions.

128

8 uProcessWatch: Monitoring MOOS Application Health

8.1 Overview

The uProcessWatch application monitors the health of a set of MOOS application. It does two
things:

• It monitors the presence of a set of MOOS apps,

• It monitors the CPU load of a set of MOOS apps.

In the case of the former, uProcessWatch continually monitors the DB CLIENTS list for applications
it has responsibility for watching. In the case of the latter, MOOS apps are already monitoring
and reporting their own CPU load and uProcessWatch is doing nothing more than gathering that
information for display in the terminal or appcast message. An example terminal output is shown
below:

Figure 46: A typical terminal or appcast report for uProcessWatch.

The first line, ”Summary: All Present”, tells you that no processes are missing. This is also posted
in the variable PROC WATCH SUMMARY. The list of applications launched with pAntler is shown in the
next block. The main body shows, for each watched application, the reason why the process is on
the watch list, the status, current CPU load as reported by the process itself, and the maximum
CPU load noted so far.

129

The bottom section of the terminal output shows the events (similar to all appcasting output).
In the case of uProcessWatch, events note either the arrival or disappearance of a watched process.
Each event also results in the posting of the variable PROC WATCH EVENT. The user may configure
uProcessWatch to not watch certain named applications or patterns of applications, such as uXMS*,
to avoid unwarranted alerts.

8.2 Typical uProcessWatch Usage Scenarios

8.2.1 Using uProcessWatch with AppCasting and pMarineViewer

The first usage scenario is perhaps the most typical since it is viable both in simulation and in the
field where the vehicles have a network connection to a shoreside MOOS community. The idea is
shown in Figure 47 below. Multiple vehicles each run uProcessWatch locally. A network connection
from each vehicle to a shoreside MOOS community is used to share appcast messages using pShare.
The shoreside community is running pMarineViewer which supports a multi-vehicle appcast viewing
mode. In this way, the shoreside user may monitor the health of all vehicles’ applications with one
tool. If a process on a single vehicle goes missing, the menu item on the shoreside viewer for that
vehicle turns red.

Figure 47: Using uProcessWatch with AppCasting: uProcessWatch is run locally on each fielded vehicle, gener-
ating appcasts posted to the local MOOSDB. Appcasts are shared to the shoreside and collected by the pMarineViewer
tool for monitoring processes across all vehicle. This scenario is relevant when there is a network connection from
the vehicles to the shoreside.

8.2.2 Directly Accessing the PROC WATCH SUMMARY Output

The main health indicator produced by uProcessWatch in the MOOS variable PROC WATCH SUMMRY.
This can be checked on a remote machine by simply scoping on this variable. The uMS application
distributed with MOOS will do the trick for example. To focus solely on this variable, the uXMS

tool may also be used as follows:

$ uXMS --server host=10.25.0.72 --server port=9000 PROC WATCH SUMMARY

130

Or one may ssh onto the vehicle and launch a scope locally on this variable.

8.3 Using and Configuring the uProcessWatch Utility

The primary configuration of uProcessWatch is defining the watch list, the set of other MOOS
processes to monitor. By default all processes ever noted to be connected to the MOOSDB are on
the watch list. The same with all processes name in the Antler configuration block of the mission
file. This default is used because it is simple, and a good rule of thumb is that if any process
disconnects from the MOOSDB, it’s probably a sign of trouble.

8.3.1 The DB CLIENTS Variable for Detecting Missing Processes

The MOOSDB, about once per second, posts the variable DB CLIENTS containing a comma-separated
list of clients (other MOOS apps) currently connected to the MOOSDB. When uProcessWatch is
configured to watch for all processes, it simply augments the watch list for any process that ever
appears on the incoming DB CLIENTS mail. If the process is then missing at a later reading of this
DB CLIENTS mail, is is considered AWOL.

8.3.2 Defining the Watch List

The watch list is a list of processes, i.e., MOOS apps. Each item on the list will be reported missing
if it does not appear in the list of clients shown by the current value of DB CLIENTS. By default, all
clients that ever appear on the DB CLIENTS list will be added to the watch list. The same is true
for all processes named in the Antler configuration block of the mission file. This default can be
overridden by the following configuration option:

watch all = false

The value of watch all may also be set to "antler" to indicate that items on the Antler list are
to be watched by default, but not those that appear in the DB CLIENTS list. Likewise it may be set
to "dbclients" to indicate that items in the DB CLIENTS list are to be watched by default, but not
those in the Antler list. Processes may be added to the watch list by explicitly naming them in
configuration block as follows:

watch = process name[*]

A process may be named explicitly, or the prefix of the process may be given, e.g., watch=uXMS*.
This will match all processes fitting this pattern, e.g., uXMS 845, uXMS 23.

Processes may be explicitly excluded from the watch list with configurations of the following:

nowatch = process name[*]

This is perhaps most appropriate when coupled with watch all=true. If a process is for some reason
both explicitly included and excluded, the inclusion takes precedent.

8.3.3 Reports Generated

There are three reports generated in the variables:

131

• PROC WATCH EVENT

• PROC WATCH SUMMARY,

• PROC WATCH FULL SUMMARY

All reports are generated only when there is a change of status in one of the watched processes.
The first type of report is generated for each event when a watched process is noted to have
connected or disconnected to the MOOSDB. The following are examples:

PROC_WATCH_EVENT = "Process [pMarinePID] is noted to be present."}

PROC_WATCH_EVENT = "Process [pMarinePID] has died!!!!"}

PROC_WATCH_EVENT = "Process [pMarinePID] is resurected!!!"}

In the first line above, a process is reported to be present that was never previously on the watch
list. In the third line a process that was previously noted to have left the watch list is reported to
have returned or been restarted.

The PROC WATCH SUMMARY variable will list the set of processes missing from the watch list or
report "All Present" if no items are missing. For example:

PROC_WATCH_SUMMARY = "All Present"

PROC_WATCH_SUMMARY = "AWOL: pMarinePID,uSimMarine"

The PROC WATCH FULL SUMMARY variable will list a more complete and historical status for all
processes on the watch list. For example:

PROC_WATCH_FULL_SUMMARY = "pHelmIvP(1/0),uSimMarine(1/1),pMarinePID(2/2)"

The numbers in parentheses indicate how many times the process has been noted to connect to the
MOOSDB over the number of times it has been noted to have disconnected. A report of "(1/0)"
is the healthiest of possible reports, meaning it has connected once and has never disconnected.

8.3.4 Watching and Reporting on a Single MOOS Process

If desired, uProcessWatch may be configured to generate a report dedicated a single MOOS process
with the following example configuration:

watch = pBasicContactMgr : BCM_OK

In this case a MOOS variable, BCM OK, will be set to either "true" or "false" depending on
whether the process pBasicContactMgr presently appears on the list of connected clients in listed in
DB CLIENTS.

132

8.3.5 A Heartbeat for the Watch Dog

By default uProcessWatch will only post PROC WATCH SUMMARY when its value changes. A long stale
PROC WATCH SUMMARY = "All Present" likely means that everything is fine. It could also mean the
uProcWatchSummary process itself died without ever posting anything to suggest otherwise. The user
has the configuration option to post PROC WATCH SUMMARY every N seconds regardless of whether or
not the value has changed:

summary_wait = 30 // Summary posted at least every 30 seconds

This in effect creates a heartbeat for monitoring uProcessWatch. The default value for this pa-
rameter is −1. Any negative value will be interpreted as a request for postings to be made only
when the posting value changes. Regardless of the summary wait setting, the other two reports,
PROC WATCH EVENT and PROC WATCH FULL SUMMARY, will only be made when the values change.

8.3.6 Excusing a Process

An application on the watch list may be excused and disconnect from the MOOSDB if it posts
to the variable EXITED NORMALLY with the name of itself. A check is made by uProcessWatch of
the source of the posting to ensure that message was posted by the exiting process. It’s up to
the developer of an application to build in the feature declaring a normal exit. An example is the
uTimerScript application described in Section 6, which has the ability to execute a script of postings
to the MOOSDB followed by an exit. In this case, the status of application becomes EXCUSED, as
shown in Figure 48.

Figure 48: The process uTimerScript has gone missing due to its own intentional exit. Before exiting it posted
EXITED NORMALLY=uTimerScript, and therefore uTimerScript is regarded as excused.

133

Excusing a missing process is different than choosing to not include it on the watch list. Some
applications are, by their nature, designed to disappear at some point. Scoping tools like uXMS,
uPokeDB or uHelmScope are examples applications that regularly appear and disappear. They are
best excluded entirely from the watch list with the nowatch configuration parameter.

8.3.7 Allowing Retractions if a Process Reappears

With the addition of appcasting to uProcessWatch, a missing process also triggers an appcast run
warning, as shown on the top in Figure 49 below.

Figure 49: The process pNodeReporter has gone missing. This is noted as a runtime warning at the top, and the
MISSING status in the body of the report.

However, there are cases where a process goes missing but then returns, in which case the warning
is a distraction. These reasons include.

• The application may actually exit and then restart a short time later.

• The application my be running at a very slow apptick in which case it may be dropped from
the DB CLIENTS list momentarily.

• The application may be missing only because it hasn’t launched yet.

To address this, uProcessWatch will allow retractions on appcast run warnings. If the application
disappears and reappears, the appcast run warning will disappear. The successive posted values
of PROC WATCH SUMMARY will show that the process was at some point declared AWOL, but once the
process returns, the appcast output will no longer raise attention to the issue.

134

Of course there are situations where a process that disappears and then reappears is an indica-
tion of a problem, not to be swept under the rug. In this case the default behavior of uProcessWatch
may be changed by setting allow retractions to false. Presently this setting cannot be set on a
per-process manner.

8.4 Configuration Parameters of uProcessWatch

The following parameters are defined for uProcessWatch. A more detailed description is provided
in other parts of this section. Parameters having default values indicate so in parentheses below.

Listing 8.31: Configuration Parameters for uProcessWatch.

allow retractions: If true, run warnings are retracted if a process reappears after disappearing.
Legal values: true, false. The default is true.

nowatch: A process or list of MOOS processes to not watch.

post mapping: A mapping from one posting variable name to another.

summary wait: A maximum amount of time between PROC WATCH SUMMARY postings. Nega-
tive value indicates posting occurs only when the value changes regardless
of elapsed time. Legal values: any numerical value. The default is −1.

watch: One or more comma-separated MOOS process to watch and report on.

watch all: If true, watch all processes that become known either via the DB CLIENTS

list or the Antler list. Legal values: true, false. The default is true.

An Example MOOS Configuration Block

Listing 32 shows an example MOOS configuration block produced from the following command
line invocation:

$ uProcessWatch --example or -e

Listing 32 - Example configuration of the uProcessWatch application.

1 ProcessConfig = uProcessWatch

2 {

3 AppTick = 4

4 CommsTick = 4

5

6 watch_all = true // The default is true.

7

8 watch = pMarinePID:PID_OK

9 watch = uSimMarine:USM_OK

10

11 nowatch = uXMS*

12

13 allow_retractions = true // Always allow run-warnings to be

14 // retracted if proc re-appears

15

16 // A negative value means summary only when status changes.

135

17 summary_wait = 10 // Seconds. Default is -1.

18

19 post_mapping = PROC_WATCH_FULL_SUMMARY, UPW_FULL_SUMMARY

20 }

8.5 Publications and Subscriptions for uProcessWatch

The interface for uProcessWatch, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uProcessWatch --interface or -i

8.5.1 Variables Published by uProcessWatch

The primary output of uProcessWatch to the MOOSDB is a summary indicating whether or not
certain other processes (MOOS apps) are presently connected.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 11.10.4.

• PROC WATCH EVENT: A report indicating a particular process has been noted to be gone missing
or noted to have (re)joined the list of active processes.

• PROC WATCH FULL SUMMARY: A single string report for each process indicating how many times
it has connected and disconnected from the MOOSDB.

• PROC WATCH SUMMARY: A report listing all missing processes, or “All Present” if no processes are
missing.

The user may also configure uProcessWatch to make a posting dedicated to a particular watched
process. For example, with the configuration watch=pNodeReporter:PNR OK, the status of this process
is conveyed in the MOOS variable PNR OK, set to either "true" or "false" depending on whether or
not it is present.

The variable name for any posted variable may be changed to a different name with the
post mapping configuration parameter. For example, post mapping=PROC WATCH EVENT, UPW EVENT

will result in events being posted under the UPW EVENT variable rather than PROC WATCH EVENT vari-
able.

8.5.2 MOOS Variables Subscribed for by uProcessWatch

The following variable(s) will be subscribed for by uProcessWatch:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• DB CLIENTS: A comma-separated list of clients currently connected to the MOOSDB, posted
by the MOOSDB. Used for detecting missing processes. Section 8.3.1.

• EXITED NORMALLY: An indication made by a process, potentially on the watch list, that it has
exited normally and should be excused, and not regarded as missing. Section 8.3.6.

• <PROCNAME> STATUS: The status string generated for all MOOSApps, containing the current
CPU load among other things.

136

9 uSimMarine: Basic Vehicle Simulation

The uSimMarine application is a simple 3D vehicle simulator that updates vehicle state, position
and trajectory, based on the present actuator values and prior vehicle state. The typical usage
scenario has a single instance of uSimMarine associated with each simulated vehicle, as shown in
Figure 69.

Figure 50: Typical uSimMarine Usage: In an N-vehicle simulation, an instance if uSimMarine is used for each
vehicle. Each simulated vehicle typically has its own dedicated MOOS community. The IvP Helm (pHelmIvP)
publishes high-level control decisions. The PID controller (pMarinePID) converts the high-level control decisions to
low-level actuator decisions. Finally the simulator (uSimMarine) reads the low-level actuator postings to produce a
new vehicle position.

This style of simulation can be contrasted with simulators that simulate a comprehensive set of
aspects of the simulation, including multiple vehicles, and aspects of the environment and commu-
nications. The uSimMarine simulator simply focuses on a single vehicle. It subscribes for the vehicle
navigation state variables NAV X, NAV Y, NAV SPEED, NAV HEADING, NAV DEPTH, as well as the actuator
values DESIRED RUDDER, DESIRED THRUST, DESIRED ELEVATOR. The uSimMarine accommodates a notion
of external drifts applied to the vehicle to crudely simulate current or wind. These drifts may be
set statically or may be changing dynamically by other MOOS processes. The simulator also may
be configured with a simple geo-referenced data structure representing a field of water currents.

Under typical UUV payload autonomy operation, the uSimMarine and pMarinePID MOOS mod-
ules would not be present. The vehicle’s native controller would handle the role of pMarinePID, and
the vehicle’s native navigation system (and the vehicle itself) would handle the role of uSimMarine.

9.1 Configuration Parameters for uSimMarine

The following parameters are defined for uSimMarine. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated so in parentheses below.

Listing 9.33: Configuration Parameters for uSimMarine.

buoyancy rate: Rate, in meters per second, at which vehicle floats to surface at zero
speed. The default is zero. Section 12.4.4.

current field: A file containing the specification of a current field.

current field active: If true, simulator uses the current field if specified.

137

default water depth: Default value for local water depth for calculating altitude (0).

drift vector: A pair of external drift values, direction and magnitude.

rotate speed: An external rotational speed in degrees per second (0).

drift x: An external drift value applied in the x direction (0).

drift y: An external drift value applied in the y direction (0).

max acceleration: Maximum rate of vehicle acceleration in m/s2 (0.5).

max deceleration: Maximum rate of vehicle deceleration in m/s2 (0.5).

max depth rate: Maximum rate of vehicle depth change, meters per second. The defauls
is 0.5. Section 12.4.4.

max depth rate speed: Vehicle speed at which max depth rate is achievable (2.5). Section
12.4.4.

prefix: Prefix of MOOS variables published. The default is USM .

sim pause: If true, the simulation is paused. The default is false.

start depth: Initial vehicle depth in meters. The default is zero. Section 12.3.

start heading: Initial vehicle heading in degrees. The default is zero. Section 12.3.

start pos: A full starting position and trajectory specification. Section 12.3.

start speed: Initial vehicle speed in meters per second. The default is zero. Section
12.3.

start x: Initial vehicle x position in local coordinates. The default is zero. Sec-
tion 12.3.

start y: Initial vehicle y position in local coordinates. The default is zero. Sec-
tion 12.3.

thrust factor: A scalar correlation between thrust and speed. The default is 20.

thrust map: A mapping between thrust and speed values. Section 12.7.

thrust reflect: If true, negative thrust is simply opposite positive thrust. The default
is false. Section 12.7.

turn loss: A range [0, 1] affecting speed lost during a turn. The default is 0.85.

turn rate: A range [0, 100] affecting vehicle turn radius, e.g., 0 is an infinite turn
radius. The default is 70.

An Example MOOS Configuration Block

An example MOOS configuration block is provided in Listing 45 below. This can also be obtained
from a terminal window with:

$ uSimMarine --example or -e

Listing 34 - Example configuration of the uSimMarine application.

1 ===

2 uSimMarine Example MOOS Configuration

3 ===

4

5 ProcessConfig = uSimMarine

138

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 start_x = 0

11 start_y = 0

12 start_heading = 0

13 start_speed = 0

14 start_depth = 0

15 start_pos = x=0, y=0, speed=0, heading=0, depth=0

16

17 drift_x = 0

18 drift_y = 0

19 rotate_speed = 0

20 drift_vector = 0,0 // heading, magnitude

21

22 buoyancy_rate = 0.025 // meters/sec

23 max_acceleration = 0 // meters/sec^2

24 max_deceleration = 0.5 // meters/sec^2

25 max_depth_rate = 0.5 // meters/sec

26 max_depth_rate_speed = 2.0 // meters/sec

27

28 sim_pause = false // or {true}

29 dual_state = false // or {true}

30 thrust_reflect = false // or {true}

31 thrust_factor = 20 // range [0,inf)

32 turn_rate = 70 // range [0,100]

33 thrust_map = 0:0, 20:1, 40:2, 60:3, 80:5, 100:5

34 }

9.2 Publications and Subscriptions for uSimMarine

The interface for uSimMarine, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uSimMarine --interface or -i

9.2.1 Variables Published by uSimMarine

The primary output of uSimMarine to the MOOSDB is the full specification of the updated vehicle
position and trajectory, along with a few other pieces of information:

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

• BUOYANCY REPORT:

• TRIM REPORT:

• USM ALTITUDE: The updated vehicle altitude in meters if water depth known.

• USM DEPTH: The updated vehicle depth in meters. Section 12.4.4.

• USM DRIFT SUMMARY: A summary of the current total external drift.

• USM HEADING: The updated vehicle heading in degrees.

139

• USM HEADING OVER GROUND: The updated vehicle heading over ground.

• USM LAT: The updated vehicle latitude position.

• USM LONG: The updated vehicle longitude position.

• USM RESET COUNT: The number of time the simulator has been reset.

• USM SPEED: The updated vehicle speed in meters per second.

• USM SPEED OVER GROUND: The updated speed over ground.

• USM X: The updated vehicle x position in local coordinates.

• USM Y: The updated vehicle y position in local coordinates.

• USM YAW: The updated vehicle yaw in radians.

An example USM DRIFT SUMMARY string: "ang=90, mag=1.5, xmag=90, ymag=0".

9.2.2 Variables Subscribed for by uSimMarine

The uSimMarine application will subscribe for the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• DESIRED THRUST: The thruster actuator setting, [−100, 100].

• DESIRED RUDDER: The rudder actuator setting, [−100, 100].

• DESIRED ELEVATOR: The depth elevator setting, [−100, 100].

• USM SIM PAUSED: Simulation pause request, either true or false.

• USM CURRENT FIELD: If true, a configured current field is active.

• USM BUOYANCY RATE: Dynamically set the zero-speed float rate.

• ROTATE SPEED: Dynamically set the external rotational speed.

• DRIFT X: Dynamically set the external drift in the x direction.

• DRIFT Y: Dynamically set the external drift in the y direction.

• DRIFT VECTOR: Dynamically set the external drift direction and magnitude.

• DRIFT VECTOR ADD: Dynamically modify the external drift vector.

• DRIFT VECTOR MULT: Dynamically modify the external drift vector magnitude.

• USM RESET: Reset the simulator with a new position, heading, speed and depth.

• WATER DEPTH: Water depth at the present vehicle position.

Each iteration, after noting the changes in the navigation and actuator values, it posts a new set
of navigation state variables in the form of USM X, USM Y, USM SPEED, USM HEADING, USM DEPTH.

9.2.3 Command Line Usage of uSimMarine

The uSimMarine application is typically launched as a part of a batch of processes by pAntler, but
may also be launched from the command line by the user. The basic command line usage for the
uSimMarine application is the following:

Listing 35 - Command line usage for the uSimMarine application.

140

0 Usage: uSimMarine file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch uSimMarine with the given process name

5 rather than uSimMarine.

6 --example, -e

7 Display example MOOS configuration block.

8 --help, -h

9 Display this help message.

10 --version,-v

11 Display the release version of uSimMarine.

9.3 Setting the Initial Vehicle Position, Pose and Trajectory

The simulator is typically configured with a vehicle starting position, pose and trajectory given by
the following five configuration parameters:

• start x

• start y

• start heading

• start speed

• start depth

The position is specified in local coordinates in relation to a local datum, or (0, 0) position. This
datum is specified in the .moos file at the global level. The heading is specified in degrees and
corresponds to the direction the vehicle is pointing. The initial speed and depth by default are
zero, and are often left unspecified in configuration. Alternatively, the same five parameters may
be set with the start pos parameter as follows:

start_pos = x=100, y=150, speed=0, heading=45, depth=0

The simulator can also be reset at any point during its operation, by posting to the MOOS variable
USM RESET. A posting of the following form will reset the same five parameters as above:

USM RESET = x=200, y=250, speed=0.4, heading=135, depth=10

This has been useful in cases where the objective is to observe the behavior of a vehicle from several
different starting positions, and an external MOOS script, e.g., uTimerScript, is used to reset the
simulator from each of the desired starting states.

9.4 Propagating the Vehicle Speed, Heading, Position and Depth

The vehicle position is updated on each iteration of the uSimMarine application, based on (a) the
previous vehicle state, (b) the elapsed time since the last update, ∆T , (c) the current actuator
values, DESIRED RUDDER, DESIRED THRUST, and DESIRED ELEVATOR, and (d) several parameter settings
describing the vehicle model.

For simplicity, this simulator updates the vehicle speed, heading, position and depth in sequence,
in this order. For example, the position is updated after the heading is updated, and the new

141

position update is made as if the new heading were the vehicle heading for the entire ∆T . The
error introduced by this simplification is mitigated by running uSimMarine with a fairly high MOOS
AppTick value keeping the value of ∆T sufficiently small.

9.4.1 Propagating the Vehicle Speed

The vehicle speed is propagated primarily based on the current value of thrust, which is presumably
refreshed upon each iteration by reading the incoming mail on the MOOS variable DESIRED THRUST.
To simulate a small speed penalty when the vehicle is conducting a turn through the water, the new
thrust value may also be affected by the current rudder value, referenced by the incoming MOOS
variable DESIRED RUDDER. The newly calculated speed is also dependent on the previously noted
speed noted by the incoming MOOS variable NAV SPEED, and the settings to the two configuration
parameters MAX ACCELERATION and MAX DECELERATION.

The algorithm for updating the vehicle speed proceeds as:

1. Calculate vi(RAW), the new raw speed based on the thrust.

2. Calculate vi(TURN), an adjusted and potentially lower speed, based on the raw speed, vi(RAW),
and the current rudder angle, DESIRED RUDDER.

3. Calculate vi(FINAL), an adjusted and potentially lower speed based on vi(TURN), compared to
the prior speed. If the magnitude of change violates either the max acceleration or max
deceleration settings, then the new speed is clipped appropriately.

4. Set the new speed to be vi(FINAL), and use this new speed in the later updates on heading,
position and depth.

Step 1: In the first step, the new speed is calculated by the current value of thrust. In this case
the thrust map is consulted, which is a mapping from possible thrust values to speed values. The
thrust map is configured with the THRUST MAP configuration parameter, and is described in detail in
Section 12.7.

vi(RAW) = THRUST MAP(DESIRED THRUST)

Step 2: In the second step, the calculated speed is potentially reduced depending on the degree to
which the vehicle is turning, as indicated by the current value of the MOOS variable DESIRED RUDDER.
If it is not turning, it is not diminished at all. The adjusted speed value is set according to:

vi(TURN) = vi(RAW) ∗ (1− (
|RUDDER|

100
∗ TURN LOSS))

The configuration parameter turn loss is a value in the range of [0, 1]. When set to zero, there is
no speed lost in any turn. When set to 1, there is a 100% speed loss when there is a maximum
rudder. The default value is 0.85.

Step 3: In the last step, the candidate new speed, vi(TURN) , is compared with the incoming vehicle
speed, vi−1. The elapsed time since the previous simulator iteration, ∆T , is used to calculate the
acceleration or deceleration implied by the new speed. If the change in speed violates either the
min acceleration, or max acceleration parameters, the speed is adjusted as follows:

142

vi(FINAL) =

vi−1 + (MAX ACCELERATION ∗∆T)

(vi(TURN) − vi−1)

∆T > MAX ACCELERATION,

vi−1 − (MAX DECELERATION ∗∆T)
(vi−1 − vi(TURN))

∆T > MAX DECELERATION,

vi(TURN) otherwise.

Step 4: The final speed from the previous step is posted by the simulator as USM SPEED, and is used
the calculations of position and depth, described next.

9.4.2 Propagating the Vehicle Heading

The vehicle heading is propagated primarily based on the current RUDDER value which is refreshed
upon each iteration by reading the incoming mail on the MOOS variable DESIRED RUDDER, and the
elapsed time since the simulator previously updated the vehicle state, ∆T . The change in heading
my also be influenced by the THRUST value from the MOOS variable DESIRED THRUST, and may also
factor an external rotational speed.

The algorithm for updating the new vehicle heading proceeds as:

1. Calculate ∆θi(RAW), the new raw change in heading influenced only by the current rudder
value.

2. Calculate ∆θi(THRUST), an adjusted change in heading, based on the raw change in heading,
∆θi(RAW), and the current THRUST value.

3. Calculate ∆θi(EXTERNAL), an adjusted change in heading considering external rotational speed.

4. Calculate θi, the final new heading based on the calculated change in heading and the previous
heading, and converted to the range of [0, 359].

Step 1: In the first step, the new heading is calculated by the current RUDDER value:

∆θi(RAW) = RUDDER ∗ TURN RATE

100
∗∆T

The TURN RATE is an uSimMarine configuration parameter with the allowable range of [0, 100]. The
default value of this parameter is 70, chosen in part to be consistent with the performance of the
simulator prior to this parameter being exposed to configuration. A value of 0 would result in the
vehicle never turning, regardless of the rudder value.

Step 2: In the second step the influence of the current vehicle thrust (from the MOOS variable
DESIRED THRUST) may be applied to the change in heading. The magnitude of the change of heading
is adjusted to be greater when the thrust is greater than 50% and less when the thrust is less than
50%.

∆θi(THRUST) = θi(RAW) ∗ (1 +
|THRUST| − 50

50
)

The direction in heading change is then potentially altered based on the sign of the THRUST:

143

∆θi(THRUST) =

{
− ∆θi(THRUST) THRUST < 0,

∆θi(THRUST) otherwise.

Step 3: In the third step, the change in heading may be further influenced by an external rotational
speed. This speed, if present, would be read at the outset of the simulator iteration from either the
configuration parameter rotate speed, or dynamically from the MOOS variable ROTATE SPEED. The
updated value is calculated as follows:

∆θi(EXTERNAL) = θi(THRUST) + (ROTATE SPEED ∗∆T)

Step 4: In final step, the final new heading is set based on the previous heading and the change in
heading calculated in the previous three steps. If needed, the value of the new heading is converted
to its equivalent heading in the range [0, 359].

θi = heading360(θi−1 + ∆θi(EXTERNAL))

The simulator then posts this value to the MOOSDB as USM HEADING.

9.4.3 Propagating the Vehicle Position

The vehicle position is propagated primarily based on the newly calculated vehicle heading and
speed, the previous vehicle position, and the elapsed time since updating the previous vehicle
position, ∆T .

The algorithm for updating the new vehicle position proceeds as:

1. Calculate the vehicle heading and speed used for updating the new vehicle position, with the
heading converted into radians.

2. Calculate the new positions, xi and yi, based on the heading, speed and elapsed time.

3. Calculate a possibly revised new position, factoring in any external drift.

Step 1: In the first step, the heading value, θ̄, and speed value, v̄ used for calculating the new
vehicle position is set averaging the newly calculated values with their prior values:

v̄ =
(vi + vi−1)

2
(1)

θ̄ = atan2(s, c)

where s and c are given by:

s = sin(θi−1π/180) + sin(θiπ/180)

c = cos(θi−1π/180) + cos(θiπ/180)

144

The above calculation of the heading average handles the issue of angle wrap, i.e., the average of
359 and 1 is zero, not 180.

Step 2: The vehicle x and y position is updated by the following two equations:

xi = xi−1 + sin(θ̄) ∗ v̄ ∗∆T

yi = yi−1 + cos(θ̄) ∗ v̄ ∗∆T

The above is calculated keeping in mind the difference in convention used in marine navigation
where zero degrees is due North and 90 degrees is due East. That is, the mapping is as follows from
marine to traditional trigonometric convention: 0◦ → 90◦, 90◦ → 0◦, 180◦ → 270◦, 270◦ → 180◦.

Step 3: The final step adjusts the x, and y position from above, taking into consideration any
external drift that may be present. This drift includes both the drift that may be directed from
the incoming MOOS variables as described in Section 12.6. The drift components below are also a
misnomer since they are provided in units of meters per second.

xi = xi + EXTERNAL DRIFT X ∗∆T (2)

yi = yi + EXTERNAL DRIFT Y ∗∆T (3)

9.4.4 Propagating the Vehicle Depth

Depth change in uSimMarine is simulated based on a few input parameters. The primary parameter
that changes from one iteration to the next is the ELEVATOR actuator value, from the MOOS variable
DESIRED ELEVATOR. On any given iteration the new vehicle depth, zi, is determined by:

zi = zi−1 + (żi ∗∆t)

The new vehicle depth is altered by the depth change rate, żi, applied to the elapsed time, ∆t, which
is roughly equivalent to the apptick interval set in the uSimMarine configuration block. The depth
change rate on the current iteration is determined by the vehicle speed as set in (5) and the ELEVATOR

actuator value, and by the following three vehicle-specific simulator configuration parameters that
allow for some variation in simulating the physical properties of the vehicle. The buoyancy rate,
for simplicity, is given in meters per second where positive values represent a positively buoyant
vehicle. The max depth rate, and max depth rate speed parameters determine the function(s) shown
in Figure 70. The vehicle will have a higher depth change rate at higher speeds, up to some
maximum speed where the speed no longer affects the depth change rate. The actual depth change
rate then depends on the elevator and vehicle speed.

145

Figure 51: The relationship between the rate of depth change rate, given a current vehicle speed. Different elevator
settings determine unique curves as shown.

The value of the depth change rate, v̇i, is determined as follows:

żi = (
v̄

MAX DEPTH RATE SPEED
)2 ∗ ELEVATOR

100
∗ MAX DEPTH RATE + BUOYANCY RATE (4)

Both fraction components in 8 are clipped to [−1, 1]. When the vehicle is in reverse thrust and
has a negative speed, this equation still holds. However, a vehicle would likely not have a depth
change rate curve symmetric between positive and negative vehicle speeds. By default the value
of buoyancy rate is set to 0.025, slightly positively buoyant, max depth rate is set to 0.5, and
max depth rate speed is set to 2.0. The prevailing buoyancy rate may be dynamically adjusted
by a separate MOOS application publishing to the variable BUOYANCY RATE.

9.5 Propagating the Vehicle Altitude

The vehicle altitude is base solely on the current vehicle depth and the depth of the water at the
current vehicle position. If nothing is known about the water depth, then USM ALTITUDE is not
published. The simulator may be configured with a default water depth:

default water depth = 100

This will allow the simulator to produce some altitude information if needed for testing consumers
of USM ALTITUDE information. Furthermore, the simulator subscribes for water depth information in
the variable USM WATER DEPTH which could conceivably be produced by another MOOS application
with access to bathymetry data and the vehicle’s navigation position.

146

9.6 Simulation of External Drift

When the simulator updates the vehicle position as in equations (6) and (7), it factors a possible
external drift in the x and y directions, in the term EXTERNAL DRIFT X, and EXTERNAL DRIFT X respec-
tively. The external drift may have two distinct components; a drift applied generally, and a drift
applied due to a current field configured with an external file correlating drift vectors to local x
and y positions. These drifts may be set in one of three ways discussed next.

9.6.1 External X-Y Drift from Initial Simulator Configuration

An external drift may be configured upon startup by either specifying explicitly the drift in the x
and y direction, or by specifying a drift magnitude and direction. Figure 71 shows two external
drifts each with the appropriate configuration using either the drift x and drift y parameters or
the single drift vector parameter:

Figure 52: External Drift Vectors: Two drift vectors each configured with either the drift x and drift y configu-
ration parameters or their equivalent single drift vector parameter.

If, for some reason, the user mistakenly configures the simulator with both configuration styles,
the configuration appearing last in the configuration block will be the prevailing configuration. If
uSimMarine is configured with these parameters, these external drifts will be applied on the very
first iteration and all later iterations unless changed dynamically, as discussed next.

9.6.2 External X-Y Drift Received from Other MOOS Applications

External drifts may be adjusted dynamically by other MOOS applications based on any criteria
wished by the user and developer. The uSimMarine application registers for the following MOOS
variables in this regard: DRIFT X, DRIFT Y, DRIFT VECTOR, DRIFT VECTOR ADD, DRIFT VECTOR MULT. The
first three variables simply override the previously prevailing drift, set by either the initial config-
uration or the last received mail concerning the drift.

By posting to the USM DRIFT VECTOR MULT variable the magnitude of the prevailing vector may
be modified with a single multiplier such as:

DRIFT_VECTOR_MULT = 2

DRIFT_VECTOR_MULT = -1

147

The first MOOS posting above would double the size of the prevailing drift vector, and the second
example would reverse the direction of the vector. The DRIFT VECTOR ADD variable describes a drift
vector to be added to the prevailing drift vector. For example, consider the prevailing drift vector
shown on the left in Figure 71, with the following MOOS mail received by the simulator:

DRIFT_VECTOR_ADD = "262.47, 15.796"

The resulting drift vector would be the vector shown on the right in Figure 71. This interface opens
the door for the scripting changes to the drift vector like the one below, that crudely simulate a
gust of wind in a given direction that builds up to a certain magnitude and dies back down to a
net zero drift.

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

The above style script was described in the Section 6.9.2, where the uTimerScript utility was used to
simulate wind gusts in random directions with random magnitude. The DRIFT * interface may also
be used by any third party MOOS application simulating things such as ocean or wind currents.
The uSimMarine application does have native support for simple simulation with current fields as
described next.

148

9.7 The ThrustMap Data Structure

A thrust map is a data structure that may be used to simulate a non-linear relationship between
thrust and speed. This is configured in the uSimMarine configuration block with the thrust map

parameter containing a comma-separated list of colon-separated pairs. Each element in the comma-
separated list is a single mapping component. In each component, the value to the left of the colon is
a thrust value, and the other value is a corresponding speed. The following is an example mapping
given in string form, and rendered in Figure 72.

thrust_map = "-100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5"

Figure 53: A Thrust Map: The example thrust map was defined by seven mapping points in the string ”-100:-3.5,
-75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5”.

9.7.1 Automatic Pruning of Invalid Configuration Pairs

The thrust map has an immutable domain of [−100, 100], indicating 100% forward and reverse
thrust. Mapping pairs given outside this domain will simply be ignored. The thrust mapping must
also be monotonically increasing. This follows the intuition that more positive thrust will not result
in the vehicle going slower, and likewise for negative thrust. Since the map is configured with a
sequence of pairs as above, a pair that would result in a non-monotonic map is discarded. All maps
are created as if they had the pair 0:0 given explicitly. Any pair provided in configuration with
zero as the thrust value will ignored; zero thrust always means zero speed. Therefore, the following
map configurations would all be equivalent to the map configuration above and shown in Figure
72:

thrust_map = -120:-5, -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5.0, 120:6

thrust_map = -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 90:4, 100:5.0

thrust_map = -100:-3.5, -75:-3.2, -10:-2, 0:0, 20:2.4, 50:4.2, 80:4.8, 100:5.0

thrust_map = -100:-3.5, -75:-3.2, -10:-2, 0:1, 20:2.4, 50:4.2, 80:4.8, 100:5.0

149

In the first case, the pairs "-120:-5" and "120:6" would be ignored since they are outside the
[−100, 100] domain. In the second case, the pair "90:4" would be ignored since its inclusion would
entail a non-monotonic mapping given the previous pair of "80:4.8". In the third case, the pair
"0:0" would be effectively ignored since it is implied in all map configurations anyway. In the fourth
case, the pair "0:1" would be ignored since a mapping from a non-zero speed to zero thrust is not
permitted.

9.7.2 Automatic Inclusion of Implied Configuration Pairs

Since the domain [−100, 100] is immutable, the thrust map is altered a bit automatically when
or if the user provides a configuration without explicit mappings for the thrust values of −100 or
100. In this case, the missing mapping becomes an implied mapping. The mapping 100:v is added
where v is the speed value of the closest point. For example, the following two configurations are
equivalent:

thrust_map = -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8

thrust_map = -100:-3.2, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:4.8

9.7.3 A Shortcut for Specifying the Negative Thrust Mapping

For convenience, the mapping of positive thrust values to speed values can be used in reverse for
negative thrust values. This is done by configuring uSimMarine with thrust reflect=true, which is
false by default. If thrust reflect is false, then a speed of zero is mapped to all negative thrust
values. If thrust reflect is true, but the user nevertheless provides a mapping for a negative thrust
in a thrust map, then the thrust reflect directive is simply ignored and the thrust map is used
instead. For example, the following two configurations are equivalent:

thrust_map = -100:-5, -80:-4.8, -50:-4.2, -20:-2.4, 20:2.4, 50:4.2, 80:4.8, 100:5

and

thrust_map = 20:2.4, 50:4.2, 80:4.8, 100:5

thrust_reflect = true

9.7.4 The Inverse Mapping - From Speed To Thrust

Since a thrust map only permits configurations resulting in a non-monotonic function, the inverse
also holds (almost) as a valid mapping from speed to thrust. We say ”almost” because there is
ambiguity in cases where there is one or more plateau in the thrust map as in:

thrust_map = -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8

In this case a speed of 4.8 maps to any thrust in the range [80, 100]. To remove such ambiguity, the
thrust map, as implemented in a C++ class with methods, returns the lowest magnitude thrust in

150

such cases. A speed of 4.8 (or 5 for that matter), would return a thrust value of 80. A speed of
−3.2 would return a thrust value of −75. The motivation for this way of disambiguation is that if
a thrust value of 80 and 100, both result in the same speed, one would always choose the setting
that conserves less energy. Reverse mappings are not used by the uSimMarine application, but may
be of use in applications responsible for posting a desired thrust given a desired speed, as with the
pMarinePID application.

9.7.5 Default Behavior of an Empty or Unspecified ThrustMap

If uSimMarine is configured without an explicit thrust map or thrust reflect configuration, the
default behavior is governed as if the following two lines were actually included in the uSimMarine

configuration block:

thrust_map = 100:5

thrust_reflect = false

The default thrust map is rendered in Figure 73.

Figure 54: The Default Thrust Map: This thrust map is used if no explicit configuration is provided.

This default configuration was chosen for its reasonableness, and to be consistent with the behavior
of prior versions of uSimMarine where the user did not have the ability to configure a thrust map.

151

10 The uMAC Utilities

In this section the utilities for viewing appcasts are discussed. The include:

• The uMACView utility: A GUI tool containing navigation tools for viewing appcasts across
multiple vehicles or nodes. A snapshot is shown on the right in Figure 7.

• The uMAC utility: A utility implement in the terminal window. Simpler in the interface, but
notable in that it allows a user to remotely launch the tool on deployed vehicle.

• uMACView integrated with pMarineViewer: An interface nearly identical with uMACView fully
integrated within pMarineViewer, convenient for those already using pMarineViewer.

10.1 The uMACView Utility

The uMACView utility is an appcast viewer with a graphical user interface using the FLTK library.
It contains three panes as shown in Figure 55. The bottom pane renders incoming appcasts. The
top right pane lists possible applications for selecting appcast viewing for the present node. The
upper left pane shows all presently known nodes from which appcasts have been received.

Figure 55: The uMACView utility receives appcasts from perhaps several different nodes and applications on each
node. The interface allows the user to select a node and application for viewing the selected application’s latest
appcast. The viewer will raise alerts from non-selected nodes and applications when or if a run warning occurs.

152

The content of the appcast pane is solely determined by the appcast content itself. From the
viewer’s perspective it is simply pushing a list of strings to a browser pane. Even the formatting of
the header lines showing the application name, node name and application iteration, are formatted
by a method defined over the AppCast class.

The content of the application pane lists the applications known thus far to the viewer from
incoming appcasts for a particular node. The order is shown by the order in which they were
received. The three columns, "AC", "CW", and "RW", show the number of appcasts received from the
application, and the number of run warnings and configuration warnings in the latest appcast.

The content of the node pane in the upper left lists the nodes known thus far to the viewer
from incoming appcasts. The order is shown by the order in which they were received. The three
columns, "AC", "CW", and "RW", show the number of appcasts received from a given node for all
applications from that node, as well as the sum of all run warnings and configuration warnings for
all applications received from the given node.

10.1.1 Publications and Subscriptions

The sole subscription for uMACView is the appcast message in the MOOS variable APPCAST. The sole
publication is the appcast request, in the variable APPCAST REQ.

10.1.2 Configuration File Parameters

A few configuration parameters are exposed to facilitate visual preference settings that would
otherwise need to be done each time the application is launched via pull-down menus. These
parameters are listed below, but may be recalled anytime by typing on the command line: "uMACView

-e".

Listing 10.36: Configuration Parameters for uMACView.

nodes font size: Possible settings, xsmall, small, medium, large. The default is medium.

procs font size: Possible settings, xsmall, small, medium,large. The default is medium.

appcast font size: Possible settings, xsmall, small, medium,large. The default is small.

appcast color scheme: Possible settings, default, beige, indigo. The default is default.

appcast height: Possible settings, [30,35,40,..., 85,90]. The default is 70.

refresh mode: Possible settings, paused, events, streaming. The default is events.

The appcast height refers to the relative height of the appcast pane to the window. The default
of 70 means the pane will be 70% of the overall window height.

The refresh mode refers to the policy of refreshing appcasts via appcast requests sent to the
nodes and their applications. This is discussed below in Section 10.1.4

10.1.3 Command Line Arguments and Options

A few command line arguments are available. They are similar to most other MOOS-IvP applica-
tions. These arguments are listed below, but may be recalled anytime by typing on the command
line:

153

$ uMACView --help or -h

• --alias=<ProcessName>: Launch with the given process name rather than uMACView.

• --example, -e: Display example MOOS configuration block.

• --help, -h: Display command line usage.

• --interface, -i: Display MOOS publications and subscriptions.

• --version, -v: Display release version information.

10.1.4 Refresh Modes

The uMACView utility, operates in one of three refresh modes. This mode is always shown on the
upper right in the title bar in reverse color. The three modes are the streaming, events, and paused
modes.

Figure 56: The uMAC utility is in one of three refresh modes, determining the manner in which appcast requests are
conveyed to known applications and nodes. Reserved keyboard keys are used to transition between modes.

The Paused Refresh Mode In the paused refresh mode, no appcasts are solicited by the uMAC

utility. The information being rendered should remain constant, virtually paused. Since appcast
requests have a duration associated with them, prior appcast requests received by an application
may need some time before expiring. Therefore the uMAC user may still see a trickle of updates after
entering the paused mode. Furthermore, if there is another uMAC utility open, generating appcast
requests, updates might still be seen after pausing.

The Events Refresh Mode In the events refresh mode, appcast requests of two types are sent
to all known nodes and applications. The first type of request is sent only to the selected node and
application. This type requests a continual update of appcasts, unconditionally. This application
is, after all, the selected application for viewing. The second type of request is sent to all other
nodes and applications requesting an appcast only if a new run warning is generated. The events
refresh mode is the default mode upon launch.

The Streaming Refresh Mode In the streaming refresh mode, appcast requests are sent to all
nodes and all applications, all the time. Furthermore, the request type is unconditional, meaning
the application is requested to post a new appcast regardless of whether anything has changed in
the application status. This mode is normally used for brief debugging, perhaps to check whether

154

a node or application fails to respond. It creates a lot of appcast messaging traffic. It is not
recommended to operate in this mode normally.

10.2 The uMAC Utility

The uMAC utility is an appcast viewer implemented in the terminal console. It acts the same as
uMACView in terms of soliciting appcasts by publishing APPCAST REQ messages and receiving APPCAST

mail. The advantage over the GUI tool is the ability to remotely log into a vehicle and launch
uMAC in a terminal window. This is espcially useful if the vehicle is otherwise not behaving in its
communication with a shoreside MOOS community. Like uMACView, multiple versions of the utility
may be running at the same time without interference with one another.

10.2.1 Content Modes

The viewable information in the uMAC tool is rendered in one of four content modes. Besides a help
mode, the other three modes correlate to one of the three panes of the uMACView window in Figure
55. The primary content mode is the appcast content mode, where the output is an appcast of a
particular application as shown in Figure 57.

Figure 57: The uMAC utility monitors appcasts from a terminal window. The user may switch between appcasting
sources by navigating with a keyboard menu. The primary advantage or uMAC is the ability to run it on a remotely
deployed vehicle with a network connection.

The content of this window should look very similar to the bottom pane of the uMACView window in
Figure 55. Two other content modes are supported, the nodes content mode, and the procs content
mode. The former allows the user to select between different nodes, i.e., vehicles. The latter allows

155

selection between different processes (MOOS applications) for the selected node. These modes
correlate to the top two panes in the uMACView tool shown in Figure 55. A fourth, help, content
mode is also supported. Transitioning between modes usually is done by selecting one of the choices
presented, or popping back up a mode to allow a higher level choice. This done with three reserved
keyboard keys, p, n, h, implementing the transitions shown in Figure 58.

Figure 58: The uMAC utility monitors appcasts from a terminal window. The

An example rendering of uMAC in the nodes content mode is shown on the left in Figure 59. Each
discovered node is assigned a character ID in the left-most column for selecting the node. The ID’s
are assigned as the nodes are discovered from incoming APPCAST messages.

The title line at the top of the report shows, on the left, the name of the uMAC application as it
is known to the MOOSDB, and the number of nodes discovered. When uMAC is launched it gives
itself a random suffix, such as uMAC 5991 in this example, to allow multiple uMAC sessions connect
with the same MOOSDB. Recall the MOOSDB requires unique names across applications. The
righthand side of the title line shows the number of iterations of the uMAC in parentheses, and the
refresh mode shown in reverse color.

Figure 59: The uMAC utility monitors appcasts from a terminal window. The user may switch between appcasting
sources by navigating with a keyboard menu. The primary advantage or uMAC is the ability to run it on a remotely
deployed vehicle with a network connection.

An example from the procs content mode is shown on the right in Figure 59. Each discovered
process (MOOS application) is assigned an ID in the left-most column for selecting the process.
The ID’s are assigned as the apps are discovered from incoming APPCAST messages. The title line
at the top is nearly the same format as in the nodes content mode, except that the selected node

156

is shown rather than the total nodes. The appcast counter just below the title line indicates the
total number of appcasts received over all nodes, not just the selected node.

10.2.2 Refresh Modes

The uMAC utility, like the uMacView utility, operates in one of three refresh modes. This mode is
always shown on the upper right in the title bar in reverse color. The three modes are the streaming,
events, and paused modes. The desciption of these modes, given in Section 10.1.4, is also applicable
to the operation for the uMAC utility.

10.2.3 A Tip Regarding Process Monitoring and uMAC Sessions

The uProcessWatch application is a utility for monitoring the presence of applications connected to
the MOOSDB. It is appcast enabled, and will post a run warning when it detects the disappearance
of a prior noted process. If a uMAC is launched and then exited, the uProcessWatch utility may
interpret this as a problem and post a run warning. The effect may be that real run warnings are
then later ignored. Tip: Add the following configuration line to uProcessWatch to ignore the exit
of a uMAC session: nowatcth = uMAC*.

10.2.4 Publications and Subscriptions

The sole subscription for uMACView is the appcast message in the MOOS variable APPCAST. The sole
publication is the appcast request, in the variable APPCAST REQ.

10.2.5 Configuration File Parameters

There are no configuration file parameters specific to uMAC.

10.2.6 Command Line Arguments and Options

A few command line arguments are available. They are similar to most other MOOS-IvP applica-
tions. These arguments are listed below, but may be recalled anytime by typing on the command
line:

$ uMAC --help or -h

• --alias=<ProcessName>: Launch with the given process name rather than uMACView.

• --example, -e: Display example MOOS configuration block.

• --help, -h: Display command line usage.

• --interface, -i: Display MOOS publications and subscriptions.

• --version, -v: Display release version information.

157

10.3 The uMACView Utility Integrated with pMarineViewer

The final uMAC tool is essentially uMACView embedded in the pMarineViewer application as shown in
Figure 60. This is mostly just a convenience for users already using pMarineViewer. The appcasting
mode may be toggled with the ’a’ key to return to the traditional viewing layout. The AppCasting

pull-down menu offers the same set of selections as uMACView with the exception of the hot keys used
to switch between appcasting refresh modes since those keys were already used for other things in
pMarineViewer.

Figure 60: The pMarineViewer utility has an appcasting viewing capability very similar to uMACView embedded in
the viewer. The rendering of the appcasting panes may be toggled on/off with the ’a’ key.

In addition to toggling on/off the appcasting portion of the window, the width of the set of
appcasting panes may be made wider or thinner using the CTRL-ALT-ARROW keys. By default the
appcasting panes consume 30% of the width. The default height of the appcasting (bottom) portion
of the appcasting panes consume 75% of the height of the set of appcasting panes. These startup
extents may be changed with configuration the parameters:

appcasting_width = 25 // legal values [20, 25,... ,65, 70]

appcasting_height = 80 // legal values [30, 35,..., 85, 90]

The prevailing value of these parameters can always be discovered by checking which radio button
in the pull-down menu is presently selected.

158

11 Enabling a MOOS Application for AppCasting

In this section we discuss the steps for enabling a new or existing MOOS application to support
appcasting. Much of the requisite appcasting source code is the same for any application. This is
captured in a new AppCastingMOOSApp class to minimize appcasting boilerplate code. This class, as
indicated in Figure 61, is a subclass of the common CMOOSApp class distributed with core MOOS.

Figure 61: On-demand appcasting is implemented in a new CMOOSApp subclass called AppCastingMOOSApp.

The following is the complete list of required steps:

• Subclass the AppCastingMOOSApp superclass,

• Invoke a pair of superclass methods in the Iterate() function,

• Invoke a superclass method in the OnNewMail() function,

• Invoke a superclass method in the OnStartUp() function,

• Invoke a superclass method when registering for variables,

• Implement a buildReport() function where appcasts are formed.

In our discussions to follow, a hypothetical YourMOOSApp application and class definition is described.
The above steps are the minimum requirements for appcasting, and they are fairly boilerplate, in
most cases a single line of code. To make good use of the appcasting features, configuration warn-
ings, run warnings and events may be placed in your application code. This is neither mandatory
nor boilerplate, but really dependent on the application. Nevertheless, a few rules of thumb dis-
cussed:

• Posting events,

• Posting run warnings,

• Posting configuration warnings.

[2]

11.1 Sub-classing the AppCastingMOOSApp Superclass

The first step is to make YourMOOSApp a subclass of the AppCastingMOOSApp. This brings your
application class everything from the traditional CMOOSApp class as well as the appcasting features

159

of the AppCastingMOOSApp class. The only additional thing besides declaring the superclass is to
declare the buildReport() function. This virtual function is invoked when an appcast has been
deemed warranted. Appcasts are not typically generated on each iteration. See the later discussion
about on-demand appcasting. The contents of the buildReport() function are discussed in greater
detail in Section 11.6.

Listing 37: Pseudocode for sub-classing the AppCastingMOOSApp superclass.

0 #include "MOOS/libMOOS/Thirdparty/AppCasting/AppCastingMOOSApp.h"

1

2 class YourMOOSApp : public AppCastingMOOSApp // Instead of CMOOSApp

3 {

4 // All your normal class declaration stuff

5

6 bool buildReport(); // Add this line

7 };

11.2 Invoking Superclass Methods in the Iterate() Method

The next step is to implement YourMOOSApp::Iterate() to invoke two superclass functions; one at the
very beginning and one at the very end. The first superclass function, on line 2 below, does certain
common bookkeeping such as incrementing the counter representing the number of application
iterations, and updating a variable holding the present MOOS time. The second superclass function,
on line 6, invokes the on-demand appcasting logic discussed previously. If an appcast is deemed
warranted, it will invoke the buildReport() function.

Listing 38: Pseudocode for invoking subclass methods in the Iterate() method.

0 bool YourMOOSApp::Iterate()

1 {

2 AppCastingMOOSApp::Iterate(); // Add this line

3

4 // Do all your normal Iterate stuff

5

6 AppCastingMOOSApp::PostReport(); // Add this line

7 return(true);

8 }

11.3 Invoking a Superclass Method in the OnNewMail() Method

The next step is to implement YourMOOSApp::OnNewMail() to invoke a superclass function to have
the first opportunity to handle incoming mail. For example, APPCAST REQ mail is handled in the
superclass. The list of mail messages is passed by reference to the superclass handler, allowing the
AppCastingMOOSApp::OnNewMail() function to remove handled messages before returning to the mail
handling implemented in YourMOOSApp::OnNewMail().

Listing 39: Pseudocode for invoking a superclass method in the OnNewMail() method.

0 bool YourMOOSApp::OnNewMail(MOOSMSG_LIST &NewMail)

1 {

2 AppCastingMOOSApp::OnNewMail(NewMail); // Add this line

3

4 // Do all your other normal mail handling.

5 }

160

11.4 Invoking a Superclass Method in the OnStartUp() Method

The next step is to implement YourMOOSApp::OnStartUp() to invoke a superclass function to perform
any startup steps needed by the AppCastingMOOSApp superclass.

Listing 40: Pseudocode for invoking a superclass method in the OnStartUp() method.

0 void YourMOOSApp::OnStartUp()

1 {

2 AppCastingMOOSApp::OnStartUp(); // Add this line

3

4 // Do all your other startup stuff

5 }

11.5 Invoking a Superclass Method When Registering for Variables

The next step is to invoke the AppCastingMOOSApp::RegisterVariables() wherever variables are
registered in YourMOOSApp implementation. Many application developers have, in practice, created
a dedicated registerVariables() function, typically invoked at the conclusion of both OnStartUp()

and OnConnectToServer(). The following example is one way to handle this.

Listing 41: Pseudocode for invoking a superclass method when registering for variables.

0 void YourMOOSApp::registerVariables()

1 {

2 AppCastingMOOSApp::RegisterVariables(); // Add this line

3

4 // Do all your other registrations

5 }

11.6 Implementing a buildReport Method for Generating AppCasts

The buildReport() function is where appcasts are made! The action that happens here is unique to
the application. The form is designed by the application developer to reflect the most meaningful,
concise snapshot of the application’s present status. Recall that it is invoked automatically when or
if the application deems an appcast is to be generated. Those issues were discussed in Section 11.10,
and 11.2. For the purposes here though, a decision has indeed been made to generate an appcast,
and buildReport() has been invoked to see that it happens. A simple example of buildReport() is
shown below in Listing 42

Listing 42: Pseudocode for a very simple buildReport() example.

0 bool YourMOOSApp::buildReport()

1 {

2 m_msgs << "Total Message Report: \n";

3 m_msgs << "# of good messages: " << m_good_message_count << endl;

4 m_msgs << "# of bad messages: " << m_bad_message_count << endl;

5

6 return(true);

7 }

This simple example would generate something similar to the appcast rendered in Figure 62.

161

Figure 62: The rendering of a very simple appcast with just two message lines, no warnings, and no events. The
header bar shows the name of the application, the originating MOOS community, the number of configuration and
run warnings, and the application’s current iteration counter.

Assume for the sake of the example that the two counter variables at the end of lines 2 and 3 are
member variables for the fictitious YourMOOSApp class. The member variable m msgs however is an
STL stringstream also declared in the AppCastingMOOSApp class, for holding message output. The
primary means of building an appcast is to add successive lines to the appcast via:

m_msgs << <element> << endl;

where <element> may be a string, double, int, unsigned int, or any combination joined by the
"<<" operator. A new line is indicated by tacking on the newline, "\n", at the end. That’s pretty
much it, but there are a few other noteworthy points:

• Run warnings, configuration warnings, and events are not added during buildReport(),
though not strictly prevented. They are more typically added as warnings are discovered,
or events occur during the normal mail handling or iterate cycle.

• The header lines shown in Figure 62 is made automatically by the uMAC tool. They grab
information in the appcast such as the application name and iteration number. These are
filled by the boilerplate function calls such as AppCastingMOOSApp::Iterate() described earlier.

• The appcast is automatically cleared prior to each invocation of buildReport(). Warnings
and events however are not cleared as discussed earlier.

• Returning true indicates that the appcast was indeed populated. Returning false would result
in the appcast not being sent to the terminal or published to the MOOSDB. This is useful
for some applications that may want to apply additional criteria before deciding to appcast.

• Although report formatting, e.g., columns or tables, is not natively supported somehow in
the buildReport() routine, there are tools available that facilitate formatting that work easily
with the buildReport() interface. They are discussed later in Section 99.

11.7 Posting Events

Events are messages (strings) that the application developer deems to be noteworthy enough to
want to include in appcast output. An event may be posted anywhere in the application code with
the reportEvent() function defined in the AppCastingMOOSApp class. A simple example:

reportEvent("Good msg received: " + message);

When the appcast is rendered in either a uMAC tool or in the terminal, the result would look
similar to that in Figure 63.

162

Figure 63: The rendering of a simple appcast with two message lines, a single run warning, and single event. The
header bar shows the name of the application, the originating MOOS community, the number of configuration and
run warnings, and the application’s current iteration counter.

Recall that only a limited number of events are retained. Older events are dropped once a maximum
amount is exceeded. The default event list size is eight, but this may be overridden for a particular
application with the following parameter setting in the applications MOOS configuration block:

max_appcast_events = 25

The event list size may be set to at most 100.

11.8 Posting Run Warnings

Run warnings are similar to events, but they convey that something may have gone wrong. A run
warning may be posted anywhere in the application code with the reportRunWarning() function
defined in the AppCastingMOOSApp class. A simple example:

reportRunWarning("Bad msg received: " + message);

The appcast structure and uMAC tools are implemented such that run warnings are more easily
brought to the attention of the operator. This is due to the following reasons:

• When an appcast has a run warning, the uMAC utilities will indicate so by turning the
text red, as in Figure 6. Even when the focus of the uMAC utility is not on the particular
appcast containing the run warning, the menu items for the appcast and vehicle will be
rendered red. In Figure 64 for example, the menu browser focus is on vehicle archie and the
uFldMessageHandler application. The red highlights also indicate there is a run warning on
another application on archie, and there is also a run warning on vehicle charlie.

• An appcast request to an application may specify the reporting threshold to be "run warning"

as discussed in Section 11.10.4. In this case an application will repeatedly choose not to
publish an appcast unless a new run warning has been generated.

• The uMAC tools also keep a running tally of run warnings for each vehicle and each application
under the column labeled "RW" as shown in Figure 64.

163

Figure 64: The uMAC tools include will highlight an application that has produced an appcast with a run warning.
If the run warning occurred on a node not currently in focus, e.g., charlie in the figure, the node itself is highlighted.
The user can then select the other node to view the application generating the run warning.

Recall that only a limited number of run warnings are retained. Unlike events where the older ones
are dropped once a maximum has been exceeded, old run warnings are never dropped. After the
maximum has been reached, the generic warning "Other Run Warnings" is simply incremented. The
default list size is ten, but this may be overridden for a particular application with the following
parameter setting in the applications MOOS configuration block:

max_appcast_run_warnings = 50

The run warning list size may be set to at most 100.

11.9 Posting Configuration Warnings

Configuration warnings are similar to run warnings but they are typically only posted during the
application startup, when the mission configuration file is read. A configuration warning may be
posted with the reportConfigWarning() function defined in the AppCastingMOOSApp class. A simple
example:

reportConfigWarning("Problem configuring FOOBAR. Expected a number but got: " + str);

There is a second way to post a configuration warning. This second method takes as an argument
the original full configuration parameter line found in the mission file. Before posting the config-
uration warning it checks to see if the parameter was something that likely was handled by the
superclass. This prevents the application from reporting that AppTick=10" is an unknown parameter
for example.

reportUnhandledConfigWarning(original_full_config_line);

The appcast structure and uMAC tools are implemented such that configuration warnings are more
easily brought to the attention of the operator. This is due to the following reasons:

• When an appcast has a configuration warning, the uMAC utilities will indicate so by turning
the text green, as in Figure 65. Even when the focus of the uMAC utility is not on the

164

particular appcast containing the config warning, the menu items for the appcast and vehicle
will be rendered green. In Figure 65 for example, the menu browser focus is on the shoreside

and the uTimerScript application application. The green highlights indicate there is a con-
figuration warning in the uFldShoreBroker application and on other applications on archie,
charlie, and ernie.

• The uMAC tools also keep a running tally of configuration warnings for each vehicle and each
application under the column labeled "CW" as shown in Figure 65.

Figure 65: The uMAC tools include will highlight an application that has produced an appcast with a configuration
warning. If the configuration warning occurred on a node not currently in focus, e.g., archie, charlie, or ernie in the
figure, the node itself is highlighted. The user can then select the other node to view the application generating the
warning.

Like run warnings and events, configuration warnings are limited in number to prevent runaway
growth in the size of an appcast over time. The limit however is large, 100, and fixed. Presumably
the number of configuration warnings is limited by the number of possible configuration parameters
for an application, and large number of configuration warnings usually indicates that a mission
should be halted and fixed before moving on.

The example code in Listing 43 below is an example OnStartUp() method showing the intended
scenarios of reporting configuration warnings.

Listing 43: Pseudocode example for OnStartUp() configuration warning handling.

0 bool YourMOOSApp::OnStartUp()

1 {

2 AppCastingMOOSApp::OnStartUp();

3

4 STRING_LIST sParams;

5 if(!m_MissionReader.GetConfiguration(GetAppName(), sParams))

6 reportConfigWarning("No config block found for " + GetAppName());

7

8 STRING_LIST::iterator p;

9 for(p=sParams.begin(); p!=sParams.end(); p++) {

10 string orig = *p;

11 string line = *p;

12 string param = toupper(MOOSChomp(line, "="));

13 string value = line;

14

15 if(param == "FOO") {

165

16 bool handled = handleConfigFOO(value);

17 if(!handled)

18 reportConfigWarning("Problem with configuring FOO: " + value);

19 }

20 else if(param == "BAR")

21 bool handled = handleConfigBAR(value);

22 if(!handled)

23 reportConfigWarning("Problem with configuring BAR: " + value);

24 }

25

26 else

27 reportUnhandledConfigWarning(orig);

28 }

29 return(true);

30 }

There are a few issues worth noting in this example:

• A check is made that the application actually has a configuration block. This is done on lines
5-6, and catches a common bug with newly minted mission files.

• Checks are made that known parameters have legal values. This is done for the parameters
FOO in lines 15-19 and BAR in lines 20-24 in Listing 42. In each case an external handler is
invoked, e.g., handleConfigFOO(value) on line 16, which returns a Boolean indicating whether
the parameter value was proper or not. If not, a configuration warning is reported as on lines
18 and 23.

• A final case is handled (lines 26-27) if the present parameter is not matched by any of
the previous cases. This catches the common mistake of mis-spelling the parameter name.
The reportUnhandledConfigWarning() function is used rather than the reportConfigWarning()

function. The former function takes the whole original configuration line as input and checks
to see if the parameter was a parameter handled at the superclass level. This prevents the
generation of a warning for a line like AppTick=5.

166

11.10 Under The Hood - On-Demand AppCasting

On-demand appcasting refers to the goal of minimizing generated appcasts, ideally only when there
is a reasonable chance that an appcast will be tended to (looked at) by a user. Users may be tending
to an appcast either by looking at terminal output or through a uMAC utility.

11.10.1 Motivation

Consider the following scenario:

• 50 simulated vehicles,

• 10 MOOS applications on each vehicle,

• Each application running with an apptick of 4Hz,

• MOOS time warp running at 50x real time.

In the above scenario (a conceivable scenario in our lab), 100, 000 appcasts would be generated per
second. Consider a second scenario:

• One fielded underwater vehicle,

• 10 MOOS applications,

• Each application running with an apptick of 4Hz,

• Mission duration 6 months.

Although only 40 appcasts per second are generated, the vehicle is underwater and, limited to
acoustic messages, likely no appcast will ever be viewed. With a six month mission, the CPU time
and power budget needed to generate those 40 reports per second may come under scrutiny.

11.10.2 AppCast Generation Criteria

An appcast will be generated on any given iteration only if the contingencies and criteria depicted
in Figure 66 are met. In short, an appcast is generated if either a terminal is open or a uMAC
tool is requesting the appcast. Even when appcasts are being generated, they may be generated
less frequently than each iteration, to be more in line with the frequency a user is able to process
refreshed report information. These issues are discussed next.

Figure 66: The appcast-generation decision is based on a few checks and contingencies. An appcast is generated only
when tended to by a user, and only as often as a user may reasonably expect to process updated reports.

167

11.10.3 Terminal Switching

In the flow diagram of Figure 66, the first step in determining whether an appcast is to be generated
involves the presence of a terminal. If an app is launched with a terminal window open, or launched
within a terminal window, appcasts should be generated. In this regard, appcasting apps should
behave like non-appcasting apps, although the former produce its output by different means. From
the user’s perspective, launching an application with or within a terminal window should result in
the same familiar behavior regardless of the application.

Upon startup an AppCastingMOOSApp application will try to determine if information directed
to stdout will make its way to an open terminal window. The following reasoning is applied:

• By default the application assumes information directed to stdout is indeed being rendered
in a terminal window.

• During startup, when mission file parameters are examined, if the application detects the
presence of a global parameter, TERM REPORTING, and it is set to "false", then the application
assumes that a terminal window is not open to receive output written to stdout.

• During application startup, the following library utility function is invoked:
int isatty(int);

This function is defined in "unistd.h" and is able to detect whether stdout is receiving output.

[2]
The above ensures that the application will err on the side of always producing appcasts/output
to the terminal. To ensure otherwise, make sure to include TERM REPORTING="false" in the MOOS
configuration file. The last check is just a convenience or extra fail-safe; if an application is launched
with pAntler using NewConsole=false and pAntler itself is also launched with stdout redirected to
/dev/null/, then the application will automatically detect this. This style of launching is actually
a fairly common scenario in launching MOOS communities on vehicles in our lab. In detecting this
situation, the application will not generate an appcast unless a uMAC tool is explicitly requesting
it. This is the next step in the flow diagram of Figure 66, and discussed next.

11.10.4 AppCast Requests

An appcast request is message sent to an application to begin or continue generating appcasts for
some specified period of time. The request may originate in the local MOOSDB community, or in
a remote MOOSDB community as the two cases suggest in Figure 67.

Figure 67: An appcast request requests that the receiving MOOS application begin or continue to generate appcasts
for some specified period of time. The request may come from an app within the same MOOS community, or from
an external community.

168

The content of an appcast request has the following fields:

• node: This must match the name of the MOOS community within which the application is
running, otherwise the appcast request is ignored. If the node is "any", the match is always
granted.

• app: This must match the name of the MOOS application receiving the appcast request,
otherwise the request is ignored. If the app is "any", the match is always granted.

• duration: This number is given in seconds and represents the duration the appcast request
would honored after time of receipt. The maximum value is 30.

• threshold: The threshold name indicates under what conditions the receiving application
should generate an appcast. The two possible values are "any" and "run warning". Their
meaning is discussed below.

• key: The key helps the receiving application discern appcast requests from different applica-
tions.

An example APPCAST REQ message:

APPCAST_REQ = "node=henry,app=uProcessWatch,duration=3.0,key=pMarineViewer:shore,thresh=any"

Node and Application Name Matching

An appcast request will be ignored by a receiving application if the request does not match. The
match must be made between both (a) the requested and actual node name, and (b) the requested
and actual application name. A requested value "any" will match to anything. In most circum-
stances the requesting application, e.g., uMAC, uMACView or pMarineViewer, will publish requests
naming nodes and applications explicitly. Upon startup however, requests may be sent broadly to
all nodes and all applications just to learn about existing appcasting sources before beginning to
make requests explicitly.

Duration Time

An appcast request comes with a duration. If the requesting application disconnects, the duration
caveat ensures the original request will timeout before too long, avoiding the perpetual generation
of now unwanted appcasts. Typically if a uMAC tool is monitoring the appcasts of a particular
application, it repeatedly sends an appcast request to that application, each time refreshing the
timeout criteria.

Request Threshold

The appcast request will specify one of two criteria to the application. First, if the criteria is "any",
the application is to publish an appcast on each possible occasion. This may not be the same
as each iteration, since a further minimum reporting interval may be applied, as described next
in Section 11.10.5. The second threshold type is "run warning". This indicates to the receiving
application that it should only generate an appcast when a new run warning has been added since
the last appcast. Typically a uMAC tool will run in a mode sending appcast requests with the

169

latter threshold to virtually all nodes and apps, but appcast requests using the former threshold to
a single node and app chosen by the user.

Request Key

Appcast requests specify a particular key, presumably a string that is unique to the originator.
This allows the receiving application to do separate bookkeeping for each requesting application.
As long as the appcast request threshold matches, hasn’t timed out, and met the threshold criteria
for one of its logged keys, then it indeed meets the criteria.

11.10.5 Limiting the AppCast Frequency

A third criteria is applied to the decision of generating an appcast on any given iteration. This
criteria is depicted at the bottom of Figure 66. Even if a terminal window is open, or a valid appcast
request has been received recently enough, the generation of an appcast may still be skipped if the
previously generated appcast was generated too recently. Appcast content is meant to be human-
readable, and humans can only read so fast. There is no sense in updating a terminal report say
50 times per second. Although most MOOS apps are typically not configured with an apptick
of 50Hz, an apptick of 5 is fairly common, as well as a MOOSTimeWarp of say 10 or greater. By
default, appcasting applications are limited in real-time frequency to once every 0.6 seconds. This
number just reflects a number that, from experience, feels right for an update frequency. This can
be overridden for any application with the following parameter in its configuration block:

term_report_interval = N

where N ranges from zero (appcast generation only limited by the iteration frequency) to at most
30 seconds.

11.10.6 Generating and AppCast vs. Publishing and AppCast

The flow chart shown in Figure 66 addresses the issue of whether or not an appcast is generated.
Whether or not the appcast is published is a separate issue. Simply put, if a terminal window is
open for the application, and it has not received any appcast requests, the appcast is generated
(and rendered to the terminal stdout) but not published.

Below is informal logic shorthand for policy and conditions described over the last few pages.
First, on the policy of whether an appcast is generated:

generate_appcast = (terminal || appcast_requested) && !recent_appcast

Next, on the question of whether an appcast is published:

publish_appcast = generate_appcast && appcast_requested

Both of the above depend on the term appcast requested from the following expression:

appcast_requested = unexpired_request && ((request_threshold == "any") || new_run_warning)

The terms in this last expression will hopefully be apparent from the preceding pages.

170

11.10.7 Monitoring AppCast Traffic Volume

The uMAC tools provide a means for verifying that on-demand appcasting is behaving. These
same tools are also useful for catching other anomalies. The information in Figure 68 below focuses
on the information at the top of the uMACView tool depicted in Figure 7.

Figure 68: The uMAC tools include tallies of the number of appcasts received for each node (vehicle) and each
application. The above is from the top of the uMACView and appcast tallies are shown under the "AC" column.

From the above figure, one might ask why so many appcasts have been received when the user
is only focusing on one vehicle and one application. There are few answers to this question and
each, listed below, are related to the need for a uMAC utility to find existing sources of appcasts.
After all, how can it send an appcast request to a particular vehicle and particular application if it
doesn’t know that it exists?

• When an application starts up, it generates appcasts for the first few iterations. Even if
no one is tending to this information, a few iterations worth of un-tended appcasts is not
harmful. In practice this helps uMAC tools discover appcasting apps.

• When a uMAC tool starts up, it posts an appcast request to all known nodes and all known
applications. The uMAC tool doesn’t need to know or keep track of vehicles, but just simply
posts APPCAST REQ="node=all,app=all, ..." to its local MOOSDB. Other applications have
the responsibility of bridging this variable to other vehicles as they are discovered.

• Each time a uMAC tool receives a new appcast from a vehicle/node it has never heard from
before, it responds by posting an appcast request back to that vehicle for all applications, e.g..,
APPCAST REQ="node=henry,app=all, ...". This request will time-out shortly, but is usually
sufficient to learn about all applications on that node. Subsequent requests are then more
selective.

171

12 uSimMarine: Basic Vehicle Simulation

The uSimMarine application is a simple 3D vehicle simulator that updates vehicle state, position
and trajectory, based on the present actuator values and prior vehicle state. The typical usage
scenario has a single instance of uSimMarine associated with each simulated vehicle, as shown in
Figure 69.

Figure 69: Typical uSimMarine Usage: In an N-vehicle simulation, an instance if uSimMarine is used for each
vehicle. Each simulated vehicle typically has its own dedicated MOOS community. The IvP Helm (pHelmIvP)
publishes high-level control decisions. The PID controller (pMarinePID) converts the high-level control decisions to
low-level actuator decisions. Finally the simulator (uSimMarine) reads the low-level actuator postings to produce a
new vehicle position.

This style of simulation can be contrasted with simulators that simulate a comprehensive set of
aspects of the simulation, including multiple vehicles, and aspects of the environment and commu-
nications. The uSimMarine simulator simply focuses on a single vehicle. It subscribes for the vehicle
navigation state variables NAV X, NAV Y, NAV SPEED, NAV HEADING, NAV DEPTH, as well as the actuator
values DESIRED RUDDER, DESIRED THRUST, DESIRED ELEVATOR. The uSimMarine accommodates a notion
of external drifts applied to the vehicle to crudely simulate current or wind. These drifts may be
set statically or may be changing dynamically by other MOOS processes. The simulator also may
be configured with a simple geo-referenced data structure representing a field of water currents.

Under typical UUV payload autonomy operation, the uSimMarine and pMarinePID MOOS mod-
ules would not be present. The vehicle’s native controller would handle the role of pMarinePID, and
the vehicle’s native navigation system (and the vehicle itself) would handle the role of uSimMarine.

12.1 Configuration Parameters for uSimMarine

The following parameters are defined for uSimMarine. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated so in parentheses below.

Listing 12.44: Configuration Parameters for uSimMarine.

buoyancy rate: Rate, in meters per second, at which vehicle floats to surface at zero
speed. The default is zero. Section 12.4.4.

current field: A file containing the specification of a current field.

current field active: If true, simulator uses the current field if specified.

172

default water depth: Default value for local water depth for calculating altitude (0).

drift vector: A pair of external drift values, direction and magnitude.

rotate speed: An external rotational speed in degrees per second (0).

drift x: An external drift value applied in the x direction (0).

drift y: An external drift value applied in the y direction (0).

max acceleration: Maximum rate of vehicle acceleration in m/s2 (0.5).

max deceleration: Maximum rate of vehicle deceleration in m/s2 (0.5).

max depth rate: Maximum rate of vehicle depth change, meters per second. The defauls
is 0.5. Section 12.4.4.

max depth rate speed: Vehicle speed at which max depth rate is achievable (2.5). Section
12.4.4.

prefix: Prefix of MOOS variables published. The default is USM .

sim pause: If true, the simulation is paused. The default is false.

start depth: Initial vehicle depth in meters. The default is zero. Section 12.3.

start heading: Initial vehicle heading in degrees. The default is zero. Section 12.3.

start pos: A full starting position and trajectory specification. Section 12.3.

start speed: Initial vehicle speed in meters per second. The default is zero. Section
12.3.

start x: Initial vehicle x position in local coordinates. The default is zero. Sec-
tion 12.3.

start y: Initial vehicle y position in local coordinates. The default is zero. Sec-
tion 12.3.

thrust factor: A scalar correlation between thrust and speed. The default is 20.

thrust map: A mapping between thrust and speed values. Section 12.7.

thrust reflect: If true, negative thrust is simply opposite positive thrust. The default
is false. Section 12.7.

turn loss: A range [0, 1] affecting speed lost during a turn. The default is 0.85.

turn rate: A range [0, 100] affecting vehicle turn radius, e.g., 0 is an infinite turn
radius. The default is 70.

An Example MOOS Configuration Block

An example MOOS configuration block is provided in Listing 45 below. This can also be obtained
from a terminal window with:

$ uSimMarine --example or -e

Listing 45 - Example configuration of the uSimMarine application.

1 ===

2 uSimMarine Example MOOS Configuration

3 ===

4

5 ProcessConfig = uSimMarine

173

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 start_x = 0

11 start_y = 0

12 start_heading = 0

13 start_speed = 0

14 start_depth = 0

15 start_pos = x=0, y=0, speed=0, heading=0, depth=0

16

17 drift_x = 0

18 drift_y = 0

19 rotate_speed = 0

20 drift_vector = 0,0 // heading, magnitude

21

22 buoyancy_rate = 0.025 // meters/sec

23 max_acceleration = 0 // meters/sec^2

24 max_deceleration = 0.5 // meters/sec^2

25 max_depth_rate = 0.5 // meters/sec

26 max_depth_rate_speed = 2.0 // meters/sec

27

28 sim_pause = false // or {true}

29 dual_state = false // or {true}

30 thrust_reflect = false // or {true}

31 thrust_factor = 20 // range [0,inf)

32 turn_rate = 70 // range [0,100]

33 thrust_map = 0:0, 20:1, 40:2, 60:3, 80:5, 100:5

34 }

12.2 Publications and Subscriptions for uSimMarine

The interface for uSimMarine, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uSimMarine --interface or -i

12.2.1 Variables Published by uSimMarine

The primary output of uSimMarine to the MOOSDB is the full specification of the updated vehicle
position and trajectory, along with a few other pieces of information:

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

• BUOYANCY REPORT:

• TRIM REPORT:

• USM ALTITUDE: The updated vehicle altitude in meters if water depth known.

• USM DEPTH: The updated vehicle depth in meters. Section 12.4.4.

• USM DRIFT SUMMARY: A summary of the current total external drift.

• USM HEADING: The updated vehicle heading in degrees.

174

• USM HEADING OVER GROUND: The updated vehicle heading over ground.

• USM LAT: The updated vehicle latitude position.

• USM LONG: The updated vehicle longitude position.

• USM RESET COUNT: The number of time the simulator has been reset.

• USM SPEED: The updated vehicle speed in meters per second.

• USM SPEED OVER GROUND: The updated speed over ground.

• USM X: The updated vehicle x position in local coordinates.

• USM Y: The updated vehicle y position in local coordinates.

• USM YAW: The updated vehicle yaw in radians.

An example USM DRIFT SUMMARY string: "ang=90, mag=1.5, xmag=90, ymag=0".

12.2.2 Variables Subscribed for by uSimMarine

The uSimMarine application will subscribe for the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• DESIRED THRUST: The thruster actuator setting, [−100, 100].

• DESIRED RUDDER: The rudder actuator setting, [−100, 100].

• DESIRED ELEVATOR: The depth elevator setting, [−100, 100].

• USM SIM PAUSED: Simulation pause request, either true or false.

• USM CURRENT FIELD: If true, a configured current field is active.

• USM BUOYANCY RATE: Dynamically set the zero-speed float rate.

• ROTATE SPEED: Dynamically set the external rotational speed.

• DRIFT X: Dynamically set the external drift in the x direction.

• DRIFT Y: Dynamically set the external drift in the y direction.

• DRIFT VECTOR: Dynamically set the external drift direction and magnitude.

• DRIFT VECTOR ADD: Dynamically modify the external drift vector.

• DRIFT VECTOR MULT: Dynamically modify the external drift vector magnitude.

• USM RESET: Reset the simulator with a new position, heading, speed and depth.

• WATER DEPTH: Water depth at the present vehicle position.

Each iteration, after noting the changes in the navigation and actuator values, it posts a new set
of navigation state variables in the form of USM X, USM Y, USM SPEED, USM HEADING, USM DEPTH.

12.2.3 Command Line Usage of uSimMarine

The uSimMarine application is typically launched as a part of a batch of processes by pAntler, but
may also be launched from the command line by the user. The basic command line usage for the
uSimMarine application is the following:

Listing 46 - Command line usage for the uSimMarine application.

175

0 Usage: uSimMarine file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch uSimMarine with the given process name

5 rather than uSimMarine.

6 --example, -e

7 Display example MOOS configuration block.

8 --help, -h

9 Display this help message.

10 --version,-v

11 Display the release version of uSimMarine.

12.3 Setting the Initial Vehicle Position, Pose and Trajectory

The simulator is typically configured with a vehicle starting position, pose and trajectory given by
the following five configuration parameters:

• start x

• start y

• start heading

• start speed

• start depth

The position is specified in local coordinates in relation to a local datum, or (0, 0) position. This
datum is specified in the .moos file at the global level. The heading is specified in degrees and
corresponds to the direction the vehicle is pointing. The initial speed and depth by default are
zero, and are often left unspecified in configuration. Alternatively, the same five parameters may
be set with the start pos parameter as follows:

start_pos = x=100, y=150, speed=0, heading=45, depth=0

The simulator can also be reset at any point during its operation, by posting to the MOOS variable
USM RESET. A posting of the following form will reset the same five parameters as above:

USM RESET = x=200, y=250, speed=0.4, heading=135, depth=10

This has been useful in cases where the objective is to observe the behavior of a vehicle from several
different starting positions, and an external MOOS script, e.g., uTimerScript, is used to reset the
simulator from each of the desired starting states.

12.4 Propagating the Vehicle Speed, Heading, Position and Depth

The vehicle position is updated on each iteration of the uSimMarine application, based on (a) the
previous vehicle state, (b) the elapsed time since the last update, ∆T , (c) the current actuator
values, DESIRED RUDDER, DESIRED THRUST, and DESIRED ELEVATOR, and (d) several parameter settings
describing the vehicle model.

For simplicity, this simulator updates the vehicle speed, heading, position and depth in sequence,
in this order. For example, the position is updated after the heading is updated, and the new

176

position update is made as if the new heading were the vehicle heading for the entire ∆T . The
error introduced by this simplification is mitigated by running uSimMarine with a fairly high MOOS
AppTick value keeping the value of ∆T sufficiently small.

12.4.1 Propagating the Vehicle Speed

The vehicle speed is propagated primarily based on the current value of thrust, which is presumably
refreshed upon each iteration by reading the incoming mail on the MOOS variable DESIRED THRUST.
To simulate a small speed penalty when the vehicle is conducting a turn through the water, the new
thrust value may also be affected by the current rudder value, referenced by the incoming MOOS
variable DESIRED RUDDER. The newly calculated speed is also dependent on the previously noted
speed noted by the incoming MOOS variable NAV SPEED, and the settings to the two configuration
parameters MAX ACCELERATION and MAX DECELERATION.

The algorithm for updating the vehicle speed proceeds as:

1. Calculate vi(RAW), the new raw speed based on the thrust.

2. Calculate vi(TURN), an adjusted and potentially lower speed, based on the raw speed, vi(RAW),
and the current rudder angle, DESIRED RUDDER.

3. Calculate vi(FINAL), an adjusted and potentially lower speed based on vi(TURN), compared to
the prior speed. If the magnitude of change violates either the max acceleration or max
deceleration settings, then the new speed is clipped appropriately.

4. Set the new speed to be vi(FINAL), and use this new speed in the later updates on heading,
position and depth.

Step 1: In the first step, the new speed is calculated by the current value of thrust. In this case
the thrust map is consulted, which is a mapping from possible thrust values to speed values. The
thrust map is configured with the THRUST MAP configuration parameter, and is described in detail in
Section 12.7.

vi(RAW) = THRUST MAP(DESIRED THRUST)

Step 2: In the second step, the calculated speed is potentially reduced depending on the degree to
which the vehicle is turning, as indicated by the current value of the MOOS variable DESIRED RUDDER.
If it is not turning, it is not diminished at all. The adjusted speed value is set according to:

vi(TURN) = vi(RAW) ∗ (1− (
|RUDDER|

100
∗ TURN LOSS))

The configuration parameter turn loss is a value in the range of [0, 1]. When set to zero, there is
no speed lost in any turn. When set to 1, there is a 100% speed loss when there is a maximum
rudder. The default value is 0.85.

Step 3: In the last step, the candidate new speed, vi(TURN) , is compared with the incoming vehicle
speed, vi−1. The elapsed time since the previous simulator iteration, ∆T , is used to calculate the
acceleration or deceleration implied by the new speed. If the change in speed violates either the
min acceleration, or max acceleration parameters, the speed is adjusted as follows:

177

vi(FINAL) =

vi−1 + (MAX ACCELERATION ∗∆T)

(vi(TURN) − vi−1)

∆T > MAX ACCELERATION,

vi−1 − (MAX DECELERATION ∗∆T)
(vi−1 − vi(TURN))

∆T > MAX DECELERATION,

vi(TURN) otherwise.

Step 4: The final speed from the previous step is posted by the simulator as USM SPEED, and is used
the calculations of position and depth, described next.

12.4.2 Propagating the Vehicle Heading

The vehicle heading is propagated primarily based on the current RUDDER value which is refreshed
upon each iteration by reading the incoming mail on the MOOS variable DESIRED RUDDER, and the
elapsed time since the simulator previously updated the vehicle state, ∆T . The change in heading
my also be influenced by the THRUST value from the MOOS variable DESIRED THRUST, and may also
factor an external rotational speed.

The algorithm for updating the new vehicle heading proceeds as:

1. Calculate ∆θi(RAW), the new raw change in heading influenced only by the current rudder
value.

2. Calculate ∆θi(THRUST), an adjusted change in heading, based on the raw change in heading,
∆θi(RAW), and the current THRUST value.

3. Calculate ∆θi(EXTERNAL), an adjusted change in heading considering external rotational speed.

4. Calculate θi, the final new heading based on the calculated change in heading and the previous
heading, and converted to the range of [0, 359].

Step 1: In the first step, the new heading is calculated by the current RUDDER value:

∆θi(RAW) = RUDDER ∗ TURN RATE

100
∗∆T

The TURN RATE is an uSimMarine configuration parameter with the allowable range of [0, 100]. The
default value of this parameter is 70, chosen in part to be consistent with the performance of the
simulator prior to this parameter being exposed to configuration. A value of 0 would result in the
vehicle never turning, regardless of the rudder value.

Step 2: In the second step the influence of the current vehicle thrust (from the MOOS variable
DESIRED THRUST) may be applied to the change in heading. The magnitude of the change of heading
is adjusted to be greater when the thrust is greater than 50% and less when the thrust is less than
50%.

∆θi(THRUST) = θi(RAW) ∗ (1 +
|THRUST| − 50

50
)

The direction in heading change is then potentially altered based on the sign of the THRUST:

178

∆θi(THRUST) =

{
− ∆θi(THRUST) THRUST < 0,

∆θi(THRUST) otherwise.

Step 3: In the third step, the change in heading may be further influenced by an external rotational
speed. This speed, if present, would be read at the outset of the simulator iteration from either the
configuration parameter rotate speed, or dynamically from the MOOS variable ROTATE SPEED. The
updated value is calculated as follows:

∆θi(EXTERNAL) = θi(THRUST) + (ROTATE SPEED ∗∆T)

Step 4: In final step, the final new heading is set based on the previous heading and the change in
heading calculated in the previous three steps. If needed, the value of the new heading is converted
to its equivalent heading in the range [0, 359].

θi = heading360(θi−1 + ∆θi(EXTERNAL))

The simulator then posts this value to the MOOSDB as USM HEADING.

12.4.3 Propagating the Vehicle Position

The vehicle position is propagated primarily based on the newly calculated vehicle heading and
speed, the previous vehicle position, and the elapsed time since updating the previous vehicle
position, ∆T .

The algorithm for updating the new vehicle position proceeds as:

1. Calculate the vehicle heading and speed used for updating the new vehicle position, with the
heading converted into radians.

2. Calculate the new positions, xi and yi, based on the heading, speed and elapsed time.

3. Calculate a possibly revised new position, factoring in any external drift.

Step 1: In the first step, the heading value, θ̄, and speed value, v̄ used for calculating the new
vehicle position is set averaging the newly calculated values with their prior values:

v̄ =
(vi + vi−1)

2
(5)

θ̄ = atan2(s, c)

where s and c are given by:

s = sin(θi−1π/180) + sin(θiπ/180)

c = cos(θi−1π/180) + cos(θiπ/180)

179

The above calculation of the heading average handles the issue of angle wrap, i.e., the average of
359 and 1 is zero, not 180.

Step 2: The vehicle x and y position is updated by the following two equations:

xi = xi−1 + sin(θ̄) ∗ v̄ ∗∆T

yi = yi−1 + cos(θ̄) ∗ v̄ ∗∆T

The above is calculated keeping in mind the difference in convention used in marine navigation
where zero degrees is due North and 90 degrees is due East. That is, the mapping is as follows from
marine to traditional trigonometric convention: 0◦ → 90◦, 90◦ → 0◦, 180◦ → 270◦, 270◦ → 180◦.

Step 3: The final step adjusts the x, and y position from above, taking into consideration any
external drift that may be present. This drift includes both the drift that may be directed from
the incoming MOOS variables as described in Section 12.6. The drift components below are also a
misnomer since they are provided in units of meters per second.

xi = xi + EXTERNAL DRIFT X ∗∆T (6)

yi = yi + EXTERNAL DRIFT Y ∗∆T (7)

12.4.4 Propagating the Vehicle Depth

Depth change in uSimMarine is simulated based on a few input parameters. The primary parameter
that changes from one iteration to the next is the ELEVATOR actuator value, from the MOOS variable
DESIRED ELEVATOR. On any given iteration the new vehicle depth, zi, is determined by:

zi = zi−1 + (żi ∗∆t)

The new vehicle depth is altered by the depth change rate, żi, applied to the elapsed time, ∆t, which
is roughly equivalent to the apptick interval set in the uSimMarine configuration block. The depth
change rate on the current iteration is determined by the vehicle speed as set in (5) and the ELEVATOR

actuator value, and by the following three vehicle-specific simulator configuration parameters that
allow for some variation in simulating the physical properties of the vehicle. The buoyancy rate,
for simplicity, is given in meters per second where positive values represent a positively buoyant
vehicle. The max depth rate, and max depth rate speed parameters determine the function(s) shown
in Figure 70. The vehicle will have a higher depth change rate at higher speeds, up to some
maximum speed where the speed no longer affects the depth change rate. The actual depth change
rate then depends on the elevator and vehicle speed.

180

Figure 70: The relationship between the rate of depth change rate, given a current vehicle speed. Different elevator
settings determine unique curves as shown.

The value of the depth change rate, v̇i, is determined as follows:

żi = (
v̄

MAX DEPTH RATE SPEED
)2 ∗ ELEVATOR

100
∗ MAX DEPTH RATE + BUOYANCY RATE (8)

Both fraction components in 8 are clipped to [−1, 1]. When the vehicle is in reverse thrust and
has a negative speed, this equation still holds. However, a vehicle would likely not have a depth
change rate curve symmetric between positive and negative vehicle speeds. By default the value
of buoyancy rate is set to 0.025, slightly positively buoyant, max depth rate is set to 0.5, and
max depth rate speed is set to 2.0. The prevailing buoyancy rate may be dynamically adjusted
by a separate MOOS application publishing to the variable BUOYANCY RATE.

12.5 Propagating the Vehicle Altitude

The vehicle altitude is base solely on the current vehicle depth and the depth of the water at the
current vehicle position. If nothing is known about the water depth, then USM ALTITUDE is not
published. The simulator may be configured with a default water depth:

default water depth = 100

This will allow the simulator to produce some altitude information if needed for testing consumers
of USM ALTITUDE information. Furthermore, the simulator subscribes for water depth information in
the variable USM WATER DEPTH which could conceivably be produced by another MOOS application
with access to bathymetry data and the vehicle’s navigation position.

181

12.6 Simulation of External Drift

When the simulator updates the vehicle position as in equations (6) and (7), it factors a possible
external drift in the x and y directions, in the term EXTERNAL DRIFT X, and EXTERNAL DRIFT X respec-
tively. The external drift may have two distinct components; a drift applied generally, and a drift
applied due to a current field configured with an external file correlating drift vectors to local x
and y positions. These drifts may be set in one of three ways discussed next.

12.6.1 External X-Y Drift from Initial Simulator Configuration

An external drift may be configured upon startup by either specifying explicitly the drift in the x
and y direction, or by specifying a drift magnitude and direction. Figure 71 shows two external
drifts each with the appropriate configuration using either the drift x and drift y parameters or
the single drift vector parameter:

Figure 71: External Drift Vectors: Two drift vectors each configured with either the drift x and drift y configu-
ration parameters or their equivalent single drift vector parameter.

If, for some reason, the user mistakenly configures the simulator with both configuration styles,
the configuration appearing last in the configuration block will be the prevailing configuration. If
uSimMarine is configured with these parameters, these external drifts will be applied on the very
first iteration and all later iterations unless changed dynamically, as discussed next.

12.6.2 External X-Y Drift Received from Other MOOS Applications

External drifts may be adjusted dynamically by other MOOS applications based on any criteria
wished by the user and developer. The uSimMarine application registers for the following MOOS
variables in this regard: DRIFT X, DRIFT Y, DRIFT VECTOR, DRIFT VECTOR ADD, DRIFT VECTOR MULT. The
first three variables simply override the previously prevailing drift, set by either the initial config-
uration or the last received mail concerning the drift.

By posting to the USM DRIFT VECTOR MULT variable the magnitude of the prevailing vector may
be modified with a single multiplier such as:

DRIFT_VECTOR_MULT = 2

DRIFT_VECTOR_MULT = -1

182

The first MOOS posting above would double the size of the prevailing drift vector, and the second
example would reverse the direction of the vector. The DRIFT VECTOR ADD variable describes a drift
vector to be added to the prevailing drift vector. For example, consider the prevailing drift vector
shown on the left in Figure 71, with the following MOOS mail received by the simulator:

DRIFT_VECTOR_ADD = "262.47, 15.796"

The resulting drift vector would be the vector shown on the right in Figure 71. This interface opens
the door for the scripting changes to the drift vector like the one below, that crudely simulate a
gust of wind in a given direction that builds up to a certain magnitude and dies back down to a
net zero drift.

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, 0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

DRIFT_VECTOR_ADD = 137, -0.25

The above style script was described in the Section 6.9.2, where the uTimerScript utility was used to
simulate wind gusts in random directions with random magnitude. The DRIFT * interface may also
be used by any third party MOOS application simulating things such as ocean or wind currents.
The uSimMarine application does have native support for simple simulation with current fields as
described next.

183

12.7 The ThrustMap Data Structure

A thrust map is a data structure that may be used to simulate a non-linear relationship between
thrust and speed. This is configured in the uSimMarine configuration block with the thrust map

parameter containing a comma-separated list of colon-separated pairs. Each element in the comma-
separated list is a single mapping component. In each component, the value to the left of the colon is
a thrust value, and the other value is a corresponding speed. The following is an example mapping
given in string form, and rendered in Figure 72.

thrust_map = "-100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5"

Figure 72: A Thrust Map: The example thrust map was defined by seven mapping points in the string ”-100:-3.5,
-75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5”.

12.7.1 Automatic Pruning of Invalid Configuration Pairs

The thrust map has an immutable domain of [−100, 100], indicating 100% forward and reverse
thrust. Mapping pairs given outside this domain will simply be ignored. The thrust mapping must
also be monotonically increasing. This follows the intuition that more positive thrust will not result
in the vehicle going slower, and likewise for negative thrust. Since the map is configured with a
sequence of pairs as above, a pair that would result in a non-monotonic map is discarded. All maps
are created as if they had the pair 0:0 given explicitly. Any pair provided in configuration with
zero as the thrust value will ignored; zero thrust always means zero speed. Therefore, the following
map configurations would all be equivalent to the map configuration above and shown in Figure
72:

thrust_map = -120:-5, -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5.0, 120:6

thrust_map = -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 90:4, 100:5.0

thrust_map = -100:-3.5, -75:-3.2, -10:-2, 0:0, 20:2.4, 50:4.2, 80:4.8, 100:5.0

thrust_map = -100:-3.5, -75:-3.2, -10:-2, 0:1, 20:2.4, 50:4.2, 80:4.8, 100:5.0

184

In the first case, the pairs "-120:-5" and "120:6" would be ignored since they are outside the
[−100, 100] domain. In the second case, the pair "90:4" would be ignored since its inclusion would
entail a non-monotonic mapping given the previous pair of "80:4.8". In the third case, the pair
"0:0" would be effectively ignored since it is implied in all map configurations anyway. In the fourth
case, the pair "0:1" would be ignored since a mapping from a non-zero speed to zero thrust is not
permitted.

12.7.2 Automatic Inclusion of Implied Configuration Pairs

Since the domain [−100, 100] is immutable, the thrust map is altered a bit automatically when
or if the user provides a configuration without explicit mappings for the thrust values of −100 or
100. In this case, the missing mapping becomes an implied mapping. The mapping 100:v is added
where v is the speed value of the closest point. For example, the following two configurations are
equivalent:

thrust_map = -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8

thrust_map = -100:-3.2, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:4.8

12.7.3 A Shortcut for Specifying the Negative Thrust Mapping

For convenience, the mapping of positive thrust values to speed values can be used in reverse for
negative thrust values. This is done by configuring uSimMarine with thrust reflect=true, which is
false by default. If thrust reflect is false, then a speed of zero is mapped to all negative thrust
values. If thrust reflect is true, but the user nevertheless provides a mapping for a negative thrust
in a thrust map, then the thrust reflect directive is simply ignored and the thrust map is used
instead. For example, the following two configurations are equivalent:

thrust_map = -100:-5, -80:-4.8, -50:-4.2, -20:-2.4, 20:2.4, 50:4.2, 80:4.8, 100:5

and

thrust_map = 20:2.4, 50:4.2, 80:4.8, 100:5

thrust_reflect = true

12.7.4 The Inverse Mapping - From Speed To Thrust

Since a thrust map only permits configurations resulting in a non-monotonic function, the inverse
also holds (almost) as a valid mapping from speed to thrust. We say ”almost” because there is
ambiguity in cases where there is one or more plateau in the thrust map as in:

thrust_map = -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8

In this case a speed of 4.8 maps to any thrust in the range [80, 100]. To remove such ambiguity, the
thrust map, as implemented in a C++ class with methods, returns the lowest magnitude thrust in

185

such cases. A speed of 4.8 (or 5 for that matter), would return a thrust value of 80. A speed of
−3.2 would return a thrust value of −75. The motivation for this way of disambiguation is that if
a thrust value of 80 and 100, both result in the same speed, one would always choose the setting
that conserves less energy. Reverse mappings are not used by the uSimMarine application, but may
be of use in applications responsible for posting a desired thrust given a desired speed, as with the
pMarinePID application.

12.7.5 Default Behavior of an Empty or Unspecified ThrustMap

If uSimMarine is configured without an explicit thrust map or thrust reflect configuration, the
default behavior is governed as if the following two lines were actually included in the uSimMarine

configuration block:

thrust_map = 100:5

thrust_reflect = false

The default thrust map is rendered in Figure 73.

Figure 73: The Default Thrust Map: This thrust map is used if no explicit configuration is provided.

This default configuration was chosen for its reasonableness, and to be consistent with the behavior
of prior versions of uSimMarine where the user did not have the ability to configure a thrust map.

186

13 pHostInfo: Detecting and Sharing Host Info

The pHostInfo application is a tool with a simple objective - determine the IP address of the
machine on which it is running and post it to the MOOSDB. Although this information is available
in a number of ways to a user at the keyboard, it may not be readily available for reasoning about
within a MOOS community. Often, from an application’s perspective, the host name is simply
known and configured as localhost. This is fine for most purposes, but in situations where a user is
on a machine where the IP address changes frequently, and the user is launching MOOS processes
that talk to other machines, it may be very convenient to auto-determine the prevailing IP address
and publish it to the MOOSDB. The typical usage scenario for pHostInfo is shown in Figure 74.

Figure 74: Typical pHostInfo Topology: A shoreside or topside community is receiving information from several
deployed vehicles, in the form of node reports. The node reports contain time-stamped updated vehicle positions,
from which the speed and distance measurements are derived and posted to the shoreside MOOSDB.

There are two scenarios where this is currently envisioned to be useful. The first is when the
fielded vehicles are on the network with their IP addresses set via DHCP. For example if on the
network via a cellular phone connection. The second is if the “vehicle” is a simulated vehicle
running on a user’s laptop also with its IP address set via DHCP. In both cases there may be
another MOOS community with a known IP address, e.g., a shoreside community, to which the
local vehicle wishes to inform it of its current IP address. This simple process however does not
get involved in any activity regarding the communication to other MOOS communities, but simply
tries to determine and post, the IP address, e.g., PHI HOST IP ="192.168.0.1" for other applications
to do as they see fit.

187

13.1 Configuration Parameters for pHostInfo

The pHostInfo application may be configured with a configuration block within a MOOS mission
file, typically with a .moos file suffix. The following parameters are defined for pHostInfo.

Listing 13.47: Configuration Parameters for pHostInto.

temp file dir: Directory where temporary files are written. Default is "∼/".

default hostip: IP address used if no IP address can otherwise be determined.

default hostip force: This IP address will override any IP address from an auto-discovered net-
work interface. Useful for debugging.

An Example MOOS Configuration Block

An example MOOS configuration block may be obtained from the command line with the following:

$ pHostInfo --example // Or -e for short

Listing 48 - Example configuration of the pHostInfo application.

0 ===

1 pHostInfo Example MOOS Configuration

2 ===

3

4 ProcessConfig = pHostInfo

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 temp_file_dir = ./

10 default_hostip = 192.168.0.55 // default is "localhost"

11

12 default_hostip_force = 192.168.0.99

13 }

13.2 Publications and Subscriptions for pHostInfo

The interface for pHostInfo, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ pHostInfo --interface or -i

13.2.1 Variables Published by pHostInfo

The primary output of pHostInfo to the MOOSDB are the following four variables. Once these
variables are published, pHostInfo does not publish them again unless requested by receiving mail
HOST INFO REQUEST. Thus pHostInfo is mostly idle once the below four variables are posted.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

188

• PHI HOST IP: The single best guess of the Host’s IP address.

• PHI HOST IP ALL: A comma-separated list of IP addresses if multiple addresses detected.

• PHI HOST IP VERBOSE: A comma-separated list of IP addresses, with source information, if
multiple addresses detected.

• PHI HOST PORT DB: The port number of the MOOSDB for this community.

• PHI HOST PORT INFO: A comma-separated list of parameter-value pairs describing all relevant
aspects of the host.

13.2.2 Variables Subscribed for by pHostInfo

The pHostInfo application subscribes to the following MOOS variable:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• HOST INFO REQUEST: A request to re-determine and re-post the platform’s host information.

• PSHARE INPUT SUMMARY: The input routes used by pShare for listening for incoming messages
from other MOOSDBs.

13.2.3 Command Line Usage of pHostInfo

The pHostInfo application is typically launched with pAntler, along with a group of other shoreside
modules. However, it may be launched separately from the command line. The command line
options may be shown by typing:

$ pHostInfo --help

Listing 49 - Command line usage for the pHostInfo tool.

0 Usage: pHostInfo file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch pHostInfo with the given process

5 name rather than pHostInfo.

6 --example, -e

7 Display example MOOS configuration block

8 --help, -h

9 Display this help message.

10 --version,-v

11 Display the release version of pHostInfo.

12

13 Note: If argv[2] is not of one of the above formats

14 this will be interpreted as a run alias. This

15 is to support pAntler launching conventions.

189

13.3 Usage Scenarios the pHostInfo Utility

13.3.1 Handling Multiple IP Addresses

It is possible that a machine has more than one valid IP address at any given time, e.g., if its ethernet
cable is plugged in, and it has a wireless connection. In this case, pHostInfo will make a guess that
the ethernet connection takes precedent, and it will report this in the variable PHI HOST IP. The full
set of IP addresses can be found in the other postings. For example it may not be uncommon to
see something like the following three postings at one time:

PHI_HOST_IP = 118.10.24.23

PHI_HOST_IP_ALL = 118.10.24.23,169.224.126.40

PHI_HOST_IP_VERBOSE = OSX_ETHERNET2=118.10.24.23,OSX_AIRPORT=169.224.126.40

13.4 A Peek Under the Hood

The pHostInfo application currently only works for GNU/Linux and Apple OS X. It determines
the IP information by making a system call within C++. A system call when generated will act
as if the argument were typed on the command line. In this case the system call is generated and
the output is redirected to a file. In a second step, pHostInfo then tries to read the IP address
information from those files.

In GNU/Linux, the system call is based on the ifconfig command. In OS X, the system call is
based on the networksetup command. Rather than determining in pHostInfo whether the user is
running in a GNU/Linux or OS X environment, the system calls for both are invoked. Presumably
a system call on a command not found in the user’s shell path will not generate something that is
confusable with a valid IP address.

13.4.1 Temporary Files

The temporary files are written to the user’s home directory by default. This may be changed with
the temp file dir cofiguration parameter, for example, temp file dir=/tmp. The set of temporary
files are put into a folder named .phostinfo/. The set of temporary files may look like:

$ cd ~/.phostinfo

$ ls -a .ipinfo*

.ipinfo_linux_ethernet.txt .ipinfo_osx_airport.txt .ipinfo_osx_ethernet2.txt

.ipinfo_osx_wifi.txt .ipinfo_linux_wifi.txt .ipinfo_osx_ethernet1.txt

.ipinfo_osx_ethernet.txt

Some of these files may be empty, or some may contain error output if one of the system
commands was not found, or was given an improper argument. The pHostInfo app will try to parse
all of them to find a valid IP address. If more than one IP address is found, then this handled in
the manner described previously in Section 13.3.1.

13.4.2 Possible Gotchas

The system calls invoked by pHostInfo need to be in the users shell path. A typical user default
environment would have these in their shell path anyway, but it may be worth checking if things

190

aren’t working properly. Below is a list of commands that are run under the hood, and their
probable locations on your system.

For Linux:

/sbin/ifconfig

/bin/grep

/usr/bin/cut

/usr/bin/awk

/usr/bin/print

For OS X:

/usr/sbin/networksetup

191

14 uPokeDB: Poking the MOOSDB from the Command Line

14.1 Overview

The uPokeDB application is a lightweight process that runs without any user interaction for writing
to (poking) a running MOOSDB with one or more variable-value pairs. It is run from a console window
with no GUI. For example, the alpha example mission is normally kicked off by hitting the DEPLOY

button. The same could be accomplished from the terminal with:

$ uPokeDB alpha.moos DEPLOY=true, MOOS MANUAL OVERIDE=false

After accepting variable-value pairs from the command line, uPokeDB connects to the MOOSDB,
displays the variable values prior to poking, performs the poke, displays the variable values after
poking, and then disconnects from the MOOSDB and terminates. It also accepts a .moos file as a
command line argument to grab the IP and port information to find the MOOSDB for connecting.
Other than that, it does not read a uPokeDB configuration block from the .moos file.

Other Methods for Poking a MOOSDB

There are few other MOOS applications capable of poking a MOOSDB. The uMS (MOOS Scope)
is an application for both monitoring and poking a MOOSDB. It is substantially more feature rich
than uPokeDB, and depends on the FLTK library. The iRemote application can poke the MOOSDB
by using the CustomKey parameter, but is limited to the free unmapped keyboard keys, and is good
when used with some planning ahead. The latest versions of uMS and iRemote are maintained
on the Oxford MOOS website. The uTermCommand application (Section 17) is a tool primarily for
poking the MOOSDB with a pre-defined list of variable-value pairs configured in its .moos file
configuration block. The user initiates each poke by entering a keyword at a terminal window.
Unlike iRemote it associates a variable-value pair with a key word rather than a keyboard key. The
uTimerScript application (Section 6) is another tool for poking the MOOSDB with a pre-defined
list of variable-value pairs configured in its .moos file configuration block. Unlike uTermCommand,
uTimerScript will poke the MOOSDB without requiring further user action, but instead executes
its pokes based on a timed script. The uMOOSPoke application, written by Matt Grund, is similar
in intent to uPokeDB in that it accepts a command line variable-value pair. uPokeDB has a few
additional features described below, namely multiple command-line pokes, accepting a .moos file
on the command-line, and a MOOSDB summary prior and after the poke.

14.2 Command-line Arguments of uPokeDB

The command-line invocation of uPokeDB accepts two types of arguments - a .moos file, and one or
more variable-value pairs. The former is optional, and if left unspecified, will infer that the machine
and port number to find a running MOOSDB process is localhost and port 9000. The uPokeDB process
does not otherwise look for a uPokeDB configuration block in this file. The variable-value pairs are
delimited by the ’=’ character as in the following example:

$ uPokeDB alpha.moos FOO=bar TEMP=98.6 MOTTO="such is life" TEMP STRING:=98.6

Since white-space characters on a command line delineate arguments, the use of double-quotes must

192

be used if one wants to refer to a string value with white-space as in the third variable-value pair
above. The value type in the variable-value pair is assumed to be a double if the value is numerical,
and assumed to be a string type otherwise. If one really wants to poke with a string type that
happens to be numerical, i.e., the string “98.6”, then the “:=” separator must be used as in the
last argument in the example above. If uPokeDB is invoked with a variable type different than that
already associated with a variable in the MOOSDB, the attempted poke simply has no effect.

14.3 MOOS Poke Macro Expansion

The uPokeDB utility supports macro expansion for timestamps. This may be used to generate a
proxy posting from another application that uses timestamps as part of it posting. The macro
for timestamps is @MOOSTIME. This will expand to the value returned by the MOOS function call
MOOSTime(). This function call is implemented to return UTC time. This following is an example:

$ uPokeDB file.moos FOOBAR=color=red,temp=blue,timestamp=@MOOSTIME

The above poke would result in a posting similar to:

FOOBAR = color=red,temp=blue,timestamp=10376674605.24

As with other pokes, if the macro is part of a posting of type double, the timestamp is treated as
a double. The posting

$ uPokeDB file.moos TIME OF START=@MOOSTIME

would result in the posting of type double for the variable TIME OF START, assuming it has not been
posted previously as a different type.

14.4 Providing the ServerHost and ServerPort on the Command Line

The specification of a MOOS file on the command line is optional. The only two pieces of infor-
mation uPokeDB needs from this file are (a) the server host IP address, and (b) the server port

number of the running MOOSDB to poke. These values can instead be provided on the command
line:

$ uPokeDB FOO=bar host=18.38.2.158 port=9000

If the host or the port are not provided on the command line, and a MOOS file is also not provided,
the user will be prompted for the two values. Since the most common scenario by convention has
the MOOSDB running on the local machine (“localhost”) with port 9000, these are the default
values and the user can simply hit the return key.

$ uPokeDB FOO=bar // User launches with no info on server host or port

$ Enter Server: [localhost] // User accepts the default by just hitting Return key

$ The server is set to "localhost" // Server host is confirmed to be set to "localhost"

$ Enter Port: [9000] 9123 // User overrides the default 9000 port with 9123

$ The port is set to "9123" // Server port is confirmed to be set to "9123"

193

14.5 Session Output from uPokeDB

The output in Listing 50 shows an example session when a running MOOSDB is poked with the
following invocation:

$ uPokeDB alpha.moos DEPLOY=true RETURN=true

Lines 1-16 are standard output of a MOOS application that has successfully connected to a running
MOOSDB. Lines 19-23 indicate the value of the variables prior to being poked, along with their
source, i.e., the MOOS process responsible for publishing the current value to the MOOSDB, and
the time at which it was last written. The time is given in seconds elapsed since the MOOSDB was
started. Lines 26-30 show the new state of the poked variables in the MOOSDB after uPokeDB has
done its thing.

Listing 50 - An example uPokeDB session output.

1 --

2 | This is an Asynchronous MOOS Client |

3 | c. P. Newman U. Oxford 2001-2012 |

4 --

5

6 ---------------MOOS CONNECT-----------------------

7 contacting a MOOS server localhost:9000 - try 00001

8 Contact Made

9 Handshaking as "uPokeDB"........ [OK]

10 --

11

12 uPokeDB is Running:

13 +Baseline AppTick @ 5.0 Hz

14 +Comms is Full Duplex and Asynchronous

15 +Iterate Mode 0 :

16 -Regular iterate and message delivery at 5 Hz

17

18

19 PRIOR to Poking the MOOSDB

20 VarName (S)ource (T)ime VarValue

21 ---------------- ---------- ---------- -------------

22 DEPLOY uTimerScript1.92 "true"

23 RETURN pHelmIvP 1 "false"

24

25

26 AFTER Poking the MOOSDB

27 VarName (S)ource (T)ime VarValue

28 ---------------- ---------- ---------- -------------

29 DEPLOY uPokeDB 22.58 "true"

30 RETURN uPokeDB 22.58 "false"

14.6 Publications and Subscriptions for uPokeDB

Variables published by the uPokeDB application

• USER-DEFINED: The only variables published are those that are poked. These variables are
provided on the command line. See Section 14.2.

194

Variables subscribed for by the uPokeDB application

• USER-DEFINED: Since uPokeDB provides two reports as described in the above Section 14.5, it
subscribes for the same variables it is asked to poke, so it can generate its before-and-after
reports.

195

15 pEchoVar: Re-publishing Variables Under a Different Name

15.1 Overview

The pEchoVar application is a lightweight process that runs without any user interaction for “echo-
ing” the posting of specified variable-value pairs with a follow-on posting having different variable
name. For example the posting of FOO = 5.5 could be echoed such that BAR = 5.5 immediately
follows the first posting. The motivation for this tool was convert, for example, a posting such as
GPS X to become NAV X. The former is the output of a particular device, and the latter is a de facto
standard for representing the vehicle’s longitudinal position in local coordinates.

15.2 Using pEchoVar

Configuring pEchoVar minimally involves the specification of one or more echo or flip mapping
events. It may also optionally involve specifying one or more logic conditions that must be met
before mapping events are posted.

15.2.1 Configuring Echo Mapping Events

An echo event mapping maps one MOOS variable to another. Each mapping requires one line using
the echo configuration parameter of the form:

echo = <MOOSVar> -> <MOOSVar>

The source <MOOSVar> and target <MOOSVar> components are case sensitive since they are MOOS
variables. A source variable can be echoed to more than one target variable. If the set of lines
forms a cycle, this will be detected and pEchoVar post a configuration and run warning and cease
to perform any function whatsoever. An example configuration is given in Listing 51.

Listing 51 - An example pEchoVar configuration block.

1 //--

2 // pEchoVar configuration block

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 20

7 CommsTick = 20

8

9 echo = GPS_X -> NAV_X

10 echo = GPS_Y -> NAV_Y

11 echo = COMPASS_HEADING -> NAV_HEADING

12 echo = GPS_SPEED -> NAV_SPEED

13 }

15.2.2 Configuring Flip Mapping Events

The pEchoVar application can be used to “flip” a variable rather than doing a simple echo. A
flipped variable, like an echoed variable, is one that is republished under a different name, but a

196

flipped variable parses the contents of a string comprised of a series of variable=value comma-
separated pairs, and republishes a portion of the series under the new variable name. For example,
the following string,

ALPHA = "xpos=23, ypos=-49, depth=20, age=19.3, certainty=1"

may be flipped to publish the below new string, with the fields xpos, ypos, and depth replaced with
x, y, vehicle depth respectively.

BRAVO = "x=23, y=-49, vehicle_depth=20"

The above “flip relationship” is configured with the flip configuration parameter with the following
form:

flip:<key> = source_variable = <variable>

flip:<key> = dest_variable = <variable>

flip:<key> = source_separator = <separator>

flip:<key> = dest_separator = <separator>

flip:<key> = filter = <variable>=<value>

flip:<key> = component = <old-field> -> <new-field>

flip:<key> = component = <old-field> -> <new-field>

The relationship is distinguished with a <key>, and several components. The source variable

and dest variable components are mandatory and must be different. The source separator and
dest separator components are optional with default values being the string ",". Fields in the
source variable will only be included in the destination variable if they are specified in a component
mapping <old-vield> -> <new-field>. The example configuration in Listing 52 implements the
above described example flip mapping. In this case only postings that satisfy the further filter,
certainty=1, will be posted.

Listing 52 - An example pEchoVar configuration block with flip mappings.

1 //--

2 // pEchoVar configuration block

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 10

7 CommsTick = 10

8

9 flip:1 = source_variable = ALPHA

10 flip:1 = dest_variable = BRAVO

11 flip:1 = source_separator = ,

12 flip:1 = dest_separator = ,

13 flip:1 = filter = certainty=1

14 flip:1 = component = ypos -> y

15 flip:1 = component = xpos -> x

16 }

Some caution should be noted with flip mappings - the current implementation does not check for
cycles, as is done with echo mappings.

197

15.2.3 Applying Conditions to the Echo and Flip Operation

The execution of the mappings configured in pEchoVar may be configured to depend on one or more
logic conditions. If conditions are specified in the configuration block, all specified logic conditions
must be met or else the posting of echo and flip mappings will be suspended. The logic conditions
are configured with the condition parameter as follows:

condition = <logic-expression>

The <logic-expression> syntax is described in Appendix A, and may involve the simple comparison
of MOOS variables to specified literal values, or the comparison of MOOS variables to one another.
If a condition parameter is specified, pEchoVar will automatically subscribe to all MOOS variables
used in the condition expressions.

15.2.4 Holding Outgoing Messages Until Conditions are Met

If the conditions are not met, all incoming mail messages that would otherwise result in an echo or
flip posting, are held. When or if the conditions are met at some point later, those mail messages
are processed in the order received and echo and flip mappings may be posted en masse. However,
if several mail messages for a given MOOS variable are received and stored while conditions are
unmet, only the latest received mail message for that variable will be processed. As an example,
consider pEchoVar configured with the below two lines:

echo = FOO -> BAR

condition = DEGREES <= 32

If the condition is not met for some period of time, and the following mail were received during this
interval: FOO="apples", FOO="pears", FOO="grapes", followed by DEGREES=30, then pEchoVar would
post BAR="grapes" immediately on the very iteration that the DEGREES=30 message was received.
Note that BAR="apples" and BAR="pears" would never be posted. This is to help ensure that the
pEchoVar memory doesn’t grow unbounded by holding onto all mail while conditions are unmet.

The user may alternatively configure pEchoVar to not hold incoming mail messages when or if
it is in a state where its logic conditions are not met. This can be done with the hold messages

parameter:

hold_messages = false // The default is true

When configured this way, upon meeting the specified logic conditions, pEchoVar will begin process-
ing echo and flip mappings when or if new mail messages are received relevant to the mappings.
In the above example, once DEGREES=30 is received by pEchoVar, nothing would be posted until new
incoming mail on the variable FOO is received (not even BAR="grapes").

15.2.5 Limiting the Echo Posting Frequency to the AppTick Setting

By default, when the conditions are met, an echo posting is made once for each incoming piece of
mail related that echo mapping. If FOO is echo mapped to BAR, and if 40 pieces of incoming mail for

198

FOO are received on one iteration, 40 postings are made to BAR on that iteration. Instead one may
wish that, on each iteration where there is posting ready for BAR, that only the latest value for BAR

be made. This may be arranged with the echo latest only parameter:

echo_latest_only = true // The default is false

In this case, the frequency of postings to BAR and all other echo mappings will occur at most at a
frequency equal to the AppTick setting.

15.3 Configuring for Vehicle Simulation with pEchoVar

When in simulation mode with uSimMarine, the navigation information is generated by the sim-
ulator and not the sensors such as GPS or compass as indicated in lines 9-12 in Listing 51. The
simulator instead produces USM * values which can be echoed as NAV * values as shown in Listing
53.

Listing 53 - An example pEchoVar configuration block during simulation.

1 //--

2 // pEchoVar configuration block (for simulation mode)

3

4 ProcessConfig = pEchoVar

5 {

6 AppTick = 20

7 CommsTick = 20

8

9 echo = USM_X -> NAV_X

10 echo = USM_Y -> NAV_Y

11 echo = USM_HEADING -> NAV_HEADING

12 echo = USM_SPEED -> NAV_SPEED

13 }

Note in more recent versions of uSimMarine the simulator output may be changed to have a NAV

prefix by setting prefix = NAV , obviating the use of pEchoVar configured as above.

15.4 Configuration Parameters for pEchoVar

The following parameters are defined for pEchoVar. A more detailed description is provided in other
parts of this section. Parameters having default values are indicated so.

Listing 15.54: Configuration Parameters for pEchoVar.

echo: A mapping from one MOOS variable to another constituting an echo.
Section 15.2.1.

echo latest only: If true, only the latest value of variable will be echoed on each iteration,
even if several pieces of incoming mail have been received since the last
posting. Legal values: true, false. The default is false. Section 15.2.1.

condition: A logic condition that must be met or all echo and flip publications are
held. Section 15.2.3.

199

flip: A description of how components from one variable are re-posted under
another MOOS variable. Section 15.2.2.

hold messages: If true, messages are held when conditions are not met for later process-
ing when logic conditions are indeed met. Legal values: true, false. The
default is true. Section 15.2.3.

15.5 Publications and Subscriptions for pEchoVar

The interface for pEchoVar, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ pEchoVar --interface or -i

15.5.1 Variables Posted by pEchoVar

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 15.6.

• <USER-DEFINED>: Any MOOS variable specified in either the echo or flip config parameters.

15.5.2 Variables Subscribed for by pEchoVar

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• <USER-DEFINED>: Any MOOS variables found in the antecedent of either the echo or flip

mappings. It will also subscribe for any MOOS variable found in any of its logic conditions.

15.6 Terminal and AppCast Output

The pEchoVar application produces some useful information to the terminal on every iteration of
the application. An example is shown in Listing 55 below. This application is also appcast enabled,
meaning its reports are published to the MOOSDB and viewable from any uMAC application or
pMarineViewer. See Section 10 for more on appcasting and viewing appcasts. The counter on the
end of line 2 in parentheses is incremented on each iteration of pEchoVar, and serves a bit as a
heartbeat indicator. The "0/0" also on line 2 indicates there are no configuration or run warnings
detected.

Listing 55 - Example terminal or appcast output for pEchoVar.

1 ===

2 pEchoVar alpha 0/0(81)

3 ===

4 conditions_met: true

5 hold_messages: true

6 echo_latest_only: false

7

8 ==

9 Echoes: (5)

10 ==

11

200

12 Source Dest Hits Posts

13 --------- --- ------------- ---- -----

14 NAV_X --> NAV_XX 324 324

15 NAV_X --> NAV_XPOS 324 324

16 NAV_Y --> NAV_YY 324 324

17 NAV_Y --> NAV_YPOS 324 324

18 NAV_SPEED --> NAV_SPEED_ALT 324 324

19

20 ==

21 Flips: (1)

22 ==

23

24 Src Dest Old New

25 Key Hits Source Dest Sep Sep Filter Field Field

26 --- ---- ----------------- ------ --- ---- ---------- ----- -----

27 1 162 NODE_REPORT_LOCAL FOOBAR , # type:kayak X xpos

28 1 162 NODE_REPORT_LOCAL FOOBAR , # type:kayak Y ypos

Lines 4 indicates whether or not any specified logic conditions have been met. This line will also
read true even if no logic conditions were provided. Lines 5 and 6 simply confirm the user’s
settings for the hold messages and echo latest only parameters discussed in Sections 15.2.4 and
15.2.5 respectively.

Lines 12-18 convey the configured echo mappings, one for each line. At the end of each line,
the Hits column shows the number of incoming mails received for that variable. The number of
times it is echoed, or re-posted is shown under the Posts column. When echo latest only is false,
these numbers should match. Lines 20-28 convey the configure flips. A single flip configuration,
identified by its key, may have several lines, as in this example. Here the only difference between
lines 27 and 28 are the flip components. One maps X to xpos, and the other maps Y to ypos.

The terminal or appcast output shown in Listing 55 above may be seen first hand by running
the Alpha example mission. The below configuration block in Listing 56 corresponds to the above
appcast output. The user just needs to add pEchoVar to the Antler launch list.

Listing 56 - Example pEchoVar configuration from the Alpha example mission.

1 ProcessConfig = pEchoVar

2 {

3 AppTick = 1

4 CommsTick = 1

5

6 echo = NAV_X -> NAV_XX

7 echo = NAV_X -> NAV_XPOS

8 echo = NAV_Y -> NAV_YY

9 echo = NAV_Y -> NAV_YPOS

10 //echo = NAV_YY -> FOOBAR

11 //echo = FOOBAR -> NAV_Y

12 echo = NAV_SPEED -> NAV_SPEED_ALT

13

14 FLIP:1 = source_variable = NODE_REPORT_LOCAL

15 FLIP:1 = dest_variable = FOOBAR

16 FLIP:1 = source_separator = ,

17 FLIP:1 = dest_separator = #

18 FLIP:1 = filter = type == kayak

201

19 FLIP:1 = component = X -> xpos

20 FLIP:1 = component = Y -> ypos

21 }

The two echo mappings in lines 10 and 11 may be commented out to demonstrate the detection
of echo mapping cycles. The pairs of mappings in Lines 6-7 and 8-9 demonstrate that a single
incoming variable may be mapped to multiple destinations.

202

16 pSearchGrid: Using a 2D Grid Model for Track History

The pSearchGrid application is a module for storing a history of vehicle positions in a 2D grid
defined over a region of operation. This module may have utility as-is, to help guide a vehicle to
complete or uniform coverage of a given area, but also exists as an example of how to use and
visualize the XYConvexGrid data structure. This data structure may be used in similar modules to
store a wide variety of user specified data for later use by other modules or simply for visualization.
Here the structure is used in a MOOS application, but it could also be used within a behavior. The
pSearchGrid module begins with a user-defined grid, defined in the MOOS configuration file. As a
vehicle moves and generates node reports, pSearchGrid simply notes the vehicle’s current position
increments the cell containing vehicle’s current position. After time, the grid shows a cumulative
history of the most commonly traveled positions in the local operating area.

The pSearchGrid module is an optional part of the Charlie example mission discussed later in
this section. When running and grid viewing is enabled in pMarineViewer, the viewer may show
something similar to Figure 75.

Figure 75: An Example pSearchGrid Scenario: A grid is configured around the operation area of the Berta
example mission. Higher values in a given grid cell represents a longer noted time of any vehicle passing through that
cell.

16.1 Using pSearchGrid

The present configuration of pSearchGrid will store values in its grid cells proportional to the time
a vehicle is noted to be within a grid cell. One may use this application as written or regard this
as a template for writing a new application that stores some other value with each grid cell, such
as bathymetry data, water velocity data, or likelihood of there being an object of interest in the

203

region of the cell for further investigation. The below discusses the general usage of managing the
grid data within a MOOS application.

16.1.1 Basic Configuration of Grid Cells

Basic grid configuration consists of specifying (a) a convex polygon, and (b) the size of the grid
squares. From this the construction of a grid proceeds by calculating a bounding rectangle contain-
ing the polygon, generating a set of squares covering the rectangle, and then removing the squares
not intersecting the original polygon. The result is a non-rectilinear grid as shown in Figure 75.
The basic configuration of grid cells is done with the grid config parameter specifying the points
and the cell size as the following example:

grid_config = pts={-50,-40:-10,0:180,0:180,-150:-50,-150}, cell_size=5

16.1.2 Cell Variables

The grid is primary used for associating information with each grid cell. In pSearchGrid, the grid
is configured to store a single numerical value (a C++ double) with each cell. The grid structure
may be configured in another application to store multiple numerical values with each cell. In
pSearchGrid, the cell variables are declared upon startup in the MOOS configuration block, similar
to:

grid_config = cell_vars=x:0y:100

grid_config = cell_min=x:0

grid_config = cell_min=x:100

This configuration associates two cell variables, x and y, which each cell. The cell variable x is
initialized to 0 for each cell, and the cell variable y is initialized to 100. The first variable has a
minimum and maximum constraint of 0 and 100, and the second variable is unconstrained. The
above configuration could also have been made on one line, separating each with a comma.

16.1.3 Serializing and De-serializing the Grid Structure

The grid structure maintained by pSearchGrid is periodically published to the MOOSDB for con-
sumption by other applications, or conceivably by a behavior with the IvP Helm. The structure
may be serialized into a string by calling the get spec() method on an instance of the XYConvexGrid

class. Serializing a grid instance and posting it to the MOOSDB may look something like:

#include "XYConvexGrid.h"

....

XYConvexGrid mygrid;

....

string str = mygrid.get_spec();

m_Comms.Notify(VIEW_GRID, str);

Likewise a string representation of the grid may be de-serialized to a grid instance by calling a
function provided in the same library where the grid is defined. De-serializing a string read from
the MOOSDB into a local grid instance may look something like:

204

#include "XYFormatUtilsConvexGrid.h"

#include "XYConvexGrid.h"

....

string grid_string_spec;

....

XYConvexGrid mygrid = string2ConvexGrid(grid_string_spec);

The same function used to de-serialize a string is used by pSearchGrid to configure the initial grid. In
other words, the components from the various GRID configuration parameters are concatenated into
a single comma-separated string and passed to the de-serialization function, string2ConvexGrid, to
form the initial instance used by pSearchGrid.

16.1.4 Resetting the Grid

The grid may be reset at any point in the operation when pSearchGrid receives mail on the variable
PSG GRID RESET. If this variable’s string value is the empty string, it will reset all cell variables for
all cell elements to their given initial values. If the string value is non-empty, it will interpret this
as an attempt to reset the values for a named cell variable. Thus PSG GRID RESET="x" will reset the
x cell variable and no other cell variables. If "x" is not a cell variable, no action will be taken.

16.1.5 Viewing Grids in pMarineViewer

The pMarineViewer will display grids by subscribing for postings to the variable VIEW GRID. As with
other viewable objects such as polygons, points, etc., the viewer keeps a local cache of grid instances,
one for each named grid, based on the grid label. For example if two successive grids are received
with different labels, the viewer will store and render both of them. If they have the same label,
the second will replace the first and the viewer will just render the one.

The rendering of grids may be toggled on/off by hitting the ’g’ key, and may be made more
transparent with the CTRL-g key, and less transparent with the ALT-g key. The color map used for
the grid is taken from the typical MATLAB color map; red is the highest value, blue is the lowest.

16.1.6 Examples

Example usage of pSearchGrid may be found in both the Charlie and Berta example missions
distributed with the moos-ivp tree. For example, in the Charlie example mission, edit charlie.moos
and uncomment the line beginning with Run = pSearchGrid. Likewise for the Berta mission and
the file meta shoreside.moos.

16.2 Configuration Parameters of pSearchGrid

The following parameters are defined for pSearchGrid. A more detailed description is provided in
other parts of this section. Parameters having default values indicate so.

Listing 16.57: Configuration Parameters for pSearchGrid.

grid config: A portion or all of a grid configuration description. See Listing 58.

205

An Example MOOS Configuration Block

An example pSearchGrid configuration block is given in Listing 58 below, and may also be seen
from the command line invocation of:

$ pSearchGrid --example // or -e for short

Listing 58 - Example configuration of the pSearchGrid application.

1 ===

2 pSearchGrid Example MOOS Configuration

3 ===

4

5 ProcessConfig = pSearchGrid

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 GRID_CONFIG = pts={-50,-40: -10,0: 180,0: 180,-150: -50,-150}

11 GRID_CONFIG = cell_size=5

12 GRID_CONFIG = cell_vars=x:0:y:0:z:0

13 GRID_CONFIG = cell_min=x:0

14 GRID_CONFIG = cell_max=x:10

15 GRID_CONFIG = cell_min=y:0

16 GRID_CONFIG = cell_max=y:1000

17 }

16.3 Publications and Subscriptions for pSearchGrid

The interface for pSearchGrid, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ pSearchGrid --interface or -i

16.3.1 Variables Published by pSearchGrid

The pSearchGrid application publishes the following variables:

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 11.10.4.

• VIEW GRID: A full description of a grid format and contents.

A typical string may be:

VIEW_GRID = pts={-50,-40:-10,0:100,0:100,-100:50,-150:-50,-100},cell_size=5,

cell_vars=x:0:y:0:z:0,cell_min=x:0,cell_max=x:50,cell=211:x:50,

cell=212:x:50,cell=237:x:50,cell=238:x:50,label=psg

206

16.3.2 Variables Subscribed for by pSearchGrid

The pSearchGrid application subscribes to the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• NODE REPORT: A node report for a given vehicle from pNodeReporter.

• NODE REPORT LOCAL: A node report for a given vehicle from pNodeReporter.

• PSG GRID RESET: A request to reset the grid to its original configuration.

16.3.3 Command Line Usage of pSearchGrid

The pSearchGrid application is typically launched with pAntler, along with a group of other mod-
ules. However, it may be launched separately from the command line. The command line options
may be shown by typing "pSearchGrid --help":

Listing 59 - Command line usage for the pSearchGrid tool.

0 Usage: pSearchGrid file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch pSearchGrid with the given process

5 name rather than pSearchGrid.

6 --example, -e

7 Display example MOOS configuration block

8 --help, -h

9 Display this help message.

10 --version,-v

11 Display the release version of pSearchGrid.

12 Note: If argv[2] is not of one of the above formats

13 this will be interpreted as a run alias. This

14 is to support pAntler launching conventions.

207

17 uTermCommand: Poking the MOOSDB with Pre-Set Values

The uTermCommand application is a terminal based tool for poking the MOOS database with pre-
defined variable-value pairs. This can be used for command and control for example by setting
variables in the MOOSDB that affect the behavior conditions running in the helm. There are a
few other ways of doing this:

• pMarineViewer: The action pull-down menu and on-screen buttons may be used for posting
the MOOSDB. See Section 2.7.

• uPokeDB: A command-line tool for poking the MOOSDB. This may be used in conjunction
with shell aliases or shell scripts for further convenience. See Section 14.

• iRemote: The custom keys feature may be used to bind variable-value pairs to the numeric
keys. The primary drawback is the limitation to ten mappings.

17.1 Configuration Parameters for uTermCommand

The variable-value mappings are set in the uTermCommand configuration block of the MOOS file.
Each mapping requires one line of the form:

cmd = cue --> variable --> value

The cue and variable fields are case sensitive, and the value field may also be case sensitive depending
on how the subscribing MOOS process(es) handle the value. An example configuration is given in
Listing 60.

Listing 60 - An example uTermCommand configuration block.

1 //--

2 // uTermCommand configuration block

4

5 ProcessConfig = uTermCommand

6 {

7 cmd = override_true --> MOOS_MANUAL_OVERRIDE --> true

8 cmd = override_false --> MOOS_MANUAL_OVERRIDE --> false

9 cmd = deploy_true --> DEPLOY --> true

10 cmd = deploy_false --> DEPLOY --> false

11 cmd = return_true --> RETURN --> true

12 cmd = return_false --> RETURN --> false

13 }

Recall the type of a MOOS variable is either a string, double or binary data. If a variable has
yet to be posted to the MOOSDB, it accepts whatever type is first written, otherwise postings of
the wrong type are ignored. If quotes surround the entry in the value field, it is interpreted to be
a string. If not, the value is inspected as to whether it represents a numerical value. If so, it is
posted as a double. For example true and "true" are the same type (no such thing as a Boolean
type), 25 is a double and "25" is a string.

17.2 Run Time Console Interaction

When uTermCommand is launched, a separate thread accepts user input at the console window. When
first launched the entire list of cues and the associated variable-value pairs are listed. Listing 61

208

shows what the console output would look like given the configuration parameters of Listing ??.
This configuration block is in the Alpha example mission. You can launch that mission and then
launch uTermCommand:

$ cd moos-ivp/ivp/missions/s1_alpha

$./launch.sh

Then in a separate terminal:

$ cd moos-ivp/ivp/missions/s1_alpha

$ uTermCommand alpha.moos

The output in the terminal window should look similar to Listing 61. Note that even though quotes
were not necessary in the configuration file to clarify that true was to be posted as a string, the
quotes are always placed around string values in the terminal output.

Listing 61 - Console output at start-up.

1 Cue VarName VarValue

2 ----------- --------------- --------------

3 override_true MOOS_MANUAL_OVERRIDE "true"

4 override_false MOOS_MANUAL_OVERRIDE "false"

5 deploy_true DEPLOY "true"

6 deploy_false DEPLOY "false"

7 return_true RETURN "true"

8 return_false RETURN "false"

9

10 >

In the Alpha mission, the DEPLOY button in the lower right corner of pMarineViewer is configured
to post:

MOOS_MANUAL_OVERRIDE = false

DEPLOY = true

This will be handled instead by uTermCommand in our simple example. A prompt is shown on the
last line where user key strokes will be displayed. As the user types characters, the list of choices is
narrowed based on matches to the cue. After typing a single ’o’ character, only the override true

and override false cues match and the list of choices shown are reduced as shown in Listing
62. At this point, hitting the TAB key will complete the input field out to override , much like
tab-completion works at a Linux shell prompt.

Listing 62 - Console output after typing a single character ’r’.

1 Cue VarName VarValue

2 ----------- --------------- --------------

3 override_true MOOS_MANUAL_OVERRIDE "true"

4 override_false MOOS_MANUAL_OVERRIDE "false"

5

6 > o

When the user has typed out a valid cue that matches a single entry, only the one line is displayed,
with the tag <-- SELECT at the end of the line, as shown in Listing 63.

Listing 63 - Console output when a single command is identified.

209

1 Cue VarName VarValue

2 ----------- --------------- --------------

3 override_false MOOS_MANUAL_OVERRIDE "false" <-- SELECT

4

5 > override_false

At this point hitting the ENTER key will execute the posting of that variable-value pair to the
MOOSDB, and the console output will return to its original start-up output. A local history
is augmented after each entry is made, and the up- and down-arrow keys can be used to select
and re-execute postings on subsequent iterations. To finish the launch in the Alpha mission, use
uTermCommand to post DEPLOY=true.

17.3 Connecting uTermCommand to the MOOSDB Under an Alias

A convention of MOOS is that each application connected to the MOOSDB must register with a
unique name. Typically the name used by a process to register with the MOOSDB is the process
name, e.g., uTermCommand. One may want to run multiple instances of uTermCommand all connected to
the same MOOSDB. To support this, an optional command line argument may be provided when
launching uTermCommand:

$ uTermCommand file.moos --alias=uTermCommandAlpha

The command line argument may also be invoked from within pAntler to launch multiple uTermCommand
instances simultaneously. The configuration block in the mission file needs to have the same name
as the launch alias.

17.4 Publications and Subscriptions for uTermCommand

The only variables published by uTermCommand are those configured and selected by the user at
run-time, and uTermCommand does not subscribe for any variables.

210

18 uSimCurrent: Simulating Drift Effects

The uSimCurrent MOOS application is a newcomer in the toolbox and documentation is thin.
Nevertheless it has been tested and used quite a bit and is worth a quick introduction here for
those with a need for some ability to simulate water current on unmanned vehicles.

uSimCurrent is intended to be used with the uSimMarine simulator, by generating drift vectors
and publishing them to the MOOSDB. The uSimMarine simulator has a generic interface to accept
externally published drift vectors regardless of the source, written to the variables DRIFT X, DRIFT Y,
and DRIFT VECTOR, as described in Section 12.6. The uSimCurrent application reads a provided
current field file containing an association of water current to positions in the water. On iteration
of uSimCurrent, the vehicle’s current position is noted, looked up in the current-field data structure,
and a new drift vector is posted. The idea is shown in Figure 76.

Figure 76: The uSimCurrent utility: The simulator is initialized with a data file describing currents and locations.
The simulator then repeatedly publishes a current vector based on the present vehicle position.

18.1 Configuration Parameters for uSimCurrent

The following configuration parameters are defined for uSimCurrent. A more detailed description
is provided in other parts of this section. Parameters having default values are indicated so.

Listing 18.64: Configuration Parameters for uSimCurrent.

current field: Name of a file describing a current field.

current field active: Boolean indicating whether the simulator is active.

18.2 Publications and Subscriptions for uSimCurrent

The interface for uSimCurrent, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uSimCurrent --interface or -i

211

18.2.1 MOOS Variables Published by uSimCurrent

The primary output of uSimCurrent to the MOOSDB is the drift vector to be consumed by the
uSimMarine application.

• DRIFT VECTOR: drift vector representing the prevailing current. Section 12.6.

• USC CFIELD SUMMARY: Summary of configured current field.

• VIEW VECTOR: Vector objects suitable for rendering in GUI applications.

18.2.2 MOOS Variables Subscribed for by uSimCurrent

Variables subscribed for by uSimCurrent are summarized below.

• NAV X: The ownship vehicle position on the x axis of local coordinates.

• NAV Y: The ownship vehicle position on the y axis of local coordinates.

212

19 The Alog-Toolbox for Analyzing and Editing Mission Log Files

19.1 Overview

The Alog-Toolbox is a set of five post-mission analysis utility applications alogview, alogscan,
alogrm, aloggrep, alogclip. Each application manipulates or renderings .alog files generated by
the pLogger application. Three of the applications, alogclip, aloggrep, and alogrm are command-
line tools for filtering a given .alog file to a reduced size. Reduction of a log file size may facilitate
the time to load a file in a post-processing application, may facilitate its transmission over slow
transmission links when analyzing data between remote users, or may simply ease in the storing and
back-up procedures. The alogscan tool provides statistics on a given .alog file that may indicate
how to best reduce file size by eliminating variable entries not used in post-processing. It also
generates other information that may be handy in debugging a mission. The alogview tool is a
GUI-based tool that accepts one or more .alog files and renders a vehicle positions over time on
an operation area, provides time-correlated plots of any logged numerical MOOS variables, and
renders helm autonomy mode data with plots of generated objective functions.

19.2 An Example .alog File

The .alog file used in the examples below was generated from the Alpha example mission. This
file, alpha.alog, is found in the missions distributed with the MOOS-IvP tree. The alpha.alog file
was created by simply running the mission as described, and can be found in:

moos-ivp/trunk/ivp/missions/alpha/alpha.alog.

19.3 The alogscan Tool

The alogscan tool is a command-line application for providing statistics relating to a given .alog

file. It reports, for each unique MOOS variable in the log file, (a) the number of lines in which
the variable appears, i.e., the number of times the variable was posted by a MOOS application,
(b) the total number of characters comprising the variable value for all entries of a variable, (c)
the timestamp of the first recorded posting of the variable, (d) the timestamp of the last recorded
posting of the variable, (e) the list of MOOS applications the posted the variable.

19.3.1 Command Line Usage for the alogscan Tool

The alogscan tool is run from the command line with a given .alog file and a number of options.
The usage options are listed when the tool is launched with the -h switch:

$ alogscan -h

Listing 65 - Command line usage for the alogscan tool.

1 Usage:

2 alogscan file.alog [OPTIONS]

3

4 Synopsis:

5 Generate a report on the contents of a given

6 MOOS .alog file.

7

213

8 Options:

9 --sort=type Sort by one of SIX criteria:

10 start: sort by first post of a var

11 stop: sort by last post of a var

12 (Default) vars: sort by variable name

13 proc: sort by process/source name

14 chars: sort by total chars for a var

15 lines: sort by total lines for a var

16

17 --appstat Output application statistics

18 -r,--reverse Reverse the sorting output

19 -n,--nocolors Turn off process/source color coding

20 -h,--help Displays this help message

21 -v,--version Displays the current release version

22

23 See also: aloggrp, alogrm, alogclip, alogview

The order of the arguments passed to alogscan do not matter. The lines of output are sorted
by grouping variables posted by the same MOOS process or source, as in Listing 66 below. The
sorting criteria can instead be done by alphabetical order on the variable name (--sort=vars), the
total characters in the file due to a variable (--sort=chars), the total lines in the file due to a
variable (--sort=lines), the time of the first posting of the variable (--sort=start), or the time
of the last posting of the variable (--sort=stop). The order of the output may be reversed (-r,
--reverse). By default, the entries are color-coded by the variable source, using the few available
terminal colors (there are not many). When unique colors are exhausted, the color reverts back to
the default terminal color in effect at the time.

19.3.2 Example Output from the alogscan Tool

The output shown in Listing 66 was generated from the alpha.alog file generated by the Alpha
example mission.

Listing 66 - Example output from the alogscan tool.

0 Variable Name Lines Chars Start Stop Sources

1 ------------- ----- ----- ------ ------ -------

2 DB_CLIENTS 282 22252 -0.38 566.42 MOOSDB_alpha

3 DB_TIME 556 7132 1.21 566.18 MOOSDB_alpha

4 DB_UPTIME 556 7173 1.21 566.18 MOOSDB_alpha

5 USIMMARINE_STATUS 276 92705 0.39 565.82 uSimMarine

6 NAV_DEPTH 6011 6011 1.43 566.38 uSimMarine

7 NAV_HEADING 6011 75312 1.43 566.38 uSimMarine

8 NAV_LAT 6011 74799 1.43 566.38 uSimMarine

9 NAV_LONG 6011 80377 1.43 566.38 uSimMarine

10 NAV_SPEED 6011 8352 1.43 566.38 uSimMarine

11 NAV_STATE 6011 18033 1.43 566.38 uSimMarine

12 NAV_X 6011 72244 1.43 566.38 uSimMarine

13 NAV_Y 6011 77568 1.43 566.38 uSimMarine

14 NAV_YAW 6011 80273 1.43 566.38 uSimMarine

15 BHV_IPF 2009 564165 46.26 542.85 pHelmIvP

16 CREATE_CPU 2108 2348 46.26 566.33 pHelmIvP

17 CYCLE_INDEX 5 5 44.98 543.09 pHelmIvP

18 DEPLOY 3 14 3.84 543.09 pHelmIvP,pMarineViewer

19 DESIRED_HEADING 2017 5445 3.85 543.09 pHelmIvP

20 DESIRED_SPEED 2017 2017 3.85 543.09 pHelmIvP

21 HELM_IPF_COUNT 2108 2108 46.26 566.32 pHelmIvP

22 HSLINE 1 3 3.84 3.84 pHelmIvP

23 IVPHELM_DOMAIN 1 29 3.84 3.84 pHelmIvP

214

24 IVPHELM_ENGAGED 462 3342 3.85 566.32 pHelmIvP

25 IVPHELM_MODESET 1 0 3.84 3.84 pHelmIvP

26 IVPHELM_POSTINGS 2014 236320 46.26 543.33 pHelmIvP

27 IVPHELM_STATEVARS 1 20 44.98 44.98 pHelmIvP

28 IVPHELM_SUMMARY 2113 612685 44.98 566.33 pHelmIvP

29 LOOP_CPU 2108 2348 46.26 566.33 pHelmIvP

30 PC_hsline 1 9 44.98 44.98 pHelmIvP

31 PC_waypt_return 3 14 44.98 543.33 pHelmIvP

32 PC_waypt_survey 3 14 44.98 543.33 pHelmIvP

33 PHELMIVP_STATUS 255 198957 3.85 565.12 pHelmIvP

34 PLOGGER_CMD 1 17 3.84 3.84 pHelmIvP

35 PWT_BHV_HSLINE 1 1 44.98 44.98 pHelmIvP

36 PWT_BHV_WAYPT_RETURN 3 5 44.98 543.09 pHelmIvP

37 PWT_BHV_WAYPT_SURVEY 2 4 44.98 462.90 pHelmIvP

38 RETURN 4 19 3.84 543.09 pHelmIvP,pMarineViewer

39 STATE_BHV_HSLINE 1 1 44.98 44.98 pHelmIvP

40 STATE_BHV_WAYPT_RETURN 4 4 44.98 543.33 pHelmIvP

41 STATE_BHV_WAYPT_SURVEY 3 3 44.98 463.15 pHelmIvP

42 SURVEY_INDEX 10 10 44.98 429.70 pHelmIvP

43 SURVEY_STATUS 1116 77929 45.97 462.90 pHelmIvP

44 VIEW_POINT 4034 101662 44.98 543.33 pHelmIvP

45 VIEW_SEGLIST 4 273 44.98 543.33 pHelmIvP

46 WPT_INDEX 1 1 463.15 463.15 pHelmIvP

47 WPT_STAT 223 15626 463.15 543.09 pHelmIvP

48 LOGGER_DIRECTORY 56 1792 1.07 559.19 pLogger

49 PLOGGER_STATUS 263 331114 1.07 566.40 pLogger

50 DESIRED_RUDDER 10185 150449 -9.28 545.18 pMarinePID

51 DESIRED_THRUST 10637 20774 -9.28 566.52 pMarinePID

52 MOOS_DEBUG 5 39 -9.31 545.23 pMarinePID,pHelmIvP

53 PMARINEPID_STATUS 279 81990 0.95 566.28 pMarinePID

54 HELM_MAP_CLEAR 1 1 -1.56 -1.56 pMarineViewer

55 MOOS_MANUAL_OVERIDE 1 5 44.65 44.65 pMarineViewer

56 PMARINEVIEWER_STATUS 270 95560 -0.95 564.89 pMarineViewer

57 NODE_REPORT_LOCAL 1159 207535 1.15 565.91 pNodeReporter

58 PNODEREPORTER_STATUS 233 50534 -0.37 563.93 pNodeReporter

59 ---

60 Total variables: 57

61 Start/Stop Time: -9.31 / 566.52

When the -appstat command line option is included, a second report is generated, after the above
report, that provides statistics keyed by application, rather than by variable. For each application
that has posted a variable recorded in the given .alog file, the number of lines and characters are
recorded, as well as the percentage of total lines and characters. An example for the alpha.alog

file is shown in Listing 67.

Listing 67 - Example alogscan output generated with the -appstat command line option.

64 MOOS Application Total Lines Total Chars Lines/Total Chars/Total

65 --------------- ----------- ----------- ----------- -----------

66 MOOSDB_alpha 1394 36557 1.37 1.08

67 uSimMarine 54375 585674 53.57 17.29

68 pHelmIvP 22642 1825437 22.31 53.89

69 pLogger 319 332906 0.31 9.83

70 pMarinePID 21106 253252 20.80 7.48

71 pMarineViewer 279 95599 0.27 2.82

72 pNodeReporter 1392 258069 1.37 7.62

Further Tips

• If a small number of variables are responsible for a relatively large portion of the file size, and
are expendable in terms of how data is being analyzed, the variables may be removed to ease

215

the handling, transmission, or storage of the data. To remove variables from existing files,
the alogrm tool described in 19.6 may be used. To remove the variable from future files, the
pLogger configuration may be edited by either removing the variable from the list of variables
explicitly requested for logging, or if WildCardLogging is used, mask out the variable with
the WildCardOmitPattern parameter setting. See the pLogger documentation.

• The output of alogscan can be further distilled using common tools such as grep. For example,
if one only wants a report on variables published by the pHelmIvP application, one could type:

alogscan alpha.alog | grep pHelmIvP

19.4 The alogclip Tool

The alogclip tool will prune a given .alog file based on a given beginning and end timestamp.
This is particularly useful when a log file contains a sizeable stretch of data logged after mission
completion, such as data being recorded while the vehicle is being recovered or sitting idle topside
after recovery.

19.4.1 Command Line Usage for the alogclip Tool

The alogclip tool is run from the command line with a given .alog file, a start time, end time, and
the name of a new .alog file. By default, if the named output file exists, the user will be prompted
before overwriting it. The user prompt can be bypassed with the -f,--force option. The usage
options are listed when the tool is launched with the -h switch:

$ alogclip -h

Listing 68 - Command line usage for the alogclip tool.

1 Usage:

2 alogclip in.alog mintime maxtime [out.alog] [OPTIONS]

3

4 Synopsis:

5 Create a new MOOS .alog file from a given .alog file

6 by removing entries outside a given time window.

7

8 Standard Arguments:

9 in.alog - The input logfile.

10 mintime - Log entries with timestamps below mintime

11 will be excluded from the output file.

12 maxtime - Log entries with timestamps above mintime

13 will be excluded from the output file.

14 out.alog - The newly generated output logfile. If no

15 file provided, output goes to stdout.

16

17 Options:

18 -h,--help Display this usage/help message.

19 -v,--version Display version information.

20 -f,--force Overwrite an existing output file

21 -q,--quiet Verbose report suppressed at conclusion.

22

23 Further Notes:

24 (1) The order of arguments may vary. The first alog

25 file is treated as the input file, and the first

26 numerical value is treated as the mintime.

27 (2) Two numerical values, in order, must be given.

216

28 (3) See also: alogscan, alogrm, aloggrep, alogview

19.4.2 Example Output from the alogclip Tool

The output shown below was generated from the alpha.alog file generated by the Alpha example
mission.

> alogclip alpha.alog new.alog 50 350

Processing input file alpha.alog...

Total lines clipped: 44,988 (44.32 pct)

Front lines clipped: 5,474

Back lines clipped: 39,514

Total chars clipped: 4,200,260 (43.09 pct)

Front chars clipped: 432,409

Back chars clipped: 3,767,851

19.5 The aloggrep Tool

The aloggrep tool will prune a given .alog file by retaining lines of the original file that contain
log entries for a user-specified list of MOOS variables or MOOS processes (sources). As the name
implies it is motivated by the Unix grep command, but grep will return a matched line regardless of
where the pattern appears in the line. Since MOOS variables also often appear in the string content
of other MOOS variables, grep often returns much more than one is looking for. The aloggrep tool
will only pattern-match on the second column of data (the MOOS variable name), or the third
column of data (the MOOS source), of any given entry in a given .alog file.

19.5.1 Command Line Usage for the aloggrep Tool

$ aloggrep -h

Listing 69 - Command line usage for the aloggrep tool.

1 Usage:

2 aloggrep in.alog [VAR] [SRC] [out.alog] [OPTIONS]

3

4 Synopsis:

5 Create a new MOOS .alog file by retaining only the

6 given MOOS variables or sources from a given .alog file.

7

8 Standard Arguments:

9 in.alog - The input logfile.

10 out.alog - The newly generated output logfile. If no

11 file provided, output goes to stdout.

12 VAR - The name of a MOOS variable

13 SRC - The name of a MOOS process (source)

14

15 Options:

16 -h,--help Displays this help message

17 -v,--version Displays the current release version

18 -f,--force Force overwrite of existing file

19 -q,--quiet Verbose report suppressed at conclusion

20

217

21 Further Notes:

22 (1) The second alog is the output file. Otherwise the

23 order of arguments is irrelevent.

24 (2) VAR* matches any MOOS variable starting with VAR

25 (3) See also: alogscan, alogrm, alogclip, alogview

Note that, in specifying items to be filtered out, there is no distinction made on the command line
that a given item refers to a entry’s variable name or an entry’s source, i.e., MOOS process name.

19.5.2 Example Output from the aloggrep Tool

The output shown in Listing 70 was generated from the alpha.alog file generated by the Alpha
example mission.

$ aloggrep alpha.alog NAV * new.alog

Listing 70 - Example aloggrep output applied to the alpha.alog file.

1 Processing on file : alpha.alog

2 Total lines retained: 54099 (53.30%)

3 Total lines excluded: 47396 (46.70%)

4 Total chars retained: 3293774 (33.79%)

5 Total chars excluded: 6453494 (66.21%)

6 Variables retained: (9) NAV_DEPTH, NAV_HEADING, NAV_LAT, NAV_LONG,

7 NAV_SPEED, NAV_STATE, NAV_X, NAV_Y, NAV_YAW

19.6 The alogrm Tool

The alogrm tool will prune a given .alog file by removing lines of the original file that contain log
entries for a user-specified list of MOOS variables or MOOS processes (sources). It may be fairly
viewed as the complement of the aloggrep tool.

19.6.1 Command Line Usage for the alogrm Tool

$ alogrm -h

Listing 71 - Command line usage for the alogrm tool.

1 Usage:

2 alogrm in.alog [VAR] [SRC] [out.alog] [OPTIONS]

3

4 Synopsis:

5 Remove the entries matching the given MOOS variables or sources

6 from the given .alog file and generate a new .alog file.

7

8 Standard Arguments:

9 in.alog - The input logfile.

10 out.alog - The newly generated output logfile. If no

11 file provided, output goes to stdout.

12 VAR - The name of a MOOS variable

12 SRC - The name of a MOOS process (source)

14

15 Options:

16 -h,--help Displays this help message

17 -v,--version Displays the current release version

218

18 -f,--force Force overwrite of existing file

19 -q,--quiet Verbose report suppressed at conclusion

20 --nostr Remove lines with string data values

21 --nonum Remove lines with double data values

22 --clean Remove lines that have a timestamp that is

23 non-numerical or lines w/ no 4th column

24

25 Further Notes:

26 (1) The second alog is the output file. Otherwise the

27 order of arguments is irrelevent.

28 (2) VAR* matches any MOOS variable starting with VAR

29 (3) See also: alogscan, aloggrep, alogclip, alogview

Note that, in specifying items to be filtered out, there is no distinction made on the command line
that a given item refers to a entry’s variable name or an entry’s source, i.e., MOOS process name.

19.6.2 Example Output from the alogrm Tool

The output shown in Listing 72 was generated from the alpha.alog file generated by the Alpha
example mission.

$ alogrm alpha.alog NAV * new.alog

Listing 72 - Example alogrm output applied to the alpha.alog file.

1 Processing on file : alpha.alog

2

3 Total lines retained: 47396 (46.70%)

4 Total lines excluded: 54099 (53.30%)

5 Total chars retained: 6453494 (66.21%)

6 Total chars excluded: 3293774 (33.79%)

7 Variables retained: (48) BHV_IPF, CREATE_CPU, CYCLE_INDEX, DB_CLIENTS,

8 DB_TIME, DB_UPTIME, DEPLOY, DESIRED_HEADING, DESIRED_RUDDER, DESIRED_SPEED,

9 DESIRED_THRUST, HELM_IPF_COUNT, HELM_MAP_CLEAR, HSLINE, USIMMARINE_STATUS,

10 IVPHELM_DOMAIN, IVPHELM_ENGAGED, IVPHELM_MODESET, IVPHELM_POSTINGS,

11 IVPHELM_STATEVARS, IVPHELM_SUMMARY, LOGGER_DIRECTORY, LOOP_CPU, MOOS_DEBUG,

12 MOOS_MANUAL_OVERIDE, NODE_REPORT_LOCAL, PC_hsline, PC_waypt_return,

13 PC_waypt_survey, PHELMIVP_STATUS, PLOGGER_CMD, PLOGGER_STATUS,

14 PMARINEPID_STATUS, PMARINEVIEWER_STATUS, PNODEREPORTER_STATUS,

15 PWT_BHV_HSLINE, PWT_BHV_WAYPT_RETURN, PWT_BHV_WAYPT_SURVEY, RETURN,

16 STATE_BHV_HSLINE, STATE_BHV_WAYPT_RETURN, STATE_BHV_WAYPT_SURVEY,

17 SURVEY_INDEX, SURVEY_STATUS, VIEW_POINT, VIEW_SEGLIST, WPT_INDEX, WPT_STAT

219

19.7 The alogview Tool

The alogview application is used for post-mission rendering of one or more alog files. It provides
(a) an indexed view of vehicle position rendered on the operation area, (b) time plots of any logged
numerical data, (c) IvP Helm information for a given point in time, and (d) rendered IvP functions
generated by the helm for a given point in time. A snapshot of the tool is shown in Figure 77.

This tool is very much still under development, and the below documentation is far from com-
plete despite the best intentions after release 4.1. Nevertheless, since there are those who are using
this regularly at this date, some attempt here is made to introduce the tool. This tool was also
known as logview prior to release 4.1 in August 2010. It was renamed to alogview to make it
consistent with other tools in the Alog Toolbox. A significant addition to the tool since Release
4.1 is the support for rendering depth objective functions as shown in the figure.

Figure 77: The alogview tool: used for post-mission rendering of alog files from one or more vehicles and stepping
through time to analyze helm status, IvP objective functions, and other logged numerical data correlated to vehicle
position in the op-area and time.

The view shown to the user at any given time is indexed on a timestamp. The vehicles rendered

220

in the op-area are shown at their positions for that point in time. The helm scope output and
IvP function output are displayed for the helm iteration at the current timestamp. The data plot
output shows a plot for a given variable over all logged time with a red vertical bar that moves left
to right indicating the current time. The alogview tool by default loads the complete alog vehicle
history to allow the user to jump directly to any point in time. The option also exists to load only
a portion of the data based on start and end time provided on the command line.

19.7.1 Command Line Usage for the alogview Tool

The alogview tool is run from the command line with one or more given .alog files and a number
of options. The usage options are listed when the tool is launched with the -h switch:

$ alogview -h

Listing 73 - Command line usage for the alogview tool.

1 Usage:

2 alogview file.alog [another_file.alog] [OPTIONS]

3

4 Synopsis:

5 Renders vehicle paths from multiple MOOS .alog files.

6 Renders time-series plots for any logged numerical data.

7 Renders IvP Helm mode information vs. vehicle position.

8 Renders IvP Helm behavior objective functions.

9

10 Standard Arguments:

11 file.alog - The input logfile.

12

13 Options:

14 -h,--help Displays this help message

15 -v,--version Displays the current release version

16 --mintime=val Clip data with timestamps < val

17 --maxtime=val Clip data with timestamps > val

18 --nowtime=val Set the initial startup time

19 --geometry=val Viewer window pixel size in HEIGHTxWIDTH

20 or large, medium, small, xsmall

21 Default size is 1400x1100 (large)

22 --layout=val Window layout=normal,noipfs, or fullview

23

24 Further Notes:

25 (1) Multiple .alog files ok - typically one per vehicle

26 (2) Non alog files will be scanned for polygons

27 (3) See also: alogscan, alogrm, alogclip, aloggrep

The order of the arguments passed to alogview do not matter. The --mintime and --maxtime

arguments allow the user to effectively clip the alog files to reduce the amount of data loaded into
RAM by alogview during a session. The --geometry argument allows the user to custom set the
size of the display window. A few shortcuts, "large", "medium", "small", and "xsmall" are allowed.
The --layout argument allows the user to affect the real estate layout by optionally closing one or
more panels to enlarge other panels. This is described in Section 19.7.2.

19.7.2 Description of Panels in the alogview Window

Although the alogview tool will read in any .alog file produced by the pLogger tool, much of the
tool’s screen real estate is dedicated to rendering information produced by the helm. The alogview

221

tool has six panels of information, as shown in Figure 78. The primary panel is the Op-Area Panel
which renders the vehicle position(s) on the operation area as a function of time, along with track
history. The IvPFunction Panels render the objective functions produced by vehicle behaviors for
a given helm iteration. The Helm Scope Panels display helm output and behavior information for
a given helm iteration. The Data Plot panels render two plots of logged numerical data vs the
vehicle log time. Each of these panels and panel controls are discussed in the next few sections.

Figure 78: The panels comprising the alogview tool: Each panel renders information based on the globally held
current timestamp. Certain panels may be collapsed to make more room for other panels.

19.7.3 The Op-Area Panel for Rendering Vehicle Trajectories

The Op-Area panel renders, for a given point in time, the vehicle(s) current position and orienta-
tion, the vehicle(s) trajectory history, and certain geometric objects such as points, polygons, line
segments and their labels, that may have been posted by the helm or other MOOS processes if they
were logged in the alog file(s). An example is shown in Figure 79.

Stepping Through Time - The Playback Pull-down Menu

The primary interaction with the Op-Area panel is to step the vehicle forward and backward
through time either by fixed time increments or by helm iteration. The simplest way to step is
with either the ’[’ and ’]’ keys to step backward and forward by one step, or the ’<’ and ’>’

keys to move by ten steps. (The current time can also be jumped to with a mouse click in the Data
Plot panel. A step unit by default is one second. Alternatively the step unit may be given by one
iteration of the helm. If multiple vehicles (alog files) are open, a helm iteration is defined by the
helm in the “active” vehicle, i.e, the vehicle whose helm scope information is being displayed in the
left-hand Helm Scope panel.

222

Figure 79: The OpArea panel of the alogview tool: Vehicle position(s) for a given point in time are rendered
along with vehicle trajectory history and certain geometric visual artifacts such as points, polygons and line segments
that may have been posted by the helm or another MOOS process. The image in this figure can be replicated exactly
by launching alogview on the alpha.alog file from the Alpha mission distributed with the MOOS-IvP source code,
launched with the --nowtime=144 command line option.

The stepping can be initiated by successive key clicks as noted above or be automatic when
put into playback, i.e., streaming mode. In streaming mode the steps continue automatically at
fixed intervals until paused or until the end of the latest timestamp of all loaded log files. The
time interval between step executions can be sped up or slowed down with the ’a’ or ’z’ keys
respectively. The primary motivation of streaming was to have the option of doing a screen capture
of images on each step saved to a file for later compilation as an animation (typically animated
GIF). Screen capturing can be enabled from the Playback pull-down menu or by hitting the ’w’

key. When enabled, a purple box should be rendered over the Op-Area panel indicating the scope
of the screen capture. By successively hitting the ’w’ key, the capture box is changed between
the following extents: "1024x768", "800x600", "640x480", "480x360", and "off". The capturing
is done by invoking a system call to the import tool distributed with the powerful ImageMagick
Open Source package.

Vehicle and Vehicle History Renderings - The Vehicles Pull-down Menu

The rendering of vehicle size, type and color, vehicle trails and the position of the vehicles may
be altered via the Vehicles pull-down menu options. The vehicle size and shape upon startup is
determined from the NODE REPORT LOCAL variable (See Section 4.2.1). The set of displayable shapes
in alogview is the same as that for the pMarineViewer application and shown in Figure 23 on page
51. The rendering of vehicles in the Op-Area panel may be toggled off and on by hitting the
CTRL-’v’ key, and the size of the vehicles may be altered with the ’-’ and ’+’. The size of the
rendered vehicle initially is drawn to scale based on the length reported in NODE REPORT LOCAL, and

223

can be returned to scale by hitting the ALT-’v’ key.

The rendering of vehicle names may be toggled off and on by hitting the ’n’ key, and the user
may toggle between a few different choices for text color by hitting the ALT-’n’ key. By default the
color of the vehicles is set to be yellow for all inactive vehicles, and red for the one active vehicle
(where active means it is the vehicle whose helm data is shown in the left-hand Helm Scope panel).
A few different choices for active and inactive vehicle colors are provided in the Vehicles pull-down
menu. The selection of the active vehicle can be made explicitly from the HelmPlots pull-down
menu, by cycling through the vehicles by hitting the ’v’ key.

Vehicle trails, i.e., position history, are by default rendered from the present point in time back
to the beginning of logged positions in the alog file. Three other modes are supported and can be
toggled through with the ’t’ key. The other modes are: no trails shown at all, all trails shown
from the start to end log time, and trails with a limited history. In the latter case the trail stays
a fixed length behind the vehicle. This fixed length can be made shorter or longer with the ’(’ or
’)’ keys respectively. The size of each trail point can be made smaller or larger with the ’[’ or
’]’ keys respectively.

Geometric Object Renderings - The GeoAttr Pull-down Menu

Certain geometric objects logged in the alog file may be displayed in the Op-Area panel and their
renderings affected by choices available in the GeoAttr pull-down menu. Each object is posted with
a tag that allows for the object to be effectively erased when an object of the same type and tag is
subsequently posted. The alogview tool, upon startup, reads through the log file(s) and determines
which geometric objects are viewable at any given point in time. Thus the user may see these objects
disappear and reappear as one steps back and forth through time. Current objects supported by
alogview are VIEW POINT, VIEW SEGLIST, VIEW POLYGON, VIEW MARKER, and VIEW RANGE PULSE

19.7.4 The Helm Scope Panels for View Helm State by Iteration

The helm scope panels are used for examining the state of the vehicle helm at the present point in
time. In the Vehicle: box, the name of the vehicle preceded by the helm iteration is shown. In the
Mode: box, the helm’s current mode is given if hierarchical mode declarations are configured for
the helm. In the Decision: box, the helm’s decision for that iteration is shown for each decision
variable. The Active: box, shows the list of behaviors active on the present helm iteration. The
Running: box, shows the list of behaviors running on the present helm iteration. The Idle: box,
shows the list of behaviors idle on the present helm iteration. The Completed: box, shows the list
of behaviors that have been completed as of the present helm iteration.

If there are multiple vehicles (alog files) being viewed, the user can switch the vehicle for each
helm scope panel via the HelmPlots pull-down menu.

19.7.5 The Data Plot Panel for Logged Data over Time

The data plot panels at the bottom of the window allow the user to plot any two logged MOOS
variables, if they were logged as numerical data. A red bar in the time plot indicates the current
point in time so the user can visually correlate the vehicles’ position in the op area relative to the
data plot. The user can also click anywhere on the time plot to alter the current point in time

224

used in all panels. The user may also zoom in on the data plot for better resolution. One note of
caution - the scales used by the two variables are likely not the same. The range from low to high
for the particular variable. The range of values is shown on the far left and far right.

19.7.6 Automatic Replay of the Log file(s)

The user can allow the alogview tool to step through time automatically, effectively replaying the
mission over its duration. Replaying can be adjusted in the Replay pull-down menu. The ’=’ key
toggles replaying, and the ’a’ and ’z’ keys can be used to slow down or speed up the replay rate.
This feature is useful when used with other software that allows automatic generation of video
capture real-time from the display. QuickTime in OS X for example.

225

20 uFldNodeBroker: Brokering Node Connections

The uFldNodeBroker application is a tool for brokering connections between a node (a simulated or
real vehicle) and a shoreside community. It is used primarily in coordination with uFldShoreBroker

to discover and share host IP and port information to automate the dynamic configurations of
pShare. Inter-vehicle communications over the network are handled by pShare in both simulation
with single or multiple machines as well as on fielded vehicles using Wi-Fi or cellphone connections.
The pShare application simply needs to know the IP address and port number of connected ma-
chines. Often these aren’t known at run-time and even if they were, maintaining that information in
configuration files may be unduly cumbersome, especially for large sets of vehicles. This tool meant
to automate the configuration by letting the nodes and shoreside community discover each other
by giving the node (uFldNodeBroker) some initial hints on where to find the shoreside community
on the network. The typical layout is shown in Figure 80.

Figure 80: Typical uFldNodeBroker Topology: A vehicle (node) sends information about itself (IP address and
port number) to possible shoreside locations. Once a connection is made, further bridging is established between the
node and shoreside communities.

The functionality of uFldNodeBroker paraphrased:

• Discover the node’s host information (typically from pHostInfo).

• For candidate shoreside hosts, request a new bridge in pShare to each candidate for the
variable NODE BROKER PING.

• Publish NODE BROKER PING with the node’s host information.

• Await a reply in the form of incoming NODE BROKER ACK mail, presumably from the shoreside
community running uFldShoreBroker.

• Now that a shoreside community is known, request new bridges from the node’s local pShare
for all the info we otherwise want bridged to the shoreside.

226

• Keep sending pings periodically in case the shoreside community is re-started and needs to
re-establish connections to nodes.

20.1 Overview of the uFldNodeBroker Interface and Configuration Options

The uFldNodeBroker application may be configured with a configuration block within a .moos file.
Its interface is defined by its publications and subscriptions for MOOS variables consumed and
generated by other MOOS applications. An overview of the set of configuration options and in-
terface is provided in this section. If one has access to a command line where uFldNodeBroker has
been built, interface information may also be seen by typing "uFldNodeBroker --interface", and
configuration information by typing "uFldNodeBroker --example".

20.1.1 Configuration Parameters of uFldNodeBroker

The following parameters are defined for uFldNodeBroker.

Listing 20.74: Configuration Parameters for uFldNodeBroker.

keyword: An optional unique identifier to be read by the shoreside broker to condi-
tionlly respond to pings.

bridge: A variable to register with pShare for bridging to a shoreside MOOS com-
munity once a shoreside connection has been established.

try shore host: A candidate route to send send initial pings in hopes of establishing a
connection. The route specifies an input route for pShare running in a
shoreside community.

An Example MOOS Configuration Block

An example MOOS configuration block can be obtained by entering the following from the command-
line:

$ uFldNodeBroker --example

Listing 75 - Example configuration of the uFldNodeBroker application.

0 ===

1 uFldNodeBroker Example MOOS Configuration

2 ===

3

4 ProcessConfig = uFldNodeBroker

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 keyword = lemon

10

11 try_shore_host = pshare_route=localhost:9200

12 try_shore_host = pshare_route=192.168.0.122:9301

227

13 try_shore_host = pshare_route=multicast_8

14

15 bridge = src=VIEW_POLYGON

16 bridge = src=VIEW_POINT

17 bridge = src=VIEW_SEGLIST

18

19 bridge = src=NODE_REPORT_LOCAL, alias=NODE_REPORT

20 }

20.2 Publications and Subscriptions for uFldNodeBroker

The interface for uFldNodeBroker, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldNodeBroker --interface or -i

20.2.1 Variables Published by uFldNodeBroker

The primary output of uFldNodeBroker to the MOOSDB are the requests to pShare for registrations,
and the outgoing pings to candidate shoreside communities.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 20.3.

• NODE BROKER PING: A message written locally but bridged to a candidate shoreside MOOS
community, containing IP address and pShare route information about the local community.

• PSHARE CMD: message to pShare to add a new bridge for a given variable and given target
MOOS community at a specified IP address and port number.

20.2.2 Variables Subscribed for by uFldNodeBroker

The uFldNodeBroker application subscribes to the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• NODE BROKER ACK: Information published presumably by uFldShoreBroker running in a sepa-
rate shoreside community. Message has information about the shoreside host including the
community name, IP address and port numbers for the MOOSDB and its local pShare pro-
cess.

• PHI HOST INFO: Information about the local host IP address, the MOOS community name, the
port on which the DB is running, and the port on which the local pShare is listening for UDP
messages.

20.2.3 Command Line Usage of uFldNodeBroker

The uFldNodeBroker application is typically launched with pAntler, along with a group of other
shoreside modules. However, it may be launched separately from the command line. The command
line options may be shown by typing

228

$ uFldNodeBroker --help or -h

Listing 76 - Command line usage for the uFldNodeBroker tool.

0 ==

1 Usage: uFldNodeBroker file.moos [OPTIONS]

2 ==

3

4 Options:

5 --alias=<ProcessName>

6 Launch uFldNodeBroker with the given

7 process name rather than uFldNodeBroker.

8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 --interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display release version of uFldNodeBroker.

20.3 Terminal and AppCast Output

The uFldNodeBroker application produces some useful information to the terminal on every itera-
tion of the application. An example is shown in Listing 77 below. This application is also appcast
enabled, meaning its reports are published to the MOOSDB and viewable from any uMAC ap-
plication or pMarineViewer. See Section 10 for more on appcasting and viewing appcasts. The
counter on the end of line 2 is incremented on each iteration of uFldNodeBroker, and serves a bit as
a heartbeat indicator. The "0/0" also on line 2 indicates there are no configuration or run warnings
detected.

Listing 77 - Example terminal or appcast output for uFldNodeBroker.

1 ===

2 uFldNodeBroker henry 0/0(129)

3 ===

4

5 Total OK PHI_HOST_INFO received: 13

6 Total BAD PHI_HOST_INFO received: 0

7 Total HOST_INFO changes received: 1

8 Total PSHARE_CMD posted: 7

9 Total BAD NODE_BROKER_ACK received: 6

10

11 ===

12 Vehicle Node Information:

13 ===

14

15 Community: henry

16 HostIP: 10.0.0.5

17 Port MOOSDB: 9001

18 Time Warp: 4

19 IRoutes: 10.0.0.5:9301

20

21 ===

229

22 Shoreside Node(s) Information:

23 ===6

24

25 Community Pings Pings IP Time

26 Name Route Sent Acked Address Warp

27 --------- -------------- ----- ----- -------- ----

28 shoreside localhost:9300 128 120 10.0.0.5 4

29 Phase Completion Summary:

30 ------------------------------------

31 Phase 1: (Y) Valid Host information retrieved (iroutes).

32 Phase 2: (Y) Valid TryHosts (1) configured.

33 Phase 3: (Y) NODE_BROKER_PINGS are being sent to TryHosts.

34 Phase 4: (Y) A Valid NODE_BROKER_ACK has been received.

35 Phase 5: (Y) pShare requested to share user vars with shoreside.

36 All Phases complete. Things should be working as configured.

On line 5, the number of incoming mail messages for PHI HOST INFO is tallied where the host
information bundle is deemed complete. It is complete if it contains the host community, IP address,
time warp and pShare input route information. If an incomplete host information packet is received,
it is tallied in line 6. The number on line 6 should always be zero. If the number on line 6 is not
zero, or the number on line 5 never increments, you should check the operation of the pHostInfo.

The number on line 7 indicates the number of time the detected host information changes. This
number should stabilize very quickly maxing out at 1 or 2 typically. The number on line 8 indicates
the number of dynamic bridge requests posted to pShare. These are in the form of postings to
the variable PSHARE CMD, which occur first for outgoing pings to candidate shoreside hosts, and
then for the user bridge configuration variables after a shoreside host has been connected. Invalid
NODE BROKER ACK messages are tallied on line 9. An invalid ack may be due to a mismatch in time
warp between node and shoreside, or a mismatch in keywords if keywords are being used.

Self node information is displayed in the next group, lines 11-19. The community name,
MOOSDB port, and time warp are all read from the .moos mission configuration file. The node’s
IP address (line 16) and the local pShare input routes (line 19) are obtained from output received
from pHostInfo.

Information about candidate and connected shoreside communities is shown next in lines 21-28.
In this case there is only one entry, line 27. For each candidate entry, the community name, shoreside
pShare input route, number of pings sent and acknowledged are in the first four columns. The last
two columns indicate the IP address and time warp of the shoreside learned from NODE BROKER ACK

messages received from the shoreside. When a candidate shoreside community has not been con-
nected, the entry in this table will something like:

Community Pings Pings IP Time

Name Route Sent Acked Address Warp

--------- --------------- ----- ----- ------- ----

localhost:92003 385 0

The last block of information in the report is the Phase Completion Summary, lines 29-36. It
lists the rough sequence of events typical to reach a shoreside community connection. If any one
of these phases is incomplete, the output on line 36 will be replaced with a few hints on where to
troubleshoot.

230

21 uFldShoreBroker: Brokering Shore Connections

The uFldShoreBroker application is a tool for brokering connections between a shoreside community
and one or more nodes (simulated or real vehicles). A shoreside community is collection of MOOS
processes typically running a GUI providing a situational display and managing messages to and
from fielded vehicles. This is depicted in the notional rendering in Figure 81 below. The shoreside
community in practice is often situated on a ship with UUVs below, and is more aptly refered to as
the topside community. The user interacts with the GUI or perhaps other communication modules,
to send high-level messages to the vehicles.

The uFldShoreBroker application is used primarily in coordination with uFldNodeBroker, run-
ning on the vehicles, to discover and share host IP and port information to automate the dynamic
configurations of pShare. Inter-vehicle communications over the network are handled by pShare in
both simulation with single or multiple machines as well as on fielded vehicles using Wi-Fi or cell-
phone connections. The pShare application simply needs to know the IP address and port number
of connected machines. Often these aren’t known at run-time and even if they were, maintain-
ing that information in configuration files may be unduly cumbersome, especially for large sets
of vehicles. This tool is meant to automate the configuration by letting the nodes and shore-
side community discover each other by letting (uFldShoreBroker) respond to incoming pings, i.e.,
initialization messages, from nodes on the network. The typical layout is shown in Figure 80.

Figure 81: Typical uFldShoreBroker Topology: A vehicle (node) sends information about itself (IP address and
port number) to the shoreside, received by uFldShoreBroker. It responds by (a) acknowledging the connection to the
node, and (b) establishing user configured bridges of particular MOOS variables to the node.

The functionality of uFldShoreBroker paraphrased:

• Discover the shoreside’s own host information (typically from pHostInfo).

• Await incoming NODE BROKER PING messages from non-local vehicles.

231

• Upon an incomqing ping, respond to the nodes with a NODE BROKER ACK message to the location
specified in the ping message.

• Establish new bridges to the nodes for variables specified previously by the user in the
uFldShoreBroker configuration.

• Keep sending acknowledgements periodically to confirm to vehicles that they are still con-
nected to the shoreside community.

21.1 Bridging Variables Upon Connection to Nodes

A primary function of uFldShoreBroker is to establish bridging relationships to a remote node
community after it has received a ping from that community. These variables are specified in the
configuration block with lines like bridge = "src=DEPLOY ALL, alias=DEPLOY" as in Listing 80. This
step is described next.

21.1.1 Inter-MOOSDB Bridging with pShare

Static bridging with pMOOSShare is done by specifying the desired route in the pMOOSShare configu-
ration block with a line of the form:

output = src_name=VAR, dest_name=ALIAS, route=ROUTE

For example:

output = src_name=DEPLOY_HENRY, dest_name=DEPLOY, route=12.56.111.1:9200

The above connection may be used to send the vehicle Henry the deploy command from the
shoreside community. The problem is that the shoreside may not know the IP address of Henry
(or the port on which it’s pShare is listening) until it presents itself to the shoreside at run time.

In this case, dynamic share registration needs to be used by sending pShare a message after it
has been launched. For example, the above sharing relationship could be established by sending
the following message:

PSHARE_CMD = "cmd=output, src_name=DEPLOY_ALL, dest_name=DEPLOY,

route=2.56.111.1:9200

It is the job of uFldShoreBroker to post the above style dynamic requests once the node information
becomes known to the shoreside community.

21.1.2 Handling a Valid Incoming Ping from a Remote Node

The basic job of uFldShoreBroker is to await incoming pings, and use the information in a ping
message to (a) decide if the ping should be accepted, and (b) send the appropriate response back
to the sender, and (c) set up new outgoing pShare relationships if the ping is indeed accepted. The
contents of a ping may look something like:

NODE_BROKER_PING = "community=henry,host=192.168.1.22,port=9000,time_warp=10

pshare_iroutes=192.168.1.22:9200,time=1325178800.81"

232

There must be a match in the MOOS time warp used by the shoreside MOOS community and any
node connected to the shore. This is always 1 when operating vehicles in the field, but may be set
to a much larger number in simulation. The time warp is set with the parameter MOOSTimeWarp at
the top of the .moos configuration file.

The ping consists of three key pieces of information:

• The community name of the node,

• The IP address of the node,

• The input routes on which the node is listening for messages with its own local pShare running.

Once this information is known by the shoreside broker, new bridges can be established for variables
identified by the user. The only other information needed is (a) the name of the variable in the local
MOOSDB, and (b) the name (alias) of the variable as it is to be known in the remote MOOSDB.
Once a valid ping has been received and accepted, uFldShoreBroker is ready to establish bridge
arrangements with its local pShare running.

21.1.3 Vanilla Bridge Arrangements

The simplest bridge arrangment specifies (a) the variable as it is known locally, and (b) the variable
name as it is to be known remotely. This is done with a uFldShoreBroker configuration line similar
to:

bridge = src=DEPLOY_ALL, alias=DEPLOY

For each unique incoming ping, a new bridge arrangement will be requested. By unique, we mean
having a distinct community (remote vehicle) name. For example, if pings are received and accepted
from henry, james, and ike, uFldShoreBroker would make three separate posts, perhaps looking like:

PSHARE_CMD = "src_name=DEPLOY_ALL, dest_name=DEPLOY, route=2.56.111.1:9200"

PSHARE_CMD = "src_name=DEPLOY_ALL, dest_name=DEPLOY, route=2.56.111.3:9200"

PSHARE_CMD = "src_name=DEPLOY_ALL, dest_name=DEPLOY, route=2.56.111.6:9200"

At this point the behavior of pShare on the shoreside would be functionally equivalent to the
scenario where the following three lines were in the pShare configuration block:

output = src_name=DEPLOY_ALL, dest_name=DEPLOY, route=12.56.111.1:9200

output = src_name=DEPLOY_ALL, dest_name=DEPLOY, route=12.56.111.3:9200

output = src_name=DEPLOY_ALL, dest_name=DEPLOY, route=12.56.111.6:9200

21.1.4 Bridge Arrangements with Macros

The user may configure uFldShoreBroker with bridge arrangments containing a couple types of
macros. For example, consider the configuration:

bridge = src=DEPLOY_$V, alias=DEPLOY

233

The $V macro will expand to the name of the vehicle when it comes time to request a new bridge.
If the newly received ping is from the node named gilda, the bridge request from the above pattern
may look like:

PSHARE_CMD = "src_name=DEPLOY_GILDA, dest_name=DEPLOY, route=2.56.111.1:9200

Note the vehicle name in the MOOS variable macro was expanded to be upper case, even though
the ping information refered to the vehicle as gilda. This is just to aid in the convention that
MOOS variable are typically all upper case. If one really want a literal expansion with no case
altering, the macro $v, lower-case v, may be used instead. The macro is only respected as part of
src field. In other words, if the bridge were configured with alias=DEPLOY $V, the macro would not
be expanded.

The other type of macro implemented is the $N macro, as in:

bridge = src=LOITER_$N, alias=LOITER

The $N macro will expand to the integer value representing number of unique pings received thus far.
For example, if three pings are received and accepted from henry, james, and ike, uFldShoreBroker
would make three separate posts, perhaps looking like:

PSHARE_CMD = "src_name=LOITER_1, dest_name=LOITER, route=2.56.111.1:9200"

PSHARE_CMD = "src_name=LOITER_2, dest_name=LOITER, route=2.56.111.4:9200"

PSHARE_CMD = "src_name=LOITER_2, dest_name=LOITER, route=2.56.111.12:9200"

This may be useful when used in conjunction with another MOOS process generating output
generically for N vehicles, without having to know the vehicle names in advance.

21.1.5 Shortcut to a Common Bridge Arrangement - the qbridge Parameter

A common usage pattern is to configure uFldShoreBroker to request two types of bridges for a given
variable, for example:

bridge = src=DEPLOY_ALL, alias=DEPLOY

bridge = src=DEPLOY_$V, alias=DEPLOY

bridge = src=RETURN_ALL, alias=RETURN

bridge = src=RETURN_$V, alias=RETURN

This could be use in the shoreside community for easily commanding vehicles. When the user
wishes to deploy all vehicles, a posting of DEPLOY ALL="true" does the trick. If the user wishes only
the vehicle james to return, a posting of RETURN JAMES="true" may be be made. This pattern is so
common that this shortcut is supported. This is done with the qbridge, “quick bridge”, parameter.
The above four configuration lines could ba accomplished instead by:

qbridge = DEPLOY, RETURN

234

21.2 Usage Scenarios the uFldShoreBroker Utility

The uFldShoreBroker was designed with a canonical command-and control scenario in mind. The
idea is that the N deployed vehicles have a common autonomy protocol implemented. For example,
a message to deploy or return a vehicle is the same message for each deployed vehicle. The idea is
that two types of communication channels need to be established with pMOOSShare, (a) messages sent
to all vehicles, and (b) messages sent to a particular named vehicle. The convention proposed here
is to do this with the two types of bridging described in the discussion of the qbridge parameter, in
Section 21.1.5. For a variable such as DEPLOY, a posting in the shoreside community to DEPLOY ALL

would go to all known vehicles, and a posting to DEPLOY HENRY would only go to that particular
vehicle.

Figure 82: Common uFldShoreBroker Usage Scenario: As vehicles become known to the shoreside, each vehicle
has two new bridges established. The first is the same for all vehicles to allow broadcasting, and the second bridge
is unique to the particular vehicle, for individual command and control.

21.3 Terminal and AppCast Output

The uFldShoreBroker application produces some useful information to the terminal on every it-
eration of the application. An example is shown in Listing 78 below. This application is also
appcast enabled, meaning its reports are published to the MOOSDB and viewable from any uMAC
application or pMarineViewer. See Section 10 for more on appcasting and viewing appcasts.

On line 1, the application iteration is shown, more as a heartbeat indicator. In lines 4-7, the
primary variables consumed and posted by uFldShoreBroker are summarized in terms of how many
posts have been made and received for each variable.

Listing 78 - Example terminal output of the uFldShoreBroker tool.

0 ===

1 uFldShoreBroker_PS shoreside (109)

2 ===

3

4 Total PHI_HOST_INFO received: 11

5 Total NODE_BROKER_PING received: 180

6 Total NODE_BROKER_ACK posted: 180

7 Total PSHARE_CMD posted: 34

8

9

10 ===

11 Shoreside Node(s) Information:

12 ===

13

235

14 Community: shoreside

15 HostIP: 128.30.27.202

16 Port MOOSDB: 9000

17 Time Warp: 6

18 IRoutes: localhost:9200

19

20 ===

21 Vehicle Node Information:

22 ===

23

24 Node IP Elap pShare

25 Name Address Status Time Input Route(s) Skew

26 ----- ------------- ------ ---- ------------------ ------

27 henry 128.30.27.202 ok 0.0 128.30.27.202:9301 1.6542

28 gilda 128.30.27.202 ok 0.0 128.30.27.202:9302 1.7572

29

30 Recent Events (2):

31 [22.06]: New node discovered: gilda

32 [16.04]: New node discovered: henry

In lines 10-18, the key shoreside properties are listed. Typically, but not always, the shoreside
community is name "shoreside" as indicated on line 14. The shoreside IP address, determined by
pHostInfo, is shown on line 15. The time warp, and MOOSDB port are read from the shoreside
.moos file and listed on lines 16 and 17. The input routes used by pShare are listed on line 18. If
lines 15 or 18 are blank, uFldShoreBroker will not make any connections and the first place to look
is whether or not pHostInfo is running and producing valid information.

In lines 20-32, the status of each of the known vehicles is shown. The first two vehicles had their
pings accepted. Their IP addresses are shown in the second column. Their status is shown in the
third column. The elapsed time in the fourth column is the time since the last ping was received
by the shoreside. The fifth column shows the input routes being used by pShare running on the
vehicle node. If multiple routes are in use, this will be shown over multiple lines. The sixth column
shows the time skew between the timestamp in the NODE BROKER PING message compared to the time
it was received. Some of this is due to (a) latency in transmission, (b) latency due to App Ticks in
brokers on both sides, and (c) clock disrepancy between the shoreside and the node computers. It’s
also worth mentioning that the skew will be magnified for higher time warps. Currently incoming
ping connection requests are not denied due to a high clock skew, but this may be implemented in
the future.

21.4 Configuration Parameters of uFldShoreBroker

The following parameters are defined for uFldShoreBroker.

Listing 21.79: Configuration Parameters for uFldShoreBroker.

bridge: Names a MOOS variable to be bridged to a node community.

qbridge: Shorthand notation for a common bridging pattern.

As an example, bridge = src=DEPLOY ALL, alias=DEPLOY, will result in the bridging of variable
DEPLOY ALL from the local MOOSDB, to the variable DEPLOY in a remote MOOS community. Further

236

examples are given in Section 21.1.

An Example MOOS Configuration Block

Listing 80 shows an example MOOS configuration block produced from the following command
line invocation:

$ uFldShoreBroker --example

Listing 80 - Example configuration of the uFldShoreBroker application.

0 ===

1 uFldShoreBroker Example MOOS Configuration

2 ===

3

4 ProcessConfig = uFldShoreBroker

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 bridge = src=DEPLOY_ALL, alias=DEPLOY

10 bridge = src=DEPLOY_$V, alias=DEPLOY

11

12 qbridge = RETURN

13

14 bridge = src=UP_LOITER_$N, alias=UP_LOITER

15

16 // NOTE: The following line is shorthand for the next two.

17 // qbridge = FOOBAR

18 // bridge = src=FOOBAR_ALL, alias=FOOBAR

19 // bridge = src=FOOBAR_$V, alias=FOOBAR

20

21 }

21.5 Publications and Subscriptions for uFldShoreBroker

The interface for uFldShoreBroker, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldShoreBroker --interface

21.5.1 Variables Published by uFldShoreBroker

The primary output of uFldShoreBroker to the MOOSDB are the requests to pShare for registra-
tions, and the outgoing acknowledgement replies to remote node/vehicle communities.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 21.3.

• PMB REGISTER: A message to pShare to add a new bridge for a given variable and given target
MOOS community at a specified IP address and port number.

237

• NODE BROKER ACK: A message written locally but bridged to a remote vehicle MOOS community,
containing IP address and port information about the local shoreside community.

21.5.2 MOOS Variables Subscribed for by uFldShoreBroker

The uFldShoreBroker application subscribes to the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• PHI HOST INFO: Information about the local host IP address, the MOOS community name, the
port on which the DB is running, and the port on which the local pShare is listening for UDP
messages.

• NODE BROKER PING: Information published presumably by uFldNodeBroker running in a remote
vehicle community. Message has information about the node host including the community
name, IP address, the port number for the MOOSDB, input route(s) for the local pShare

process.

21.5.3 Command Line Usage of uFldShoreBroker

The uFldShoreBroker application is typically launched with pAntler, along with a group of other
shoreside modules. However, it may be launched separately from the command line. The command
line options may be shown by typing:

$ uFldShoreBroker --help

Listing 81 - Command line usage for the uFldShoreBroker tool.

0 ==

1 Usage: uFldShoreBroker file.moos [OPTIONS]

2 ==

3

4 Options:

5 --alias=<ProcessName>

6 Launch uFldShoreBroker with the given

7 process name rather than uFldShoreBroker.

8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 --interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display release version of uFldShoreBroker.

238

22 uFldNodeComms: Simulating Intervehicle Communications

The uFldNodeComms application is a tool for handling node reports and messages between vehicles.
Rather than directly sending node reports and messages between vehicles, uFldNodeComms acts as
an intermediary to conditionally pass a report or message on to another vehicle, where conditions
may be the inter-vehicle range or other criteria. The assumption is that uFldNodeComms is running
on a topside or shoreside computer, and receiving information about the present physical location
of deployed vehicles through node reports. The typical layout is shown in Figure 83.

Figure 83: Typical uFldNodeComms Topology: A shoreside or topside community is receiving information
from several deployed vehicles, in the form of node reports. The node reports contain time-stamped updated vehicle
positions, from which the speed and distance measurements are derived and posted to the shoreside MOOSDB.

In short, uFldNodeComms subscribes for incoming node reports for any number of vehicles, and
keeps the latest node report for each vehicle. On each iteration, for a each vehicle, if the node
report has been updated, the report is published to a specially created MOOS variable for the
other n − 1 vehicles. A user-configured criteria is applied before publishing the new information.
Typically this criteria involves the range between vehicles, but the criteria may be further involved.
The idea between three vehicles alpha, bravo, and charlie is shown below in Figure 84.

Figure 84: Brokering by uFldNodeComms: Each incoming node report is sent out to a specially named variable
corresponding to one each of the other n− 1 vehicles.

239

22.1 Handling Node Reports

Node reports may contain a bundle of useful information for sharing between vehicles. Perhaps the
most important is the present vehicle position and trajectory. This may be used by the receiving
vehicle for collision avoidance and formation keeping and so on. The vehicle position is also used
by uFldNodeComms to determine if the node reports themselves are to be shared between vehicles.
The inter-vehicle ranges derived from the NODE REPORT messages are also used to determine if other
more generic information contained in the NODE MESSAGE variable is to be shared between vehicles.

22.1.1 The Criteria for Routing Node Reports

The basic criteria for sharing node reports is range. By default, the node report received for any
one vehicle is passed on to all other known vehicles within comms range of the originating vehicle.
The comms range is set by the parameter comms range as on line 9 in Listing 84 above. Starting
with this as a baseline, a few other factors may be involved in determining whether a node report
is shared.

Using Vehicle Group Information

If uFldNodeComms is configured with the parameter groups set to true, as on line 21 in Listing 84,
then node reports are only shared between vehicles having the same group name. The group name
is a field contained in the node report itself, so the onus is on the vehicle to include this information
as part of its report. The pNodeReporter application contains an optional configuration parameter
group=<group-name> where the group information is declared for inclusion in all node reports. The
motivation for the grouping option is to support multi-vehicle competitions where some vehicles
want to convey positions to teammates, but not adversarial vehicles.

The groups feature only affects the passing of node reports between vehicles. It does not affect
the passing of node messages discussed further below. Node messages contain their addressee
information explicitly.

Establishing and Inter-Vehicle Critical Range

When the two vehicles are within a range deemed critical, as set by the critical range configuration
parameter as on line 10 in Listing 84, node reports are shared between vehicles regardless of the
comss range parameter and the groups parameter. The default for this parameter is 30 meters.
The thought behind this feature is that, while it may be advantageous to not broadcast your own
vehicle position to non group members for the purposes of a competition, it may be a good idea to
share this information for the sake of collision avoidance.

Checking for Staleness

Since up-to-date inter-vehicle range information is used as part of the criteria in determining
whether a vehicle receives a new node report from another, the position of the candidate recipient
vehicle needs to reasonably up-to-date. The stale time configuration parameter may be set as on
line 11 in Listing 84, to determine the amount of elapsed time without receiving a node report from
a vehicle before it is considered stale. If a recipient vehicle becomes stale, it will also not receive
node messages.

240

Bestowing a Vehicle with an Enhanced Stealth Property

By default, node reports are shared at equal distances between sender and receiver. In other words,
when one vehicle comes into close enough range to receive node reports of another, the other the
vehicle will also begin receiving node reports of the first vehicle. This puts each vehicle on equal
footing if they are regarded in an adversarial context.

By using the
stealth parameter, one vehicle may be given a bit of an advantage. The stealth parameter is

assigned to a particular vehicle and is a number in the range [0.5, 1]. A message from source to
destination is sent if:

actual range(src, dest) < comms range ∗ stealth(src) (9)

By default, the stealth factor for each vehicle is 1. A stealthy vehicle with a factor of one half,
means the receiving vehicle needs to be twice as close as it would otherwise to receive the stealthy
vehicle’s node report or node message. The critical range parameter may be used to override
a vehicle’s stealthiness with respect to sending node reports. That is, a message from source to
destination is sent if:

actual range(src, dest) < max((comms range ∗ stealth(src)), critical range) (10)

The stealth value for a particular vehicle may be set in the MOOS configuration file as shown on
line 18 in Listing 84. It may also be set dynamically by receiving mail on the variable UNC STEALTH.
For example the posting

UNC_STEALTH = vname=alpha, stealth=0.75

would immediately reset the stealth factor for vehicle alpha on the next iteration. The motivation for
exposing this parameter via incoming MOOS mail is that another shoreside application, monitoring
vehicle speed for example, may reward a vehicle operating in the field with increased stealth based
on any criteria. This can be useful in constructing vehicle competitions.

Bestowing a Vehicle with an Enhanced Listening Property

In addition to the stealth property, a complementary property may be bestowed upon a vehicle
using the earange parameter. The earange parameter is assigned to a particular vehicle and is a
number in the range [1, 2]. A message from source to destination is sent if:

actual range(src, dest) < comms range ∗ earange(dest) (11)

By default, the earange factor for each vehicle is 1. A vehicle with a factor of two may receive
node reports of another vehicle at twice the range it may otherwise. In the end the stealth and
earange properties may cancel each other out when their extreme values are factored together.
Taken together a message from source to destination is sent if:

actual range(src, dest) < comms range ∗ stealth(src) ∗ earange(dest) (12)

241

The earange value for a particular vehicle may be set in the MOOS configuration file as shown on
line 19 in Listing 84. It may also be set dynamically by receiving mail on the variable UNC EARANGE.
For example the posting

UNC_EARANGE = vname=alpha, earange=1.5

would immediately reset the earange factor for vehicle alpha on the next iteration. The motiva-
tion for exposing this parameter via incoming MOOS mail is that another shoreside application,
monitoring vehicle speed for example, may reward a vehicle operating in the field with increased
earange based on any criteria. This can be useful in constructing vehicle competitions.

22.1.2 Node Report Transmissions and pShare

Node reports are communicated to recipient vehicles in coordination with the pShare application.
For each unique vehicle name discovered by uFldNodeComms via received node reports, it will publish
a new MOOS variable NODE REPORT NAME. This variable will be published with the contents of other
vehicles’ node reports.

As shown in Figure 84, if three vehicles, alpha, bravo, and charlie become known, three corre-
sponding MOOS variables NODE REPORT ALPHA, NODE REPORT BRAVO, and NODE REPORT CHARLIE will be
published. The variable NODE REPORT ALPHA will be published with reports from bravo and charlie
and so on. To make this happen, uFldNodeComms needs the corresponding share relationships from,
for example, NODE REPORT ALPHA in the shoreside community to the variable NODE REPORT in the al-
pha community on the alpha vehicle. This sharing relationship is established separately by the
uFldShoreBroker application running in the shoreside community.

22.2 Handling Node Messages

Node messages are of a generic structure for sharing a MOOS variable-value pair between a source
node and a destination node. A node message from vehicle alpha to vehicle bravo would be posted
locally by alpha with something like:

NODE_MESSAGE = "src_node=alpha,dest_node=bravo,var_name=FOOBAR,string_val=hello"

The local NODE MESSAGE posting is shared to the shoreside community running uFldNodeComms where
it is considered for re-routing to the destination vehicle.

22.2.1 The Criteria for Routing Node Messages

The basic criteria for sharing node messages is (a) the message addressee, and (b) the range between
the source and destination vehicles. Since uFldNodeComms is receiving and keeping track of incoming
node reports from all vehicles, it has ready access to the inter-vehicle range between the source
and destination nodes. The same criteria used for sending node reports is used for sending node
messages. It must meet the range criteria as perhaps modified by the stealth and earange factors
discussed earlier. The only difference is that the critical range parameter is irrelevant for the
issue of sending node messages. This parameter was only used for node reports in the interest of
safety and collision avoidance. There are however two other factors that may affect node message
transmission, discussed next, message frequency and message size.

242

22.2.2 Enforcing a Minimum Time Between Node Messages

A maximum send frequency is enforced by requiring a minimum wait time between successful sends
from a given source node. This minimum time is given by the parameter

min msg interval as on line 13 in Listing 84. The default is 30 seconds. This interval is defined by
the time starting with a successful transmission of a node message from a source to any destination.
A separate log is kept by uFldNodeComms for each known vehicle.

22.2.3 Enforcing a Maximum Node Message Length

The length of node messages may be limited with the parameter max msg length, as on line 14 in
Listing 84. The default maximum length is 1000 characters. The length of a message refers to the
number of characters in the string val field. For example, the length of the message

NODE_MESSAGE = "src_node=alpha,dest_node=bravo,var_name=FOOBAR,string_val=hello"

is five. Limiting the message length is a proxy for intervehicle communications where message
packet length is constrained, as with acoustic communications for example.

22.2.4 Posting Messages to a Vehicle Group

A node message is typically addressed to another named vehicle. The sender may also address
the message by group name. All vehicles in the group meeting the prevailing range criteria will
receive the message. The group associated with the vehicle is declared in the node report sent by
that vehicle. A node message using a group address is similar except for the use of the dest group

parameter

NODE_MESSAGE = "src_node=alpha,dest_group=red_team,var_name=FOOBAR,string_val=hello"

The sender has the option of indicating both a group name and vehicle name as the message
destination. It may also specify more than one vehicle name explicitely. Thus the following is
allowed:

NODE_MESSAGE = "src_node=alpha,dest_name=bravo:charlie:gilda,dest_group=red_team,

var_name=FOOBAR,string_val=hello"

If a destination vehicle is specified twice in the list of destinations or implicitly in the named group,
the message will be sent only once to the destination vehicle.

22.3 Visual Artifacts for Rendering Inter-Vehicle Communications

Each time a node report or message is sent to a vehicle by uFldNodeComms, another posting is made
to the variable VIEW COMMS PULSE. This message may be subscribed for by another application using
it to visually render the commuications events. The screen shot in Figure 85 below shows four
vehicles. The two bottom vehicles are sharing node reports indicated by the red and blue comms
pulses.

243

Figure 85: Communication Pulses: A visual artifact, a VIEW COMMS PULSE, is rendered between vehicles when
either a node report or node message is generated. The white pulse indicates a node message, and the non-white
pulses indicate a node report. The pulse widens from a point at the source vehicle to maximum widtth at the
destination vehicle. A pulse will remain rendered in pMarineViewer for some number of seconds after initial post,
unless it is replace by a new pulse with the same label.

The top two vehicles are also sharing node reports seen by the yellow and green pulses. The
bottom left vehicle has also just sent a node message to the top two vehicles indicated by the two
white pulse. Note the pair of white pulses were posted a few seconds prior to the present point in
time since they point to vehicle positions just back in the vehicle history. The node reports are
updated continously, constantly replacing the pulse just previously posted.

The pulse colors are chosen automatically by uFldNodeComms. They may be toggled off in
pMarineViewer withe ’@’ key. The comms pulse is conveyed in a posting to the variable VIEW COMMS PULSE.
The format is shown with the following example.

VIEW_COMMS_PULSE = "sx=109.63,sy=-60.06,tx=30.96,ty=-60.22,beam_width=7,duration=10,

fill=0.35,label=JAMES2IKE,edge_color=green,fill_color=red,

time=2652414456.59,edge_size=1"

Comms pulses may be generated by other applications besides uFldNodeComms, and may be consumed
and rendered by other applications besides pMarineViewer. The definition of the comms pulse object
and the methods for serializing and de-serializing betweeen object and string representation may
be found in the lib geometry library in the moos-ivp software tree.

22.4 Terminal and AppCast Output

The uFldNodeComms application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 82 below. On line 2, the name of the
local community (usually shoreside) is listed on the left. On the right, "0/0(339) indicates there
are no configuration or run warnings, and the current iteration of uFldNodeComms is 339. Lines 4-12

244

convey a summary of received and sent node reports from each vehicle. The number in parentheses
at the end of lines 7 and 8 indicate the elapsed time since the last node report was received.

Listing 82 - Example uFldNodeComms console and appcast output.

1 ===

2 uFldNodeComms shoreside 0/0(339)

3 ===

4 Node Report Summary

5 ======================================

6 Total Received: 3101

7 GILDA: 1552 (0.0)

8 HENRY: 1549 (0.0)

9 ------------------

10 Total Sent: 628

11 GILDA: 315

12 HENRY: 313

13

14 Node Message Summary

15 ======================================

16 Total Msgs Received: 4

17 HENRY: 4 (24.1)

18 ------------------

19 Total Sent: 4

20 GILDA: 4

21 ------------------

22 Total Blocked Msgs: 0

23 Invalid: 0

24 Stale Receiver: 0

25 Too Recent: 0

26 Msg Too Long: 0

27 Range Too Far: 0

28

29 ===

30 Most Recent Events (4):

31 ===

32 [146.22]: Msg rec’d: src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed=2.4

33 [116.10]: Msg rec’d: src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed=2.4

34 [86.46]: Msg rec’d: src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed=2.4

35 [56.32]: Msg rec’d: src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed=0.4

The summary of node messages is shown in the second half of the report, in lines 14-33 in this case.
The total messages received is shown on line 16, with a breakdown of where they have been received
from in the following lines. Starting on line 19, a summary of sent node messages is given. First
the total sent messages on line 19 and a breakdown of receivers in the following lines. A summary
of blocked messages is given next, in this case in lines 22-27. The total number of blocked messages
is given first, followed by the possible reasons for blocking in lines 23-27. Finally, the most recent
messages are shown as events in the last lines of the report.

22.5 Configuration Parameters of uFldNodeComms

The following parameters are defined for uFldNodeComms.

Listing 22.83: Configuration Parameters for uFldShoreBroker.

245

comms range: Max range outside which inter-vehicle node reports and node mes-
sages will not be sent. Legal values: any numerical value. The default
is 100 meters. Section 22.1.1.

critical range: Range in meters within which inter-vehicle node reports will be shared
even if group membership would otherwise disallow. Legal values: any
numerical value. The default is 30 meters. Section 22.1.1.

debug: If true, further debugging informatin is produced to the terminal out-
put. Legal values: true, false. The default is false.

earange: A parameter in the range of [1, 10] for extending the range a vehicle
may otherwise hear node reports from other vehicles. The default is
1. Section 22.1.1.

groups: If true, inter-vehicle node reports are shared only if two vehicles are
in the same group. May be overridden if the two vehicles are within
the critical range. The default is false. Section 22.1.1.

min msg interval: The number of seconds required between messaged sends for any one
source vehicle. The default is 30 seconds. Section 22.2.2.

max msg length: The total number of characters that may be sent in a string compo-
nent of a node message. The default is 1000. Section 22.2.3.

stealth: A parameter in the range [0, 1] for reducing the range other vehicles
may otherwise hear the node reports from a source vehicle. The
default is 0.1. Section 22.1.1.

stale time: Time in seconds after which a vehicle will not receive node reports or
messages unless a node report has been received by that vehicle. The
default is 5 seconds. Section 22.1.1.

verbose: If true, status reports are displayed to the terminal during operation.
The default is false.

view node rpt pulses: If true, comms pulses are rendered between vehicles whenever a node
report successfully makes its way from one vehicle to another. The
default is true. Section 22.3.

An Example MOOS Configuration Block

Listing 84 shows an example MOOS configuration block produced from the following command
line invocation:

$ uFldNodeComms --example

Listing 84 - Example configuration of the uFldNodeComms application.

0 ===

1 uFldNodeComms Example MOOS Configuration

2 ===

3

4 ProcessConfig = uFldNodeComms

5 {

246

6 AppTick = 4

7 CommsTick = 4

8

9 comms_range = 100 // default (in meters)

10 critical_range = 30 // default (in meters)

11 stale_time = 5 // default (in seconds

12

13 min_msg_interval = 30 // default (in seconds)

14 max_msg_length = 1000 // default (# of characters)

15

16 verbose = true // default

17

18 stealth = vname=alpha, stealth=0.8

19 earange = vname=alpha, earange=4.5

20

21 groups = true

22

23 pulse_duration = 10; // default (in seconds)

22 }

22.6 Publications and Subscriptions for uFldNodeComms

The interface for uFldNodeComms, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldNodeComms --interface or -i

22.6.1 Variables Published by uFldNodeComms

The primary output of uFldNodeComms to the MOOSDB are the node reports and node messages
out to the recipient vehicles, and visual artifacts to be used for rendering the inter-vehicle commu-
nications.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 22.4.

• NODE MESSAGE <VNAME>: Node messages destined to be sent to a destination vehicle <VNAME>

indicated as the recipient in the node message.

• NODE REPORT <VNAME>: Node reports destined to be sent to a given vehicle <VNAME> about the
vehicle named in the node report.

• VIEW COMMS PULSE: A visual artifict for rendering the sending of a node report or node message
between vehicles.

22.6.2 Variables Subscribed for by uFldNodeComms

The uFldNodeComms application subscribes to the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• NODE MESSAGE: A node message from one vehicle to another.

247

• NODE REPORT: A node report for a given vehicle from pNodeReporter.

• NODE REPORT LOCAL: Another name for a node report for a given vehicle from pNodeReporter.

• UNC STEALTH: The extra stealth allowed a given vehicle to ”hide” node reports to others.

• UNC EARANGE: The extra range allowed a given vehicle to ”hear” node reports of others.

• UNC VIEW NODE RPT PULSES: A way for external apps to tell uFldNodeComms to turn off or on
the rendering of comms pulses whenever a node report is sent from one vehicle to another.
Section 22.3.

Command Line Usage of uFldNodeComms

The uFldNodeComms application is typically launched with pAntler, along with a group of other
shoreside modules. However, it may be launched separately from the command line. The command
line options may be shown by typing:

$ uFldNodeComms --help

Listing 85 - Command line usage for the uFldNodeComms tool.

0 ===

1 Usage: uFldNodeComms file.moos [OPTIONS]

2 ===

3

4 Options:

5 --alias=<ProcessName>

6 Launch uFldNodeComms with the given process

7 name rather than uFldNodeComms.

8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 --interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display the release version of uFldNodeComms.

16

17 Note: If argv[2] does not otherwise match a known option,

18 then it will be interpreted as a run alias. This is

19 to support pAntler launching conventions.

248

23 uFldMessageHandler: Handling Incoming Node Messages

The uFldMessageHandler application is a tool for handling incoming inter-node messages. In the
uField Toolbox typical arrangement, these messages are arriving from a shoreside MOOS commu-
nity from the uFldNodeComms and pShare applications as shown below in Figure 86.

Figure 86: Typical uFldMessageHandler Topology: A vehicle (node) sends a message to another vehicle by
wrapping the message content and addressee information in a single string sent to the shoreside. On the shoreside,
the uFldNodeComms application redirects the message to the appropriate vehicle(s). The message is received on
the vehicle by the uFldMessageHandler application which parses the MOOS variable and the variable value from the
string and posts the variable-value pair to the local MOOSDB.

The functionality of uFldMessageHandler may be paraphrased:

• A source vehicle alpha wishes to send a message to vehicle bravo of the form SPEED=2.5.

• A local message is posted on vehicle alpha of the form:

NODE_MESSAGE_LOCAL = src_node=alpha,dest_node=bravo,src_var=SPEED,double_val=2.5

• The above message is bridged from alpha to the shoreside community using pShare.

• The message is received in the shoreside community as the variable NODE MESSAGE and handled
by uFldNodeComms and republished as NODE MESSAGE BRAVO.

• The message is then bridged out to bravo using pShare arriving in vehicle bravo as NODE MESSAGE.

• On vehicle bravo, the NODE MESSAGE is handled by uFldMessageHandler. The source variable
and value are parsed and a post to the local MOOSDB on bravo is made, SPEED=2.5

• A scope on the MOOSDB on bravo would show the source of the SPEED=2.5 posting to be
"uFldMessageHandler", and the auxiliary source would show "alpha"

23.1 Configuration Parameters of uFldMessageHandler

The following parameters are defined for uFldMessageHandler.

249

Listing 23.86: Configuration Parameters for uFldMessageHandler.

strict addressing: If true, only messages with a destination specified by dest node,
matching the local community name are processed. Other messages
with a destination specified by a group designation are ignored. The
default is false.

verbose: If true, terminal output reports are generated on each iteration. The
default is true.

An Example MOOS Configuration Block

Listing 87 shows an example MOOS configuration block produced from the following command
line invocation:

$ uFldMessageHandler --example

Listing 87 - Example configuration of the uFldMessageHandler application.

1 ===

2 uFldMessageHandler Example MOOS Configuration

3 ===

4

5 ProcessConfig = uFldMessageHandler

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 verbose = true // the default

11 strict_addressing = false // the default

12 }

23.2 Publications and Subscriptions for uFldMessageHandler

The interface for uFldMessageHandler, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldMessageHandler --interface or -i

23.2.1 Variables Published by uFldMessageHandler

The primary output of uFldMessageHandler to the MOOSDB are the messages posted by parsing
incoming NODE MESSAGE postings. A summary is also posted periodically to recap message handling
totals.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 23.3.

250

• UMH SUMMARY MSGS: A summary of total messages, valid messages and rejected messages handled
thus far.

23.2.2 Variables Subscribed for by uFldMessageHandler

The uFldMessageHandler application subscribes to the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• NODE MESSAGE: Incoming node messages.

Command Line Usage of uFldMessageHandler

The uFldMessageHandler application is typically launched with pAntler, along with a group of other
shoreside modules. However, it may be launched separately from the command line. The command
line options may be shown by typing:

$ uFldMessageHandler --help

Listing 88 - Command line usage for the uFldMessageHandler tool.

0 ===

1 Usage: uFldMessageHandler file.moos [OPTIONS]

2 ===

3

4 SYNOPSIS:

5 ------------------------------------

6 The uFldMessageHandler tool is used for handling incoming

7 messages from other nodes. The message is a string that

8 contains the source and destination of the message as well as

9 the MOOS variable and value. This app simply posts to the

10 local MOOSDB the variable-value pair contents of the message.

11

12 Options:

13 --alias=<ProcessName>

14 Launch uFldMessageHandler with the given process name

15 rather than uFldMessageHandler.

16 --example, -e

17 Display example MOOS configuration block.

18 --help, -h

19 Display this help message.

20 --interface, -i

21 Display MOOS publications and subscriptions.

22 --version,-v

23 Display the release version of uFldMessageHandler.

24

25 Note: If argv[2] does not otherwise match a known option,

26 then it will be interpreted as a run alias. This is

27 to support pAntler launching conventions.

251

23.3 Terminal and AppCast Output

The uFldMessageHandler application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 89 below. On line 2, the name of the
local community or vehicle name is listed on the left. On the right, "0/0(841) indicates there are
no configuration or run warnings, and the current iteration of uFldMessageHandler is 841. In lines
4-9, general tallies are shown of received, invalid, and rejected messages. In lines 11-15, the tallies
for received messages sorted by source vehicle are shown. The variable-value columns reflect only
the last received message.

Listing 89 - Example appcast and terminal output of uFldMessageHandler.

1 ===

2 uFldMessageHandler gilda 0/0(841)

3 ===

4 Overall Totals Summary

5 ======================================

6 Total Received Valid: 5

7 Invalid: 0

8 Rejected: 0

9 Time since last Msg: 101.3

10

11 Per Source Node Summary

12 ======================================

13 Source Total Elapsed Variable Value

14 ------ ----- ------- -------- -----

15 henry 5 101.3 RETURN true

16

17 Last Few Messages: (oldest to newest)

18 ======================================

19 Valid Mgs:

19 src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed

20 src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed

21 src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed

22 src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed

23 src_node=henry,dest_node=gilda,var_name=RETURN,string_val=true

24 Invalid Mgs:

25 NONE

26 Rejected Mgs:

27 NONE

The information group starting on line 17 shows the last five received valid, invalid and rejected
messages. Note that a rejected message may be rejected for being invalid, or if the destination field
doesn’t match, or if strict addressing is enabled and there is not a precise destination field match.

252

24 uFldScope: Gathering a Multi-Vehicle Status Summary

The uFldScope application is a tool for collecting diverse sets of information regarding a field of
vehicles remotely deployed. Suppose, for example, one is interested in monitoring, for each deployed
vehicle, the (a) helm mode, (b) total distance travelled, (c) battery level, and (d) the number of
times it has visited a certain beacon. Each piece of information may be embedded in one of a
number of MOOS variables, perhaps along with a lot of other information of no concern. For
example, a typical NODE REPORT posting contains the helm mode, but the full string may look like:

NODE_REPORT= "NAME=alpha,TYPE=UUV,TIME=1252348077.59,X=51.71,Y=-35.50,LAT=43.824981,

LON=-70.329755,SPD=2.00,HDG=118.85,DEPTH=4.63,LENGTH=3.8,MODE=LOITERING"

While there are several methods to scope on the above variable and pick out the helm mode,
the goal of the uFldScope tool is to have this information readily visible for each vehicle perhaps
alongside other key fields for all vehicles, in a continuously updated simple table like the following:

VName MODE TripDist Speed STREAMING(2)

===== ======= ======== ===== (15)

alpha LOITERING 66.8 1.96

bravo PARK 0.0 0.00

charlie RETURNING 1466.3 1.05

The assumption is that uFldScope is running on a topside computer, interacting with a user,
and receiving information on deployed vehicles primarily through node reports or other summary
report variables. The typical layout is shown in Figure 87

Figure 87: Typical uFldScope Topology: A shoreside or topside community is receiving information from several
deployed vehicles. Key information is embedded in one of several possible MOOS report variables. The uFldScope
tool runs in the topside community to parse key information from the variables and display them in a table format
configured by the user.

253

24.1 Configuration Parameters of uFldScope

The following parameters are defined for uFldScope. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated so.

Listing 24.90: Configuration Parameters for uFldScope.

scope: Description info include in main report along with source info.

layout: An alternative table layout showing only selected fields in each report.

24.1.1 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uFldScope --example or -e

This will show the output shown in Listing 91 below.

Listing 91 - Example configuration of the uFldScope application.

0 ===

1 uFldScope Example MOOS Configuration

2 ===

3

4 ProcessConfig = uFldScope

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 scope = var=NODE_REPORT,key=vname,fld=TIME,alias=Time

10 scope = var=NODE_REPORT,key=vname,fld=MODE

11 scope = var=SPEED_REPORT,key=vname,fld=avg_speed,alias=speed

12 scope = var=ODOMETRY_REPORT,key=vname,fld=trip_dist

13 scope = var=ODOMETRY_REPORT,key=vname,fld=total_dist

14

15 layout = trip_dist, total_dist

16 layout = MODE, speed, Time

17 }

24.2 Publications and Subscriptions for uFldScope

The interface for uFldScope, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uFldScope --interface or -i

24.2.1 Variables Published by uFldScope

The primary output of uFldScope to the MOOSDB is the report output to the terminal or appast.
The only publication to the MOOSDB is the APPCAST publication.

254

24.2.2 MOOS Variables Subscribed for by uFldScope

The uFldScope application subscribes to the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

The uFldScope application will also subscribe for the MOOS variables prescribed in the scope

configuration parameter(s).

Command Line Usage of uFldScope

Although the uFldScope application may be launched with pAntler, it is typically launched sepa-
rately from the command line:

$ uFldScope --help or -h

This will show the output shown in Listing 92 below.

Listing 92 - Command line usage for the uFldScope tool.

0 Usage: uFldScope file.moos [OPTIONS]

1

2 Options:

3 --alias=<ProcessName>

4 Launch uFldScope with the given process

5 name rather than uFldScope.

6 --example, -e

7 Display example MOOS configuration block

8 --help, -h

9 Display this help message.

10 --version,-v

11 Display the release version of uFldScope.

24.3 Configuring the uFldScope Utility

The uFldScope utility may be configured to choose (a) which MOOS variables are scoped, (b) which
fields in those messages are scoped, and (c) how that data is presented to the user. In all usage
scenarios it is presumed that the messages are strings comprised of comma-separated variable=value
pairs. For example:

NODE_REPORT= "NAME=alpha,TYPE=UUV,TIME=1252348077.59,X=51.71,Y=-35.50,LAT=43.824981,

LON=-70.329755,SPD=2.00,HDG=118.85,DEPTH=4.63,LENGTH=3.8,MODE=LOITERING"

For each variable specified by the user for scoping, a key needs to also be specified identifying the
vehicle name. In the above case, the key is the string "NAME".

24.3.1 Configuring Scope Elements

A scope element corresponds to particular MOOS message and a particular field in that MOOS
message. It also corresponds to a column in the tabular report presented to the user. For example,

255

the second column in the table below, with the header "MODE", corresponds to a scope element
deriving its information from postings to NODE REPORT, in the field "MODE".

VName MODE TripDist Speed STREAMING(2)

===== ======= ======== ===== (15)

alpha LOITERING 66.8 1.96

bravo PARK 0.0 0.00

charlie RETURNING 1466.3 1.05

A scope element is configure in the mission configuration file with entries of the form:

scope = var=<MOOSVar>, key=<KEYNAME>, fld=<FIELDNAME>, alias=<ALIAS>

The <MOOSVAR> specifies the name of the MOOS variable. Multiple scope elements may use the
same MOOS variable. The <KEYNAME> specifies the field in the message used to designate the name
of the vehicle. There should be only one right answer for this, and if it is wrongly specified, the
column for that scope element will simply be empty. The <FIELDNAME> specifies the other field in
the message holding the information of interest. For example, line 10 in Listing 91 is the scope
configuration resulting in the second column of the above tabular output. The <ALIAS> is a string
to use in the column output header if the user doesn’t want to just use the name of scoped field.

24.3.2 Configuring Scope Layouts

By default the tabular output produced by uFldScope contains a column for each scope element.
If the number of scope elements is large the user may be interested, at times, in rendering only
a subset of the scope elements. The user may define these subsets using the LAYOUT configuration
parameter, of the form:

LAYOUT = <FLDNAME>, <FLDNAME>, ..., <FLDNAME>

The <FLDNAME> specifies the name of the field in a given scope element. Note that it is possible that
the field names may be the same for two different scope elements. For this reason the field name
used in the layout definition is the field name alias. This gives the user the chance to distinguish
two otherwise identical field names. If the user does not specify an alias in configuration of scope
element, the alias is by default the same as the field name.

For the uFldScope configuration shown in Listing 91, the following five scope elements are
rendered to the user as follows.

VName Time MODE speed trip_dist total_dist PAUSED(A)

===== ============= ===================== ===== ========= ========== (1800)

gilda 2651922526.73 MODE@ACTIVE:LOITERING 1.06 517.1 517.1

henry 2651922526.54 MODE@ACTIVE:LOITERING 1.17 526.4 526.4

ike 2651922526.45 MODE@ACTIVE:LOITERING 1.07 520.1 520.1

james 2651922526.65 MODE@ACTIVE:LOITERING 1.16 515.1 515.1

Note the "(A)" at the end of the first line. This indicates that all scope elements are being presented.
If the user hits the ’l’ or ’L’ keys the presentation will be toggled through the various layouts
configured by the user. In this example case, the following two layouts may be selected:

256

VName Time MODE speed PAUSED(1)

===== ============= ===================== ===== (1802)

gilda 2651923071.3 MODE@ACTIVE:LOITERING 1.17

henry 2651923071.11 MODE@ACTIVE:LOITERING 1.17

ike 2651923071.03 MODE@ACTIVE:LOITERING 1.18

james 2651923071.24 MODE@ACTIVE:LOITERING 1.17

Note that only the Time, MODE, and speed scope elements are produced, corresponding to the
layout configured on Line 16 in Listing 91. Also note that the "(A)" on the first line switched to
"(1)" to indicate that the first user-configured layout is being used. By hitting ’L’ once more, the
second user-configured layout will be instead shown:

VName trip_dist total_dist PAUSED(2)

===== ========= ========== (1801)

gilda 1081.9 1081.9

henry 1072.1 1072.1

ike 1117.7 1117.7

james 1067.0 1067.0

Note that the "(1)" on the first line switched to "(2)" to indicate that the second user-configured
layout is being used. By hitting ’L’ once more, the full table will again be rendered.

24.3.3 Further Control of the Terminal Output

If multiple layouts have been configured, the user may either toggle through the list of layouts with
the ’l’ or ’L’ key as mentioned above, or toggle between the last-used user-configured layout and
the mode of rendering all scope elements, by using the ’a’ or ’A’ key.

By default the output produced to the terminal is refreshed on each iteration of the uFldScope

application. This may be useful for watching a trend as time passes. The user may also wish to
pause the output to take a careful look at the data. This may be done by hitting the ’p’ or ’P’ keys,
or simply the spacebar. Subsequent similar keystrokes will keep the refresh mode in the paused
mode, but the output will be refreshed to their current values before again pausing. Returning to
the streaming mode may be done by hitting the ’r’ or ’R’ keys. At any time the user may also
hit the ’h’ or ’H’ keys for a help menu.

257

25 uFldPathCheck: Monitoring Vehicle Path Properties

The uFldPathCheck application is a tool for summarizing a few properties in a field of vehicles
remotely deployed. The primary focus is on summarizing the speed and distance travelled for each
vehicle. Rather than relying on the vehicles themselves to calculate and report this information,
the uFldPathCheck tool determines this information independently based on node reports from the
vehicles. The assumption is that uFldPathCheck is running on a topside or shoreside computer, and
receiving information about deployed vehicles primarily through node reports. The typical layout
is shown in Figure 88

Figure 88: Typical uFldPathCheck Topology: A shoreside or topside community is receiving information from
several deployed vehicles, in the form of node reports. The node reports contain time-stamped updated vehicle
positions, from which the speed and distance measurements are derived and posted to the shoreside MOOSDB.

In short, uFldPathCheck subscribes for incoming node reports for any number of vehicles, and
keeps a running history of positions for each vehicle. It uses this recent-history to post (a) the
current speed noted per vehicle and (b) the distance travelled per vehicle. These two reports are
posted in the UPC SPEED REPORT and UPC ODOMETRY REPORT variables to the MOOSDB. The odemetry
report includes a total distance travelled, and a ”trip-ometer” distance travelled since the last
trip reset. The trip-ometer may be reset for a vehicle alpha when mail is received of the form
UPC TRIP RESET=alpha. Examples of the posted output form are given below in Section 25.2.1.

25.1 Overview of the uFldPathCheck Interface and Configuration Options

The uFldPathCheck application may be configured with a configuration block within a .moos file.
Its interface is defined by its publications and subscriptions for MOOS variables consumed and gen-

258

erated by other MOOS applications. An overview of the set of configuration options and interface
is provided in this section.

25.1.1 Configuration Parameters of uFldPathCheck

The following parameters are defined for uFldPathCheck.

Listing 25.93: Configuration Parameters for uFldPathCheck.

history: Length of queue used for calculating present speed. The default is 10.

25.2 Publications and Subscriptions for uFldPathCheck

The interface for uFldPathCheck, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldPathCheck --interface or -i

25.2.1 Variables Published by uFldPathCheck

The primary output of uFldPathCheck to the MOOSDB are the speed and odometry reports.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section ??

• UPC ODOMETRY REPORT: The current odometry information for a given vehicle.

• UPC SPEED REPORT: The current speed for a given vehicle.

An example of the odemetry report:
UPC ODOMETRY REPORT = "vname=alpha,total dist=4205.4,trip dist=1105.2"

An example of the odemetry report:
UPC SPEED REPORT = "vname=alpha,avg speed=2.21"

25.2.2 Variables Subscribed for by uFldPathCheck

The uFldPathCheck application subscribes to the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• NODE REPORT: A node report for a given vehicle from pNodeReporter.

• NODE REPORT LOCAL: A node report for a given vehicle from pNodeReporter.

• UPC TRIP RESET: The name of a vehicle to have its trip odemeter reset.

25.2.3 An Example MOOS Configuration Block

As of MOOS-IvP Release 4.2, most if not all MOOS apps are implemented to support the -e

or --example command-line switches. To see an example MOOS configuration block, enter the
following from the command-line:

259

$ uFldPathCheck --example or -e

This will show the output shown in Listing 94 below.

Listing 94 - Example configuration for uFldPathCheck.

0 ===

1 uFldPathCheck Example MOOS Configuration

2 ===

3

4 ProcessConfig = uFldPathCheck

5 {

6 AppTick = 4

7 CommsTick = 4

8

9 history = 10 (Default)

10 }

25.3 Usage Scenarios the uFldPathCheck Utility

The motivation for this tool is to have a module running on the shoreside capable of being used
in a competition scenario. Especially in a simulated competition, there may be a need to limit the
upper speed of a participating vehicle to ensure a level playing field between competitors. Since the
vehicle simulators may be running on separate machines with particpants merely reporting node
reports, there is no way to directly control the upper speed of the vehicles. By monitoring the upper
speed, this leaves open the option of either (a) disqualifying a vehicle caught moving too fast, or (b)
imposing a penalty on a speeding vehicle. The penalty chosen is outside the scope of this module
but may include reducing the number of points awarded for certain accomlishments, adding more
noise to simulated sensors, and so on. Since this usage scenario implies a ”non-compliant” vehicle,
we don’t want to base the monitored speed on a value reported by the vehicle. Instead we calculate
the speed based on successive time-stamped node reports with positions.

Likewise, the odometry information calculated and posted is also intended for use in a compe-
tition context. Conceivably, part of a competition may require a vehicle to periodically ”re-fuel”
after travelling a certain distance. By having the odemetry information calculated independently
on the shoreside, constraints on total distance, or fuel calculations may be generated to impose on
vehicle competitions. The uFldPathCheck application accepts the UPC ODOMETRY RESET=VNAME post-
ing to reset the trip-ometer for a given vehicle, presumably after a re-fueling event is noted. The
odometry information may also be used directly in competitions where minimizing the total path
length is the primary objective.

260

26 uFldHazardSensor: Simulating an Simple Hazard Sensor

The uFldHazardSensor application is a tool for simulating an on-board sensor that processes sonar
image data and (a) detects image components that may represent a hazard, and (b) further classifies
the detected components as being either a hazard or benign object. The idea is shown in Figure
89. The user configures the sensor by choosing one of N swath widths available to the given sensor,
and by choosing a probability of detection, PD. Based on these two user choices, and the particular
performance characteristics of the sensor and sensor algorithms, a probability of false alarm, PFA

and probability of correct classification, PC , follow.

Figure 89: Simulated Hazard Sensor: A vehicle processes a series of sensor images which may or may not
contain an object. The detection algorithm processes the image and rejects images it believes does not contain
contain hazardous objects. It passes on images containing possible hazardous objects to a classifier, which makes a
determination for each object in an incoming image as to whether or not the object is hazardous or benign.

In the uFldHazardSensor application, the objects, their classifications, and vehicle locations are
known to the simulator, and a tidy UHZ HAZARD REPORT message is sent to the vehicle(s) as a proxy
to the actual hazard sensor and the calculations that would otherwise reside on the vehicle. The
simulated sensor is configured to have a finite list of sensor settings, each consisting of a swath
width, ROC curve, and probability of correct classification. It’s up to the user to choose the sensor
setting and choose a PD on the associated ROC curve, which determines the prevailing PFA.

26.1 Using uFldHazardSensor

26.1.1 A Quick Start Guide

To get started, we (a) lay out the absolute minimum configuration components, i.e., those which
do not have default values, and (b) point you to an example mission using uFldHazardSensor. The
example mission is referred to as the Jake example mission and may be found and launched in the
moos-ivp distribution with:

261

$ cd moos-ivp/ivp/missions/m10_jake

$./launch.sh 12

The above launches the example mission simulation with time warp 12. This can be adjusted
to suit your preference and is bounded above by your computer’s processing capability. Listing 95
below shows the bare-bones configuration. Line 3 names a hazard file, containing the ground truth
description of objects in the field. This format is described in Section 26.2, and an example hazard
file is in the same directory as the Jake example mission.

Listing 95 - Example bare-bones configuration of uFldHazardSensor .

1 ProcessConfig = uFldHazardSensor

2 {

3 hazard_file = hazards.txt

4

5 sensor_config = width=25, exp=4, pclass=0.80

6 sensor_config = width=50, exp=2, pclass=0.60

7 sensor_config = width=10, exp=6, pclass=0.93

8 }

The possible sensor configuration options are listed in lines 5-7. These values are from the Jake
example mission and perhaps are reasonable values for any mission, but they are not the default.
These options must be specified or the sensor will not operate. This parameter is discussed in
Section 26.3.2. The full set of configuration paramters for uFldHazardSensor is provided in Section
26.8, along with an extended example configuration file.

26.1.2 Typical Simulator Topology

The typical module topology is shown in Figure 90 below. Multiple vehicles may be deployed in the
field, each periodically communicating with a shoreside MOOS community running a single instance
of uFldHazardSensor. Each vehicle regularly sends a node report to the shoreside community, read
by uFldHazardSensor. A vehicle “activates” its sensor by beginning to send a steady stream of
messages to the shoreside under the variable UHZ SENSOR REQUEST. Each time the simulator receives
this request, it will assess the vehicle’s current position, and sensor settings, and may (depending
on how the dice are rolled and if a detection is made) post a UHZ HAZARD REPORT to be bridged out
to the given vehicle.

262

Figure 90: Typical uFldHazardSensor Topology: The simulator runs in a shoreside computer MOOS community
and is configured with a hazard field containing both hazardous and benign objects. Vehicles accessing the simulator
send a steady stream of messages (UHZ SENSOR REQUEST) and node reports to the shoreside community. The simulator
continuously checks the connected vehicle’s position against objects in the hazard field, and the sensor settings.
When/if an object comes into sensor range, the simulator rolls the dice and if a detection is made, will send a
UHZ HAZARD REPORT message to the vehicle. The vehicle may periodically re-configure its sensor setting by posting
to UHZ CONFIG REQUEST. If the configuration request is acceptable, the simulator will respond with a message to
UHZ CONFIG ACK bridged back out to the vehicle.

If running a pure simulation (no deployed vehicles), both MOOS communities may simply be
running on the same machine configured with distinct ports. The pShare application is shown
here for communication between MOOS communities, but there are other alternatives for inter-
community communication and the operation of uFldHazardSensor is not dependent on the manner
of inter-communication communications.

26.2 Configuring the Hazard Field

The hazard field is configured either by reading in a hazard file, or by explicitly listing the hazards
in the uFldHazardSensor configuration block. The former method is recommended since the hazard
file is typically also read by uFldHazardMetric for grading hazardset reports against the ground
truth. The ground truth obviously needs to be the same between applications and this is easier to
ensure if they are just pointing to the same file. Either way, the format for specifying an object is
the same and has the following fields by example:

hazard = x=98.2,y=-127.7,label=14,type=benign,hr=0.5,color=red,shape=square,width=20

263

The first four fields are mandatory. Uniqueness between labels is mandatory as well.

• x position

• y position

• type (hazard or benign)

• label (unique between entries)

• color (rendering hint, default: green for hazards, light blue for benign objects)

• shape (rendering hint, default: triangle for both hazards and benign objects)

• width (rendering hint, default: 8 meters for both hazards and benign objects)

26.2.1 An Example Hazard Field

The field in Figure 91 below shows an example field. This is also the hazard field used in the
example mission, m10 jake, described in Section 26.11.

Figure 91: Simulated Hazard Field: A hazard field with 18 objects is shown, some are hazardous objects, some
are benign objects.

The hazard field may be configured with either entries in the uFldHazardSensor configuration block,
or by reading in a hazard field configuration file. The format for a configuration line is the same in
both cases. For the hazard field shown in Figure 91, the configuration lines used were:

source = file:hazards.txt

hazard = x=-151,y=-217.3,label=01,type=hazard

hazard = x=263.2,y=-8.5,label=02,type=hazard

hazard = x=48.5,y=-195.7,label=03,type=hazard

hazard = x=165.9,y=-116.4,label=04,type=hazard

hazard = x=101.3,y=-159.3,label=05,type=hazard

hazard = x=257.6,y=-131.3,label=06,type=hazard

hazard = x=217.3,y=-16.7,label=07,type=hazard

264

hazard = x=-14.2,y=-293.60001,label=08,type=hazard

hazard = x=260.2,y=-66.2,label=09,type=hazard

hazard = x=-65.8,y=-125.2,label=10,type=hazard

hazard = x=171.9,y=-253.7,label=11,hr=0.5,type=benign,color=orange

hazard = x=-150.3,y=-117.5,label=12,hr=0.95,type=benign,color=orange

hazard = x=-59.8,y=-294.1,label=13,hr=0.5,type=benign,color=orange

hazard = x=98.2,y=-127.7,label=14,hr=0.5,type=benign,color=red,shape=square

hazard = x=-178.8,y=-234,label=15,hr=0.5,type=benign,color=orange

hazard = x=24,y=-61,label=16,hr=0.5,type=benign,color=orange

hazard = x=250.3,y=-214.6,label=17,hr=0.5,type=benign,color=orange

hazard = x=97.7,y=-245.5,label=18,hr=0.5,type=benign,color=orange

Note that no label information was provided for any entry. The label used by default is the index
of the object being added.

26.2.2 Automatically Generating a Hazard Field

There also exists in the moos-ivp tree a small utility call gen hazards. This simple command line
tool will generate a list of randomly generated objects of a specified type, given a convex polygon
as input. For example:

$ gen_hazards --polygon="0,0:50,0:50,50:0,50" -exp 5 --objects=5,hazard \

--objects=6,benign > hazards.txt

$ more hazards.txt

hazard = x=40,y=40,type=hazard,label=49,hazard=true

hazard = x=12,y=46,type=hazard,label=20,hazard=true

hazard = x=29,y=16,type=hazard,label=39,hazard=true

hazard = x=19,y=21,type=hazard,label=6,hazard=true

hazard = x=48,y=11,type=hazard,label=54,hazard=true

hazard = x=19,y=44,type=benign,label=58,hr=0.00133,hazard=false

hazard = x=9,y=43,type=benign,label=2,hr=0,hazard=false

hazard = x=19,y=6,type=benign,label=77,hr=0.10548,hazard=false

hazard = x=0,y=24,type=benign,label=0,hr=0.43007,hazard=false

hazard = x=22,y=30,type=benign,label=83,hr=0.57748,hazard=false

hazard = x=20,y=2,type=benign,label=99,hr=0.86317,hazard=false

26.3 Configuring the Possible Sensor Settings

The uFldHazardSensor simulator needs to be configured with one or more sensor settings. A sensor
setting is comprised of the following 3-tuple:

• Swath width

• ROC curve exponent

• Classifier constant

These tuples are set in the uFldHazardSensor configuration block, and may then be chosen dy-
namically by the autonomy system on the vehicle by posting to the MOOS variable UHZ CONFIG REQUEST,
by simply naming the requested swath width.

265

26.3.1 Sensor Swath Width Options

The sensor swath width specifies the width of the sensor field at any given moment, from port to
starboard. The sensor range on either side then is simply half the swath width. The swath length
is set in the uFldHazardSensor configuration block and remains the same regardless of the swath
width.

Figure 92: Sensor Swath Parameter: The swath width is a parameter that may be re-configured dynamically by
the autonomy system. The swath length is set once in the uFldHazardSensor configuration block.

26.3.2 Sensor ROC Curve Configuration Options

The ROC curves used in this simulator are based on a simple relationship between probability of
detection (PD) and probability of false alarm (PFA). An example ROC curve is shown in 93. This
curve represents

PD = P
0.25

FA

The user of a given sensor with this characteristic ROC curve must decide where to set the detection
threshold (PD). By selection a higher PD, one must also have to live with a higher PFA. Since the
user usually approaches this problem by choosing the PD, the curve in the figure below could also
be described as:

PFA = P
4

D

The PFA typically follows from a user-chosen PD . For this reason, the uFldHazardSensor simulator
is configured by identifying the ROC curve solely by the exponent value in the above function.

266

Figure 93: Example Receiver Operating Characteristic (ROC) Curve: The ROC curve relates the probability
of detection (PD) on the y-axis, vs. the probability of false alarm (PFA) on the x-axis.

The above ROC may correspond to, for example, the below sensor configuration in the uFldHazardSensor
configuration block:

sensor_config = width=25, exp=4, pclass=0.80

The sensor may be configured with more than one ROC curve, typically trading off a more desirable
ROC curve for a small sensor swath. For example, the simulated sensor may be configured with
the following five options in the configuration file:

sensor_config = width=80, exp=2, pclass=0.60

sensor_config = width=65, exp=4, pclass=0.75

sensor_config = width=50, exp=6, pclass=0.85

sensor_config = width=30, exp=12, pclass=0.93

sensor_config = width=18, exp=20, pclass=0.97

The idea is shown in Figure 94. When the sensor is configured with these options, it presents
the user with two choices to make: the sensor width, and choice for PD . This is done with the
UHZ CONFIG REQUEST interface described in Section 26.3.4.

267

Figure 94: Example ROC Curve Configuration Options: By altering a single component, the exponent com-
ponent of the expression PFA = P exp=2,4,6,12,20

D , the ROC curve characteristics may be varied from least desirable
(exp = 1) to most desirable (exp = 20 or higher).

If the sensor user (a given vehicle) does not request a particular swath width and PD , the simulator
will choose one of the options as a default. The default swath width is selected by choosing the
highest width that is not more than the average between the highest and lowest width. In the
settings above, for example, the width=30 is the highest width not greater than the average of the
two extremes (49). The default PD setting is 0.9 if left unspecified.

26.3.3 Classification Configuration Options

Classification refers to the process of handling a detected object and determining if it is either a
hazard or a benign object (false alarm). The classification stage is shown in Figure 89. In the
simulator, this is simply implemented by rolling the dice according to a single probability metric
PC . This is the probability that the classification determination is correct. Since PC=1 and PC=0
provide the same net utility, the range of values for PC is from [0.5, 1]. This value is tied to a
particular swath width and ROC curve characteristic. The idea is that a smaller swath width
allows the sensor to provide a denser set of image data for a smaller area, which leads to both the
better ROC curve as well as crisper images for a classification algorithm (even if the classifying
agent is a human examining images off-board).

26.3.4 Dynamic Resetting of the Sensor

The uFldHazardSensor simulator is configured with a set of configuration options, as described
above, of which one must be chosen, along with a chosen PD . This is done by the vehicle posting
a configuration request of the form:

UHZ_CONFIG_REQUEST = vname=archie, width=32, pd=0.95

268

The first field tells the simulator which vehicle is making the request. The second field identifies
the ROC curve and swath width. The last field identifies the point on the ROC curve and thus
determines the PFA . The uFldHazardSensor simulator processes this request by matching up the
request to the set of possible options. If the exact swath width requested is not available, the next
lowest is chosen. If the requested swath width is less than the lowest option, the lowest option is
chosen. The simulator sends an acknowledgment to the vehicle in the form of:

UHZ_CONFIG_ACK_ARCHIE = width=30,pd=0.9,pfa=0.28,pclass=0.93

The bridging of the variable UHZ CONFIG ACK ARCHIE to the vehicle archie is handled by pShare,
typically with dynamic registrations automatically configured by uFldShoreBroker.

26.3.5 Posting of Sensor Configuration Options

The sensor configuration options may be known to other MOOS processes by subscribing to the
MOOS variable, UHZ OPTIONS SUMMARY. The following would be published:

UHZ_OPTIONS_SUMMARY = width=25,exp=4,pclass=0.85:width=50,exp=2,pclass=0.60 \

width=10,exp=6,pclass=0.93

corresponding to the following configuration of uFldHazardSensor:

sensor_config = width=25, exp=4, pclass=0.85

sensor_config = width=50, exp=2, pclass=0.60

sensor_config = width=10, exp=6, pclass=0.93

Since this information rarely if ever changes after its first posting, it is not posted very often. By
default it is posted once every ten seconds. Since this posting is typically occuring on a shoreside
computer, bridged to a remote vehicle, a long delay may not be desirable. This interval may be
altered, for example to 5 seconds, by configuring options summary interval=5.

26.4 Configuring the Simulator Visual Preferences

As shown in Figure 90, the uFldHazardSensor is typically running in the shoreside community,
alongside a GUI application like pMarineViewer. Certain messages are posted by uFldHazardSensor

for visualization by default. They may be shut off, or have their properties altered by configuring
the simulator as desired.

26.4.1 Configuring the Sensor Field Swath Rendering

The sensor field is normally rendered as a rectangle that moves along with the vehicle. This
rectangle is drawn to exactly correspond to the sensor field. Rendering in pMarineViewer is accom-
plished by a posting of VIEW POLYGON by uFldHazardSensor. This may be shut off with the following
configuration:

show_swath = false

269

The swath is slightly transparent to allow for the objects to be seen under the swath. The default
transparency is 0.2, but may be changed with the following configuration:

swath_transparency = 0.60

26.4.2 Configuring the Hazard Field Renderings

Rendering of the hazard field is done at the start of uFldHazardSensor by producing a VIEW MARKER

posting once for each object in the field. This may be disabled with:

show_hazards = false

Although each object in the hazard file may be configured with color, shape, and width, the default
values may be provided for any object that leaves any one of these fields unspecified.

default_hazard_shape = triangle

default_hazard_color = green

default_hazard_width = 8

default_benign_shape = triangle

default_benign_color = green

default_benign_width = 8

26.4.3 Configuring the Sensor Report Renderings

Sensor reports are rendered as circles around the objects in the hazard field. If a detection is not
made, no circle is rendered. If a detection is made and classified as a hazard, a yellow circle is
rendered. If classified as benign, a white circle is rendered. All circle renderings are accomplished
by uFldHazardSensor making a posting to VIEW CIRCLE, then processed by pMarineViewer.

When multiple vehicles are using the simulator, it may be confusing after some time to know
which vehicle was responsible for which circle rendered. For this reason, the uFldHazardSensor may
be configured to have the circles to disappear after some number of seconds. This can be done
with:

show_reports = 60

The above will result in each report circle being rendered for 60 seconds before disappearing from
view.

26.5 Under the Hood: the Simulated Detection Algorithm

The sensor simulator handles multiple vehicles and multiple vehicle sensor setting choices. For
each vehicle, the simulator is receiving node reports (NODE REPORT), allowing the simulator to know
each vehicle’s present position. Of course the simulator also knows the hazard field configuration.

270

Armed with these three pieces of information, (a) the sensor setting, (b) the vehicle position, and
(c) the hazard field, it repeatedly operates in the manner shown in Figure 95 below.

Figure 95: The simulated detection algorithm: Each time an object comes into the sensor field, it is considered
once for detection. Once it goes out of the field, it may be processed again later if it comes back into the sensor field.
If it passes the detection threshold a detection report is posted to the MOOSDB. Otherwise no action is taken.

Each time an object comes into the sensor field for a vehicle, the simulator makes a detection
determination based on:

• If the object is a hazard (ground-truth identified as such in the hazard configuration file), the
simulator will report a detection with probability PD .

• If the object is benign and does not have an associated hazard resemblance factor, the simu-
lator will report a detection with probability PFA .

• If the object is benign and does have an associated hazard resemblance factor, HR, the
simulator will report a detection with probability (PFA+ HR) / 2. Recall the HR factor has
a range of [0, 1], so the modified probability also still has a range of [0, 1].

If no detection is made, no further communication or action is taken by the simulator. If a detection
is declared, a report is generated by the simulator to be bridged to the vehicle. Two report postings
are made.

UHZ_DETECTION_REPORT_ARCHIE = x=51,y=11.3,label=12

UHZ_DETECTION_REPORT = vname=archie,x=51,y=11.3,label=12

The first report is bridged to the vehicle. The second report allows one to scope on a single MOOS
variable in the shoreside community to monitor all hazard reports.

26.6 Under the Hood: the Simulated Classification Algorithm

Once a detection has been made for an object, the object may be processed by the simulated
classification algorithm. The idea is that the same set of raw sensor data, or image, is first passed
through a quick detection filter, and the images for selected detections are then passed through a
second more resource intensive classification filter. This process may also be thought of as a proxy
for offloading images through acoustic communications to another platform for processing. Either
way, the idea is that the detection algorithm is fast, able to handle all raw data as is comes in, and
the classification algorithm is more accurate but slower, forcing the careful consideration of which
images to process.

271

Figure 96: Simulated classification algorithm: The data from a given detection is processed by a separate
algorithm for classifying the object as either a hazard or benign.

For each classification request received by uFldHazardSensor, the simulator makes a classification
determination based on:

• If the object is a hazard (ground-truth identified as such in the hazard configuration file), the
simulator will report it as a hazard with probability PC .

• If the object is benign and does not have an associated hazard resemblance factor, the simu-
lator will report it as benign with probability PC .

• If the object is benign and does have an associated hazard resemblance factor, HR, the
simulator will report it as benign with probability PC+ (1 - PC)(1-HR).

The latter is worth stating in another way. If a benign object happens to have a very high resem-
blance to a hazard, HR = 1, the probabibliy of a correct classification is at its lowest, PC . If the
benign objects happens to have very little resemblence to a hazard, HR = 0, the probability of
classificatin is at its highest, nearly 1. After the classification determination has been made, two
report postings are made.

UHZ_HAZARD_REPORT_ARCHIE = label=12,type=benign

UHZ_HAZARD_REPORT = vname=archie,label=12,type=benign

The first report is bridged to the vehicle. The second report allows one to scope on a single MOOS
variable in the shoreside community to monitor all hazard reports.

Note: A classification request will be honored by uFldHazardSensor at any time after a detection
has been made. Subsequent requests will be honored for each new pass over the object. In other
words, uFldHazardSensor will not honor multiple classification request for a single pass over the
object.

26.7 Under the Hood: Sensor Blackouts During Turns

Image data collected during turns is notoriously poor, effectively rendering that data useless for
automatic image processing algorithms. The hazard simulator therefore has provisions to disable
itself during turns. It does so by storing a recent vehicle heading history from node reports, and
disabling detections during turns. The visual aspects of the sensor swath also change as shown in
Figure 97.

272

Figure 97: Sensor blackouts during turns: A vehicle will render its swath in white when running straight and
on, and will render the swath in red when turning and disabled.

By default the sensor will be disable when the recent turn rate (defined over the previous 2 seconds)
exceeds a rate of 1.5 degrees per second. This may be adjusted in the mission file with the following
parameter:

max turn rate = 3.0

26.8 Configuration Parameters of uFldHazardSensor

The following parameters are defined for uFldHazardSensor. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated so.

Listing 26.96: Configuration Parameters for uFldHazardSensor.

default benign color: Color for rendering benign objects. Legal values: any color in Ap-
pendix B. The default is lightblue. Section 26.4.2.

default benign shape: Shape for rendering benign objects Legal values: square, circle, dia-
mond, triangle. The default is triangle. Section 26.4.2.

default benign width: Width in meters for rendering benign objects. The default is 8.
Section 26.4.2.

default hazard color: Color for rendering hazard objects. Legal values: any color in Ap-
pendix B. The default is green. Section 26.4.2.

default hazard shape: Shape for rendering hazard objects. Legal values: square, circle,
diamond, triangle. The default is triangle. Section 26.4.2.

default hazard width: Width in meters for rendering hazard objects. The default is 8.
Section 26.4.2.

hazard file: Names a file containing the hazard field configuration. Section 26.2.

max turn rate: Maximum rate of turn in meters per second, above which the sensor
will not produce detections. The default is 1.5.

273

options summary interval: Duration (secs) between posting of options summary. The default is
10. Section 26.3.5.

seed random: If true, random number generated is seeded. Legal values: true,
false. The default is false.

sensor config: Describes one of possibly many sensor config options.

show hazards: If false, hazard field visuals are not posted. Legal values: true, false.
The default is true. Section 26.4.2.

show reports: Duration attached to report circle postings. Legal values: any nu-
merical value or the keyword "nolimit". The default is nolimit.
Section 26.4.3.

show swath: If false, vehicle sensor swath visuals are not posted. Legal values:
true, false. The default is true. Section 26.4.1.

swath transparency: Transparency used for rendering swath. Legal values: [0, 1]. The
default is 0.2. Section 26.4.1.

swath length: Extent of the sensor swath, in meters, in the direction of bow to
stern. Legal values: any numerical value. Values less than 1 will be
clipped to 1. The default is 5.

verbose: If true, turns on more verbose output to the terminal. The default
is false.

26.8.1 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uFldHazardSensor --example or -e

This will show the output shown in Listing 97 below.

Listing 97 - Example configuration for uFldHazardSensor.

1 ===

2 uFldHazardSensor Example MOOS Configuration

3 ===

4 ProcessConfig = uFldHazardSensor

5 {

6 // Configuring visual preferences

7 default_hazard_shape = triangle // default

8 default_hazard_color = green // default

9 default_hazard_width = 8 // default

10

11 default_benign_shape = triangle // default

12 default_benign_color = light_blue // default

13 default_benign_width = 8 // default

14 swath_transparency = 0.25 // default

15

16 sensor_config = width=25, exp=4, pclass=0.80

17 sensor_config = width=50, exp=2, pclass=0.60

18 sensor_config = width=10, exp=6, pclass=0.93

19 hazard_file = hazards.txt

274

20 swath_length = 5 // default

21 seed_random = false // default

22 verbose = true // default

23

24 show_hazards = true // default // default

25 show_swath = true // default // default

26 show_reports = 60 // seconds (unlimited if unspecified)

27 }

26.9 Publications and Subscriptions for uFldHazardSensor

The interface for uFldHazardSensor, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldHazardSensor --interface or -i

26.9.1 Variables Published by uFldHazardSensor

The primary output of uFldHazardSensor to the MOOSDB is posting of sensor reports, visual cues
for the sensor reports, and visual cues for the hazard objects themselves.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 26.10

• UHZ HAZARD REPORT: A report on a detection and classification made by the sensor for an object
in the hazard field. It includes the name of the vehicle.

• UHZ HAZARD REPORT NAMEJ: A report on a detection and classification made by the sensor (on
vehicle NAMEJ) for an object in the hazard field.

• UHZ OPTIONS SUMMARY: A report the possible sensor settings available to the user.

• UHZ CONFIG ACK: An acknowledgment message sent to the vehicle verifying a requested sensor
setting.

• VIEW CIRCLE: A visual artifact for rendering a circle around a hazard, indicating the detection
and classification.

• VIEW MARKER: A visual artifact for rendering objects in the hazard field.

• VIEW POLYGON: A visual artifact for rendering a rectangle around a vehicle, indicating a vehicle
sensor field moving with the vehicle.

Example postings:

UHZ_HAZARD_REPORT = vname=archie,x=51,y=11.3,hazard=true,label=12

UHZ_HAZARD_REPORT_ARCHIE = x=51,y=11.3,hazard=true,label=12

UHZ_CONFIG_ACK = vname=archie,width=20,pd=0.9,pfa=0.53,pclass=0.91

UHZ_OPTIONS_SUMMARY = width=10,exp=6,pclass=0.9:width=25,exp=4,pclass=0.85

The vehicle name may be embedded in the MOOS variable name to facilitate distribution of report
messages to the appropriate vehicle with pShare.

275

26.9.2 Variables Subscribed for by uFldHazardSensor

The uFldHazardSensor application will subscribe for the following four MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• UHZ SENSOR REQUEST: A message from the vehicle indicating the sensor is active.

• UHZ SENSOR CONFIG: A message from the vehicle requesting one of the possible sensor settings
and PD choice from the ROC curve resulting from the sensor settings.

• NODE REPORT: A report on a vehicle location and status.

• NODE REPORT LOCAL: A report on a vehicle location and status.

Example postings

UHZ_SENSOR_REQUEST = vname=archie

UHZ_CONFIG_REQUEST = vname=archie,width=50,pd=0.9

Command Line Usage of uFldHazardSensor

The uFldHazardSensor application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. To see command-line options enter
the following from the command-line:

$ uFldHazardSensor --help or -h

This will show the output shown in Listing 98 below.

Listing 98 - Command line usage for the uFldHazardSensor tool.

1 ==

2 Usage: uFldHazardSensor file.moos [OPTIONS]

3 ==

4

5 Options:

6 --alias=<ProcessName>

7 Launch uFldHazardSensor with the given process

8 name rather than uFldHazardSensor.

9 --example, -e

10 Display example MOOS configuration block.

11 --help, -h

12 Display this help message.

13 --interface, -i

14 Display MOOS publications and subscriptions.

15 --version,-v

16 Display release version of uFldHazardSensor.

17 --verbose=<setting>

18 Set verbosity. true or false (default)

19

20 Note: If argv[2] does not otherwise match a known option,

21 then it will be interpreted as a run alias. This is

22 to support pAntler launching conventions.

276

26.10 Terminal and AppCast Output

The uFldHazardSensor application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 99 below. On line 2, the name of the
local community, typically the shoreside community, is listed on the left. On the right, "0/0(457)
indicates there are no configuration or run warnings, and the current iteration of uFldHazardSensor
is 457. Lines 4-6 show the name of the ground truth hazard file and the number of hazards and
benign objects.

Lines 8-16 convey the available sensor configuration options, set with the sensor config param-
eter.

Listing 99 - Example uFldHazardSensor console output.

1 ===

2 uFldHazardSensor shoreside 0/0(457)

3 ===

4 Hazard File: (hazards.txt)

5 Hazard: 11

6 Benign: 8

7

8 ==

9 Sensor Configuration Options

10 ==

11 Width Exp Classify

12 ----- --- --------

13 10.0 6.0 0.930

15 425.0 4.0 0.850

16 50.0 2.0 0.600

17

18 ==

19 Sensor Settings / Stats for known vehicles:

20 ==

21 Vehicle Swath Sensor Sensor

22 Name Width Pd Pfa Pclass Resets Requests Detects

23 ------- ----- ----- ----- ------ ------ -------- -------

24 archie 50.0 0.860 0.740 0.600 1(12) 203 0

25

26 ===

27 Most Recent Events (1):

28 ===

29 [11.86]: Setting sensor settings for: archie

26.11 The Jake Example Mission Using uFldHazardSensor

The Jake mission is distributed with the MOOS-IvP source code and contains a ready example of the
uFldHazardSensor application, configured with hazard field in an included text file. Assuming the
reader has downloaded the source code available at www.moos-ivp.org and built the code according
to the discussion in Section 1.2.9, the Jake mission may be launched by:

$ cd moos-ivp/ivp/missions/m10_jake/

$./launch.sh 10

277

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY button.

26.11.1 What is Happening in the Jake Mission

The Jake mission is comprised of two simulated vehicles, archie and betty. There are three MOOS
communities launched, one for the shoreside and one each for the two vehicles. See Figure 90. The
uFldHazardSensor simulator is running in the shoreside community. The Jake mission is comprised
of two phases, the broad-area-search phase and the reacquire phase. In this mission, archie handles
the first phase, passes his results to betty, who handles the second phase.

The Broad Area Search Phase

In the broad-area-search phase, a search region is given to archie, in which it is to search for a set
of objects, some of which may be hazardous. Knowing nothing a priori about the location of the
objects, only the region containing them, archie executes a lawnmower search pattern over this
area, as shown in Figure 98. The snapshot in the figure depicts archie having executed most of its
pattern, to the West proceeding East. The hazard field is rendered with actual hazards drawn in
green triangles, and benign objects drawn in light blue squares. The circles represent detections
reported by uFldHazardSensor. The yellow circles represent objects classified as hazards, and the
white circles represent objects classified as benign.

278

Figure 98: Simulated Hazard Sensor: A vehicle processes a series of sensor images which may or may not
contain an object. The detection algorithm processes the image and rejects images it believes does not contain
contain hazardous objects. It passes on images containing possible hazardous objects to a classifier, which makes a
determination for each object in an incoming image as to whether or not the object is hazardous or benign.

In this mission, the vehicle’s sensor is configured with a swath width of 25 meters (12.5 on either
side), a probability of detection PD=0.9, probability of false alarm PFA=0.66, and probability of
correct classification PC=0.85. Note in the above snapshot, the vehicle has successfully detected all
hazards, but also detected all but one benign object. It has correctly classified all but one object.

The Reacquire Phase

In the reacquire phase, the archie vehicle has returned to the dock, and betty vehicle has been a
mission to revisit a set of points. In this case betty has an idea where those points lie and is following
a simple path, as shown in Figure 99. Presumably the list of objects to visit and their locations
have been communicated to betty from archie. (In this mission things were hard-coded, no message
passing actually occurred.) The objective of betty is to use a sensor with a smaller swath width
and better sensor processing algorithm to reduce the classification uncertainty associated with the
objects being visited.

279

Figure 99: A Reacquire Mission: A second vehicle revisits a set of previously detected objects and seeks to reduce
the uncertaintly associated with their initial classification made with a less reliable sensor.

In this mission, the vehicle’s sensor is configured with a swath width of 10 meters (5 meters on
either side), a probability of detection PD=0.9, probability of false alarm PFA=0.53, and probability
of correct classification PC=0.93.

280

27 uFldHazardMgr: On-Board Managment of a Hazard Sensor

27.1 Overview

The uFldHazardMgr application is straw man module for interacting with an on-board hazard sensor.
It does two basic things as implied in Figure 100:

1. Interacts with the sensor: It decides a sensor configuration setting and sends this to the
hazard sensor. It may change settings during the course of the mission to its advantage. It
interacts with the sensor by sending sensor requests, and receiving sensor reports. It has some
knowledge of the sensor properties and configuration options.

2. Generates a hazardset report: It builds an internal belief state regarding the identification
and location of hazards, and reports this belief state upon request.

Figure 100: The uFldHazardMgr: interacts with the on-board sensor and processes sensor information and gener-
ates a report, upon request, regarding the identification and location of hazards. The arrows indicate the key MOOS
variables used for interacting with the sensor and generating reports.

There are many ways to interpret sensor data and ultimately decide upon a hazardset report. For
this reason we regard uFldHazardMgr as a straw man module. It implements the key syntactic steps
to minimally configure and interact with the sensor and produce a syntactically correct hazardset
report. The intention is that users may wish to use this as a starting point.

A further aspect one may wish to include in this module would be a form of reasoning about
the vehicle’s path through the hazard field. This module, and accompanying example mission,
was written with the vehicle simply performing a lawnmower exhaustive search through the field.
This module could be used in conjunction with the helm to decided follow-up search patterns or
collaborative strategies with other vehicles. Again, this is not part of uFldHazardMgr since the
objective of this module is to provide a syntactically valid starting point for managing sensor
information.

281

27.2 Using uFldHazardMgr

Typical Simulator Topology

The typical module topology is shown in Figure 101 below. The uFldHazardMgr is situated in
the vehicle MOOS community. It interacts with the uFldHazardSensor situated in the shoreside
MOOS community. The vehicle communicates with the shoreside community using pShare. The
shoreside knows the location of all vehicles from node reports received from each vehicle running
pNodeReporter. The uFldHazardMgr first initializes the sensor by sending a configuration request
via UHZ CONFIG REQUEST. The hazard sensor acknowledges the configuration with a UHZ CONFIG ACK

message. Thereafter the hazard manager may interact with the sensor by sending sensor requests
with UHZ SENSOR REQUEST and periodically receiving reports of detections with UHZ DETECTION REPORT.

Figure 101: Typical uFldHazardMgr Topology: The simulator runs in a shoreside computer MOOS community
and is configured with a hazard field containing both hazards and benign objects. Vehicles accessing the simulator
send a steady stream of messages (UHZ SENSOR REQUEST) and node reports to the shoreside community. The simulator
continuously checks the connected vehicle’s position against objects in the hazard field, and the sensor settings.
When/if an object comes into sensor range, the simulator rolls the dice and if a detection is made, will send a
UHZ DETECTION REPORT message to the vehicle. The vehicle may periodically re-configure its sensor setting by posting
to UHZ CONFIG REQUEST. If the configuration request is acceptable, the simulator will respond with a message to
UHZ CONFIG ACK bridged back out to the vehicle.

The hazard manager maintains a history of reported detections and listens for requests, via the
variable HAZARDSET REQUEST, to generate a hazardset report. It will respond to the request by posting
a hazardset report in the variable HAZARDSET REPORT.

282

27.2.1 Required MOOS Variable Bridges

Using uFldHazardMgr requires certain information flowing between the shoreside and vehicles com-
munities as shown in Figure 101. The bridging is done by pShare, but the pShare configuration
is handled dynamically using the uFldNodeBroker and uFldShoreBroker applications, we discuss
here the necessary configuration entries for these two applications. From the vehicle to the shore-
side, five variables need to be bridged. The below five lines should appear in the uFldNodeBroker

configuration block on all vehicles.

// Bridges from Vehicle to Shoreside - in uFldNodeBroker configuration

bridge = src=APPCAST

bridge = src=NODE_REPORT_LOCAL, alias=NODE_REPORT

bridge = src=UHZ_SENSOR_CONFIG

bridge = src=UHZ_SENSOR_REQUEST

bridge = src=HAZARDSET_REPORT

The first two lines above would likely already be present due to their use in other applications. The
latter three variables are generated by uFldHazardMgr with the intended recipient being uFldHazardSensor

on the shoreside. The latter variable, HAZARDSET REPORT, constitutes the hazardset report generatd
by uFldHazardMgr. The above five lines may also be found in the vehicle configuration for the Jake
example mission discussed in Section 27.7.

The below four lines should appear in the uFldShoreBroker configuration block in the shoreside
MOOS community. See Section 21 for a discussion on the syntax.

// Bridges from Shoreside to Vehicle - in uFldShore Broker configuration

bridge = src=APPCAST_REQ

bridge = src=UHZ_CONFIG_ACK_$V, alias=UHZ_CONFIG_ACK

bridge = src=UHZ_DETECTION_REPORT_$V, alias=UHZ_DETECTION_REPORT

bridge = src=HAZARDSET_REQUEST_$V, alias=HAZARDSET_REQUEST

The first line deals with appcasting and would likely be present anyway due to its use in other
applications as well. The second line allows sensor configuration acknowledgements to be sent to
the vehicle (Section 27.2.4). The third line allows detection reports to be sent to the vehicle (Section
27.3). The last line allows an app running on the shoreside to bridge requests to the vehicle for
a hazardset report. The above four lines may also be found in the shoreside configuration for the
Jake example mission discussed in Section 27.7.

27.2.2 Configuration Parameters of uFldHazardMgr

The following parameters are defined for uFldHazardMgr. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated so.

Listing 27.100: Configuration Parameters for uFldHazardMgr.

283

swath width: The desired sensor swath width. Legal values: the set of widths
available to the sensor. The default is 25. If the requested swath
width setting is not available, the result will be the closest setting
available. 27.2.4.

pd: The chosen probability of detection on the ROC curve determined by
the sensor swath width. Legal values: the range [0, 1]. The default
is 0.9. Section 27.2.5.

27.2.3 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uFldHazardMgr --example or -e

This will show the output shown in Listing 101 below.

Listing 101 - Example configuration of the uFldHazardMgr application.

1 ===

2 uFldHazardMgr Example MOOS Configuration

3 ===

4

5 ProcessConfig = uFldHazardMgr

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 swath_width = 25 // the default

11 sensor_pd = 0.9 // thd default

12 }

27.2.4 Configuring the Swath Width

Part of the initial responsibility of the hazard manager is to select the sensor settings. There are
two primary settings, the swath width and sensor pd setting. The swath width refers to the width,
stetching outward away from the sides of the vehicle. The selected width refers to the length on
one side, so the total swath width is twice the swath width setting.

Physical sensors are usually built with no more than a few swath width settings. These choices
are known ahead of time. It is reasonable therefore to expect the configuration of uFldHazardMgr to
reflect one of those choices. In our case, the available choices are the prevailing values configured of
uFldHazardSensor. In the Jake example mission, the hazard sensor is configured to support sensor
swath widths of 10, 25, and 50 meters. A sensor configuration request is made to the sensor by the
hazard manager making a post to the UHZ CONFIG REQUEST variable similar to:

UHZ_CONFIG_REQUEST = "vname=archie,width=25,pd=0.85"

The request width sent by the hazard manager is set in the uFldHazardMgr configuration block:
(See also Listing 101.)

284

swath_width = 25

The hazard sensor, once it has received the configuration request, posts a configuration acknowl-
edgement, which is bridged back to the vehicle:

UHZ_CONFIG_ACK = "vname=archie,width=25,pd=0.85,pfa=0.53,pclass=0.91"

27.2.5 Configuring the Probability of Detection Setting

The second component of setting the sensor is choosing a probability of detection setting. The PD

is a number in the range of [0, 1] and is accompanied by a corresponding probability of false alarm,
PFA. The relationship between PD and PFA is determined by the ROC curve related to the chosen
sensor swath. This relationship is described in the documentation for uFldHazardSensor in Section
26.3.2, in Figure 94.

27.3 Under the Hood - Interacting with the Hazard Sensor

After the initial configuration, the hazard manager interacts with the hazard sensor by posting
sensor requests, and periodically receiving detection reports. These may look something like:

UHZ_SENSOR_REQUEST = "vname=archie"

UHZ_DETECTION_REPORT = "x=-150.3,y=-117.5,label=12"

The request contains only the vehicle name. The hazard sensor is already receiving reports of the
vehicle position, and has knowledge of the hazard field. So the sensor only needs to know that the
vehicle indeed wishes to be sent detection reports.

Detection reports are only sent by the sensor when a detection is made. The simulated sensor
does not send sensor images or data, but simulated results of sensor data, in the form of a declared
detection. The simulated hazard sensor makes life a bit artificially easier by posting a detection
label. This allows the user to make multiple passes over the same area and be sure that one hazard
is not showing up as several hazards each with a slightly different location.

27.4 Under the Hood - Processing Data and Generating Reports

Hazardset reports are generated on-demand. First a request is received, immediately followed by
the posting of a report. They may look similar to:

HAZARDSET_REQUEST = "true"

HAZARDSET_REPORT = "source=archie#x=-151,y=-217.3,label=01#x=-178.8,y=-234,label=15#

x=-59.8,y=-294.1,label=13#x=-150.3,y=-117.5,label=12#

x=-14.2,y=-293.60001,label=08#x=-65.8,y=-125.2,label=10"

The content of the HAZARDSET REQUEST does not matter to uFldHazardMgr. It will interpret this mail
as a request to generate a report regardless of the request content.

285

The HAZARDSET REPORT content consists of a series of packets separated by the ’#’ character. The
first packet names the source of the report and the remaining packets each declare the presence
of a hazardous object and its location and label. The format of the report is embodied in the
class XYHazardSet in lib ufld hazards. The class is populated with the hazards and the string
representation is produced by calling the getSpec() function on a class instance.

As mentioned previously, uFldHazardMgr is a strawman approach for compiling sensor results
and generating reports. The algorithm used here is dead-simple and easily improved upon: any
detection ever made will be reported as a hazard. There is no further consideration of follow-on
passes over the same area, even if the lack of detection may indicate that a prior initial detection
was likely to be a false alarm.

27.5 Publications and Subscriptions for uFldHazardMgr

The interface for uFldHazardMgr, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldHazardMgr --interface or -i

27.5.1 Variables Published by uFldHazardMgr

The primary output of uFldHazardMgr to the MOOSDB is the posting of requests for sensor infor-
mation and the genration of hazardset reports.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 27.6

• HAZARDSET REPORT: A hazardset report summarizing the hazard manager’s present belief about
location of hazards. Section 27.4.

• UHZ CONFIG REQUEST: A message sent to the hazard simulator requesting a particular sensor
configuration. Sections 27.2.4 and 27.2.5.

• UHZ SENSOR REQUEST: A message sent to uFldHazardSensor to request sensor/detection results
be sent to the uFldHazardMgr as they become available. Section 27.3.

27.5.2 Variables Subscribed for by uFldHazardMgr

The uFldHazardMgr application will subscribe for the following four MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• HAZARDSET REQUEST: A request asking uFldHazardMgr to produce immediately a hazardset re-
port. Section 27.4.

• UHZ DETECTION REPORT: A report sent by the uFldHazardSensor indicating the detection of a
hazardous object and its location. Section 27.3.

• UHZ CONFIG ACK: A message sent by uFldHazardSensor confirming the requested sensor config-
uration information. Sections 27.2.4 and 27.2.5.

286

Command Line Usage of uFldHazardMgr

The uFldHazardMgr application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. To see command-line options enter
the following from the command-line:

$ uFldHazardMgr --help or -h

This will show the output shown in Listing 102 below.

Listing 102 - Command line usage for uFldHazardMgr.

1 ==

2 Usage: uFldHazardMgr file.moos [OPTIONS]

3 ==

4

5 Options:

6 --alias=<ProcessName>

7 Launch uFldHazardMgr with the given process name.

8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 --interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display release version of uFldHazardMgr.

27.6 Terminal and AppCast Output

The uFldHazardMgr application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 117 below. On line 2, the name of the
local community or vehicle name is listed on the left. On the right, "0/0(1414) indicates there are
no configuration or run warnings, and the current iteration of uFldHazardMgr is 1414. Lines 4-13
convey the requested and prevailing sensor configuration settings.

Listing 103 - Example uFldHazardMgr console output.

1 ===

2 uFldHazardMgr archie 0/0(1414)

3 ===

4 Config Requested:

5 swath_width_desired: 38

6 pd_desired: 0.86

7 config requests sent: 118

8 acked: 1

9 ------------------------

10 Config Result:

11 config confirmed: true

12 swath_width_granted: 50

13 pd_granted: 0.86

14

15 --

16

17 sensor requests: 2003

287

18 detection reports: 7

19

20 Hazardset Reports Requested: 1

21 Hazardset Reports Posted: 1

22

23 ===

24 Most Recent Events (7):

25 ===

26 [1046.43]: New Detection, label=08, x=-14.2, y=-293.6

27 [935.39]: New Detection, label=08, x=-14.2, y=-293.6

28 [928.03]: New Detection, label=13, x=-59.8, y=-294.1

29 [799.39]: New Detection, label=12, x=-150.3, y=-117.5

30 [700.65]: New Detection, label=13, x=-59.8, y=-294.1

31 1[525.17]: New Detection, label=15, x=-178.8, y=-234.0

32 [522.15]: New Detection, label=01, x=-151.0, y=-217.3

Lines 17 shows the number of sensor requests sent to the hazard sensor. This message is sent
continuously so it is not surprising to be high. Line 18 shows the number of detection reports
received. Lines 20-21 show the number of time a hazardset report has been requested and posted.
The events in lines 23-32 are typically only contain the arrival of a new detections from the sensor
simulator.

27.7 The Jake Example Mission Using uFldHazardMgr

The Jake mission is distributed with the MOOS-IvP source code and contains a ready example of
the uFldHazardMgr application, configured with hazard field in an included text file. Assuming the
reader has downloaded the source code available at www.moos-ivp.org and built the code according
to the discussion in Section 1.2.9, the Jake mission may be launched by:

$ cd moos-ivp/ivp/missions/m10_jake/

$./launch.sh 10

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY button.

288

28 uFldHazardMetric: Grading a HazardSet Report

28.1 Overview

The uFldHazardMetric application is a utility for quickly evaluating a hazardset report, a list of
declared hazards and their locations. Evaluating a hazardset report against ground truth and a
reward structure is fairly straight-forward, but tedious. This tool performs this operation automat-
ically, and as a MOOS process with the result posted both to the MOOSDB and viewable in the
appcast output of uFldHazardMetric. Operation is comprised of a few simple parts:

1. Import a ground-truth hazard field: A ground truth hazard field is a text file listing the location
of hazards and hazard-like objects, and their locations. A uFldHazardMetric configuration
parameter names the file.

2. Import a reward structure: A reward structure, consisting of penalties for missed hazards and
false alarms, is imported as a uFldHazardMetric configuration parameter.

3. Evaluate a hazardset report: A hazardset report is received by MOOS mail and evaluated
item by item against the ground truth and reward structure. The results are then posted and
rendered. This step is repeated for each received report.

Figure 102: The uFldHazardMetric: interacts with the on-board sensor and processes sensor information and
generates a report, upon request, regarding the identification and location of hazards. The arrows indicate the key
MOOS variables used for interacting with the sensor and generating reports.

28.2 Using uFldHazardMetric

Typical use of uFldHazardMetric has it situated in the shoreside community, with hazardset reports
bridged from vehicles to the shoreside, and evaluation results shown via the uFldHazardMetric

appcast output running on pMarineViewer. Full evaluation reports are also logged to the shoreside

289

log file for later reference. This usage scenario with variations is described next. An example of
this usage is in the Jake example mission described in Section ??.

Typical Module Topology

The typical module topology is shown in Figure 103 below. The uFldHazardMetric is situated in the
shoreside MOOS community. It does not interact with the uFldHazardSensor directly, but they are
typically both configured with the same ground truth hazard file. HAZARDSET REPORT messages are
assumed to come from the vehicle. In the usage case below, they are produced by uFldHazardMgr.
But as the latter is simply a strawman sensor processing module, that could be replaced with
something else entirely. HAZARDSET REPORT EVAL messages may be bridged back to the vehicle, but
this is likely not essential, as the typical destination of an evaluation is the appcast output and the
log file.

Figure 103: Typical uFldHazardMetric Topology: This module runs on the shoreside, alongside the hazard
sensor typically, and receives hazazardset reports from the vehicle bridge with the HAZARDSET REPORT variable. Eval-
uations may be seen via the appcast output of uFldHazardMetric, or in the log file.

28.2.1 Required MOOS Variable Bridges

Using uFldHazardMetric requires certain information flowing between the shoreside and vehicle
communities as shown in Figure 103. Bridging is done by pShare, but the pShare configuration is
handled dynamically using the uFldNodeBroker and uFldShoreBroker applications. We discuss here
the necessary configuration entries for these two applications. From the vehicle to the shoreside,
one variable needs to be bridged. The below line should appear in the uFldNodeBroker configuration
block on all vehicles.

290

bridge = src=HAZARDSET_REPORT // in uFldNodeBroker config block

This HAZARDSET REPORT variable constitutes the report generatd by uFldHazardMetric or a similar
module running in the vehicle generating a hazardset report. The linee may also be found in the
vehicle configuration for the Jake example mission discussed in Section 28.6.

Going in the other direction, from shoreside to vehicle, the below line should appear in the
uFldShoreBroker configuration block in the shoreside MOOS community. See Section 21 for a
discussion on the syntax.

// Bridge from Shoreside to Vehicle - in uFldShore Broker configuration

bridge = src=HAZARDSET_REPORT_EVAL_$V, alias HAZARDSET_REPORT_EVAL

It may not be the case that your vehicle is actually utilizing the report evaluation, so the above may
be optional. And certainly a typical mission will need to bridge other variables besides these, but
from the perspective of uFldHazardMetric, these are the bridges to make sure are configured. The
above couple lines may also be found in the shoreside configuration for the Jake example mission
discussed in Section 28.6.

28.2.2 The False-Alarm and Missed-Hazard Reward Structure

The primary metric for evaluating a hazardset report is based on penalties assigned to missed
hazards and false alarms. The penalties are set with the parameters:

penalty_missed_hazard = <number> // The default is 100

penalty_false_alarm = <number> // The default is 10

With k1 missed hazards and k2 false alarms, the penalty is:

penalty(k1, k2) = penaltyMH (k1) + penaltyFA(k2)

28.2.3 The Max-Time and Time-Overage Reward Structure

An optional additional metric may be applied which penalizes the report if it is late, with additional
potential penalties the longer it is late. The time penalties are set with following parameters,
beginning with the max time parameter setting the point when a report is considered late:

max_time = <number> // seconds, default is 0

penalty_max_time_over = <number> // penalty units, default is 0

penalty_max_time_rate = <number> // penalty units, default is 0

The penalty max time over parameter indicates the immediate one-time penalty applied if the
report is late at all. The penalty max time overage penalty is applied for each second of time past
the deadline. If max time is zero, there is no mission time limit.

If t is the amount of time over the max time:

291

penalty(k1, k2, t) =

{
penalty

FA
(k1) + penalty

MH
(k2) t ≤ 0

penalty
FA

(k1) + penalty
MH

(k2) + penalty
TO

+ penalty
TR

(t) t > 0

The search duration clock re-starts each time uFldHazardMetric receives incoming mail on the
variable HAZARD SEARCH START, regardless of the variable’s value.

28.2.4 Raw and Normalized Scores

Past experience has shown that people appreciate a normalized score. A goal of zero (no penalties,
perfect score) is somehow not as motivating as striving for 100% on a scale of zero to 100. A
normalized score is derived from considering the worst possible score if each object in the hazard
file where reported wrong. The score may be worse than this if the report is late and there are late
penalties, but time not used for the purposes of normalizing.

If j1 and j2 are the actual number of hazards and benign objects taken from ground truth in
the hazard file, the worst score (without applying overtime penalties) is:

maxpenalty(j1, j2) = penaltyMH (j1) + penaltyFA(j2)

The normalized score is then:

score(k1, k2, t) =
maxpenalty(j1, j2)− penalty(k1, k2, t)

maxpenalty(j1, j2)

If penalty(k1, k2, t) is actually greater than maxpenalty(j1, j2) due to lateness, resulting in a neg-
ative score, the normalized score is clipped to zero.

28.2.5 The Report Evaluation Format

The evaluation of the hazardset report has two formats, a terse and and verbose form. The terse
form, HAZARDSET EVAL, fully explains the score, the metrics, and the components of the submitted
report responsible for the score. It may looks something like the example below from the Jake
example mission:

HAZARDSET_EVAL = vname=archie, report_name=BillandJoe,

total_score=675, norm_score=37.5,

score_missed_hazards=500, score_false_alarms=175,

score_time_overage=0, total_objects=10,

total_time=1284.91, received_time=1314.05,

start_time=29.14, missed_hazards=5,

correct_hazards=5, false_alarms=5,

penalty_false_alarm=35, penalty_missed_hazard=100,

penalty_max_time_over=100, penalty_max_time_rate=0.05,

max_time=1800

292

The full evaluation, HAZARDSET EVAL FULL provides all the details about which hazards were declared
and missed, and which benign objects were false alarms. It may look something like the example
below from the Jake example mission:

HAZARDSET_EVAL_FULL = (Everything in the normal report),object_report={

label=01,truth=hazard,report=hazard#

label=02,truth=hazard,report=nothing,penalty=100#

label=03,truth=hazard,report=hazard#

label=04,truth=hazard,report=nothing,penalty=100#

...

label=15,truth=benign,report=hazard,penalty=35#

label=16,truth=benign,report=hazard,penalty=35#

label=17,truth=benign,report=nothing#

label=18,truth=benign,report=hazard,penalty=35}

The latter may only be used for forensics, or perhaps if further clarity is needed in how a scoring
was applied.

28.3 Configuration Parameters of uFldHazardMetric

The following parameters are defined for uFldHazardMetric. A more detailed description is provided
in other parts of this section. Parameters having default values are indicated so.

Listing 28.104: Configuration Parameters for uFldHazardMetric.

penalty missed hazard: The penalty for a missed hazard. The default is 100. Section 28.2.2.

penalty false alarm: The penalty for a false alarm. The default is 10. Section 28.2.2.

penalty max time over: The penalty for submitting a report late. The default is zero. Section
28.2.3.

penalty max time overage: The penalty for submitting a late report, applied to every second it
is late. The default is zero. Section 28.2.3.

max time: The time after which a submitted report is considered late. The
default is zero, indicating there is no time limit. Section 28.2.2.

hazard file: The name of a hazard file naming the ground truth hazard field.

An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uFldHazardMetric --example or -e

This will show the output shown in Listing 105 below.

Listing 105 - Example configuration of the uFldHazardMetric application.

1 ===

2 uFldHazardMetric Example MOOS Configuration

293

3 ===

4

5 ProcessConfig = uFldHazardMetric

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 penalty_missed_hazard = 100 // default

11 penalty_false_alarm = 10 // default

12 penalty_max_time_over = 0 // default

13 penalty_max_time_rate = 0 // default

14

15 max_time = 0 // default (no time limit)

16 hazard_file = hazards.txt

17 }

28.4 Publications and Subscriptions for uFldHazardMetric

The interface for uFldHazardMetric, in terms of publications and subscriptions, is described below.
This same information may also be obtained from the terminal with:

$ uFldHazardMetric --interface or -i

28.4.1 Variables Published by uFldHazardMetric

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 28.5

• HAZARDSET EVAL: The shorter version of a hazardset report evaluation. Section 28.2.5.

• HAZARDSET EVAL FULL: The longer version of a hazardset report evaluation. Section 28.2.5.

• HAZARDSET EVAL <VNAME>: The shorter version of a hazardset report evaluation. The vehicle
from which the report was received is appended to the evaluation so it may be bridged only
back to that vehicle. Section 28.2.5.

• HAZARDSET EVAL <VNAME>: The longer version of a hazardset report evaluation. The vehicle
from which the report was received is appended to the evaluation so it may be bridged only
back to that vehicle. Section 28.2.5.

28.4.2 Variables Subscribed for by uFldHazardMetric

The uFldHazardMetric application will subscribe for the following four MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• HAZARDSET REPORT: An incoming hazardset report. Section 27.4.

• HAZARD SEARCH START: An indication that the clock used to apply time limits and penalties is
to be restarted. Section 28.2.3.

294

Command Line Usage of uFldHazardMetric

The uFldHazardMetric application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. To see command-line options enter
the following from the command-line:

$ uFldHazardMetric --help or -h

This will show the output shown in Listing 106 below.

Listing 106 - Command line usage for uFldHazardMetric.

1 ==

2 Usage: uFldHazardMetric file.moos [OPTIONS]

3 ==

4

5 Options:

6 --alias=<ProcessName>

7 Launch uFldHazardMetric with the given process name.

8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 --interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display release version of uFldHazardMetric.

28.5 Terminal and AppCast Output

The uFldHazardMetric application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 107 below. On line 2, the name of the
local community, typically the shoreside community, is listed on the left. On the right, "0/0(5429)
indicates there are no configuration or run warnings, and the current iteration of uFldHazardMetric
is 5429. Lines 4-6 show the name of the ground truth hazard file and the number of hazards and
benign objects. Lines 8-13 convey the requested and prevailing configuration settings for evaluating
incoming reports.

Listing 107 - Example uFldHazardMetric console output.

1 ===

2 uFldHazardMetric shoreside 0/0(5429)

3 ===

4 Hazard File: (hazards.txt)

5 Hazard: 10

6 Benign: 8

7

8 Reward Structure:

9 Penalty Missed Hazard: 100

10 Penalty False Alarm: 35

11 Penalty Max Time Over: 100

12 Penalty Max Time Rate: 0.05

13 Max Time: 1800

14

295

15 ==

16 Received Reports: 6

17 Elapsed Time: 1285.76

18 ==

19 Report Total Time Time Raw Norm

20 Name Reports Received Elapsed Score Score

21 -------- ------- -------- ------- ----- -----

22 Sarah 6 1351.97 1278.28 675 37.5

23

24 ==

25 Most Recent Report: (archie/Sarah)

26 total_score: 675 (37.5)

27 score_missed_hazards: 500 (5)

28 score_false_alarms: 175 (5)

29 score_time_overage: 0 (0)

30 ---------------------

31 objects reported: 10

32 correct_hazards: 5 (of 10)

33

34 ===

35 Most Recent Events (7):

36 ===

37 [1351.97]: Received valid report from: archie

38 [1347.46]: Received valid report from: archie

39 [1181.93]: Received valid report from: archie

40 [1178.42]: Received valid report from: archie

41 [641.28]: Received valid report from: archie

42 [631.76]: Received valid report from: archie

43 [0.00]: Reading hazards.txt: Objects read: 18

Lines 15-22 provide a summary of reports received so far, perhaps from multiple vehicles. Line 16
shows the number of received reports total from all vehicles, and line 17 shows the elapsed time
since the receipt of HAZARD SEARCH START as discussed in Section 28.2.3. Beginning with line 19, for
each vehicle the total reports received are shown, plus information about the last received report
from that vehicle. The last four columns show (a) the time the report was received, (b) the elapsed
time for the report since the latest timer reset, (c) the raw score as discussed in Sections 28.2.2 and
28.2.3, and (d) the normalized score as discussed in Section 28.2.4.

Lines 24-32 dive into more detail about the latest report received from any vehicle. Line 25
shows the name of the report which may consist of both a vehicle name and additional report name.
The total raw and normalized score is shown next on line 26, with the justification for the score
shown next in lines 27-32. Following this block of output, events are shown starting here on line
34. In this case most events simply report the arrival of new reports, but other events may indicate
anomalous activities such as the arrival of an empty report.

28.6 The Jake Example Mission Using uFldHazardMetric

The Jake mission is distributed with the MOOS-IvP source code and contains a ready example of the
uFldHazardMetric application, configured with a hazard field in an included text file. Assuming the
reader has downloaded the source code available at www.moos-ivp.org and built the code according
to the discussion in Section 1.2.9, the Jake mission may be launched by:

296

$ cd moos-ivp/ivp/missions/m10_jake/

$./launch.sh 12

The argument, 12, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY ARCHIE button.

Figure 104: uFldHazardMetric in the Jake example mission: The output of uFldHazardMetric is shown in
the appcast panel in the lower left after a hazardset report has been received and evaluated.

Any time after the vehicle has been deployed, the user may request the generation of a haz-
ardset report. The REQ REPORT button sends a HAZARDSET REQUEST message to the vehicle running
uFldHazardMgr. Repeated requests result in updated reports. The overall score of the reports tends
higher as the mission progresses and more hazards are detected.

297

29 uFldBeaconRangeSensor: Simulating Vehicle to Beacon Ranges

The uFldBeaconRangeSensor application is a tool for simulating an on-board sensor that provides a
range measurement to a beacon where either (a) the vehicle knows its own position but is trying
to determine the position of the beacon via a series of range measurements, or (b) the vehicle
knows where the beacon(s) are but is trying to determine its own position based on the range
measurements from one or more beacons at known locations.

The range-only sensor may be one that responds to a query, e.g., an acoustic ping, with an
immediate reply, e.g. another acoustic ping or echo, from which the range from the the source to
the beacon is determined by the time-of-flight of the message through the medium, e.g., the approxe
speed ound through water. This idea is shown below on the left. Alternatively, if the beacon emits
its message on a precise schedule with a clock precisely synchronized with the vehicle clock, the
range measurement may be derived without requiring a separate query from the vehicle. This is
the idea behind long baseline acoustic navigation, [3–6]. This idea is shown below on the right.

Figure 105: Beacon Range Sensors: A vehicle determines its range to a beacon by either (a) emitting a query and
waiting for a reply, or (b) waiting for a message to be emitted on fixed schedule. In each case, the time-of-flight of
the message through the medium is used to calculate the range.

In the uFldBeaconRangeSensor application, the beacon and vehicle locations are known to the sim-
ulator, and a tidy BRS RANGE REPORT message is sent to the vehicle(s) as a proxy to the actual
range sensor and calculations that would otherwise reside on the vehicle. The MOOS app may be
configured to have beacons provide a range report either (a) solicited with a range request, or (b)
unsolicited. One may also configure the range at which a range request will be heard, and the range
at which a range report will be heard. The app may be further configured to either (1) include the
beacon location and ID, or (2) not include the beacon location or ID.

Typical Simulator Topology

The typical module topology is shown in Figure 106 below. Multiple vehicles may be deployed in the
field, each periodically communicating with a shoreside MOOS community running a single instance
of uFldBeaconRangeSensor. Each vehicle regularly sends a node report noted by the simulator to
keep an updated calculation of each vehicle to each simulated beacon. When a beacon wants to
simulate a ping, or range request, it generates the BRS RANGE REQUEST message send to the shore.
After the simulator calculates the range, a reply message, BRS RANGE REPORT is sent to the vehicle.

298

Figure 106: Typical uFldBeaconRangeSensor Topology: The simulator runs in a shoreside computer MOOS
communicty and is configured with the beacon locations. Vehicles accessing the simulator periodically send node
reports to the shoreside community. The simulator maintains a running estimate of the range between vehicles and
beacons, modulo latency. A vehicle simulates a ping by sending a range request to shore and receiving a range report
in return from the simulator.

If running a pure simulation (no deployed vehicles), both MOOS communities may simply be
running on the same machine configured with distinct ports. The pShare application is shown
here for communication between MOOS communities, but there are other alternatives for inter-
community communication and the operation of uFldBeaconRangeSensor is not dependent on the
manner of inter-communication communications.

29.1 The uFldBeaconRangeSensor Interface and Configuration Options

The uFldBeaconRangeSensor application may be configured with a configuration block within a .moos

file. Its interface is defined by its publications and subscriptions for MOOS variables consumed
and generated by other MOOS applications. An overview of the set of configuration options and
interface is provided in this section.

29.1.1 Configuration Parameters of uFldBeaconRangeSensor

The following parameters are defined for uFldBeaconRangeSensor. A more detailed description is
provided in other parts of this section. Parameters having default values are indicated so.

Listing 29.108: Configuration Parameters for uFldBeaconRangeSensor.

beacon: Description of beacon location and properties. Section 29.3.1.

299

default beacon freq: Frequency of unsolicited beacon broadcasts (”never”). Section
29.3.2.

default beacon report range: Range at which a vehicle will hear a range report (100). Section
29.3.1.

default beacon width: Width of beacons (meters) when rendered (4). Section 29.3.1.

default beacon color: Color of beacons when rendered (”red”). Section 29.3.1.

default beacon shape: Shape of beacons when rendered (”circle”). Section 29.3.1.

ping payments: How pings treated w.r.t. ping wait time (”upon response”). Section
29.3.4.

ground truth: If true, ground truth is also reported when noise is added. Section
29.3.5.

ping wait: Mandatory number of seconds between successive vehicle pings.
Section 29.3.4.

reach distance: Range at which a vehicle ping will be heard (100).

report vars: Determines variable name(s) used for range report (”short”).

rn algorithm: Algorithm for adding random noise to range measurements.

verbose: If true, verbose status message terminal output (false).

An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command line:

$ uFldBeaconRangeSensor --example

This will show the output shown in Listing 109 below.

Listing 109 - Example configuration of the uFldBeaconRangeSensor application.

0 ===

1 uFldBeaconRangeSensor Example MOOS Configuration

2 ===

3 Blue lines: Default configuration

4 Magenta lines: Non-default configuration

5

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 // Configuring aspects of vehicles in the sim

11 reach_distance = default = 200 // or {nolimit}

12 reach_distance = henry = 40 // meters

13 ping_wait = default = 30 // seconds

14 ping_wait = henry = 120

15 ping_payments = upon_response // or {upon_receipt, upon_request}

16

17 // Configuring manner of reporting

18 report_vars = short // or {long, both}

19 ground_truth = true // or {false}

20 verbose = true // or {false}

300

21

22 // Configuring default beacon properties

23 default_beacon_shape = circle // or {square, diamond, etc.}

24 default beacon_color = orange // or {red, green, etc.}

25 default_beacon_width = 4

26 default_beacon_report_range = 100

27 default_beacon_freq = never // or [0,inf]

28

29 // Configuring Beacon properties

30 beacon = x=200, y=435, label=01, report_range=45

31 beacon = x=690, y=205, label=02, freq=90

32 beacon = x=350, y=705, label=03, width=8, color=blue

33

34 // Configuring Artificial Noise

35 rn_algorithm = uniform,pct=0 // pct may be in [0,1]

36 }

29.2 Publications and Subscriptions for uFldBeaconRangeSensor

The interface for uFldBeaconRangeSensor, in terms of publications and subscriptions, is described
below. This same information may also be obtained from the terminal with:

$ uFldBeaconRangeSensor --interface

29.2.1 Variables Published by uFldBeaconRangeSensor

The primary output of uFldBeaconRangeSensor to the MOOSDB is posting of range reports, visual
cues for the range reports, and visual cues for the beacons themselves.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 29.3.6.

• BRS RANGE REPORT: A report on the range from a particular beacon to a particular vehicle.

• BRS RANGE REPORT NAMEJ: A report on the range from a particular beacon to vehicle NAMEJ.

• VIEW MARKER: A description for visualizing the beacon in the field. (Section 29.4)

• VIEW RANGE PULSE: A description for visualizing the beacon range report. (Section 29.4)

The range report format may vary depending on user configuration. Some examples:

BRS_RANGE_REPORT = "name=alpha,range=129.2,time=19473362764.169"

BRS_RANGE_REPORT = "name=alpha,range=129.2,id=23,x=54,y=90,time=19473362987.428"

BRS_RANGE_REPORT_ALPHA = "range=129.2,time=19473362999.761"

The vehicle name may be embedded in the MOOS variable name to facilitate distribution of report
messages to the appropriate vehicle with pShare.

29.2.2 Variables Subscribed for by uFldBeaconRangeSensor

The uFldBeaconRangeSensor application will subscribe for the following four MOOS variables:

301

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• BRS RANGE REQUEST: A request to generate range reports for all beacons to all vehicles within
range of the beacon.

• NODE REPORT: A report on a vehicle location and status.

• NODE REPORT LOCAL: A report on a vehicle location and status.

Command Line Usage of uFldBeaconRangeSensor

The uFldBeaconRangeSensor application is typically launched as a part of a batch of processes by
pAntler, but may also be launched from the command line by the user. To see command-line
options enter the following from the command-line:

$ uFldBeaconRangeSensor --help

Listing 110 - Command line usage for the uFldBeaconRangeSensor tool.

1 Options:

2 --alias=<ProcessName>

3 Launch uFldBeaconRangeSensor with the given process

4 name rather than uFldBeaconRangeSensor.

5 --example, -e

6 Display example MOOS configuration block.

7 --help, -h

8 Display this help message.

9 --interface, -i

10 Display MOOS publications and subscriptions.

11 --version,-v

12 Display release version of uFldBeaconRangeSensor.

13 --verbose=<setting>

14 Set verbosity. true or false (default)

15

16 Note: If argv[2] does not otherwise match a known option,

17 then it will be interpreted as a run alias. This is

18 to support pAntler launching conventions.

29.3 Using and Configuring uFldBeaconRangeSensor

The uFldBeaconRangeSensor application is configured primarily with a set of beacons, and a policy
for generating range reports to one or more simulated vehicles. The reports may be sent to the
vehicles upon a query (solicited) or may be sent unsolicited based on a configured broadcast schedule
for each beacon. The possible simulator configuration arrangements are explored by first considering
a simple case shown in Figure 107 below, representing a vehicle navigating with three beacons.

302

Figure 107: Simulated LBL Beacons: Three beacons are simulated, labelled 01, 02, and 03. The vehicle period-
ically issues a query to which the beacons immediately reply. The uFldBeaconRangeSensor application handles the
queries and generates the range reports sent to each vehicle. The growing circles rendered around the vehicle and
beacons represent the generation of the range query and range reports respectively.

The configuration for the uFldBeaconRangeSensor is shown in Listing 111 below. The three beacons
are configured in lines 19-21. The configuration on line 7 indicates that a beacon query will be
heard regardless of the range between the vehicle and the beacon. In the other direction, the range
report from the beacon will only be heard if the vehicle is within 100 meters. Line 8 indicates that
ping or range request will be honored by the simulator at most once every 30 seconds, and this
clock is reset each time a range request is honored by the simulator with the configuration on line
9.

Listing 111 - Example configuration of the uFldBeaconRangeSensor application.

1 ProcessConfig = uFldBeaconRangeSensor

2 {

3 AppTick = 4 // Standard MOOSApp configurations

4 CommsTick = 4

5

6 // Configuring aspects of the vehicles

7 reach_distance = default = nolimit

8 ping_wait = 30

9 ping_payments = upon_accept

10

11 report_vars = short

12

13 default_beacon_freq = never // Only on request (ping)

14 default_beacon_shape = circle

15 default_beacon_color = orange

16 default_beacon_width = 5

17 default_beacon_report_range = 100

18

303

19 beacon = label=01, x=200, y=0

20 beacon = label=02, x=400, y=-200

21 beacon = label=03, x=0, y=-200, color=red, shape=triangle, report_range=80

22 }

The three beacons in this example are configured on lines 19-21 with unique labels and locations.
Each beacon has additional properties, such as its shape, color and width when rendered. Default
values for these properties are given in lines 14-16, but may be overridded for a particular beacon
as on line 22.

The key configuration line in this example is on line 13 which indicates the beacons by default
never generate an unsolicited range report. Reports are only generated upon request. In this
example, the simulated vehicle would receive successive groups of BRS RANGE REPORT postings from all
three simulated beacons, each time the vehicle posts a BRS RANGE REQUEST message to the MOOSDB.
This example is runnable in the indigo example mission distributed with the MOOS-IvP source
code and described a bit later in Section 29.5.

29.3.1 Configuring the Beacon Locations and Properties

One or more beacons may be configured by the beacon configuration parameter provided in the
uFldBeaconRangeSensor configuration block of the .moos file. Each beacon is configured with a line:

beacon = <configuration>

The <configuration> component is a comma-separated list of parameter=value pairs, with the
following possible parameters: x, y, label, freq, shape, width, color, and query range. The following
are typical examples:

beacon = x=200, y=260, label=03, freq=10

beacon = x=-40, y=150, label=04, freq=5:15, color=red, shape=circle, width=4, report_range=200

The x and y parameters specify the beacon locations in local coordinates. Like several other MOOS
applications, the uFldBeaconRangeSensor app looks for a global parameter in the .moos configuration
file naming the position of the datum, or 0,0 position in latitude, longitude coordinates. The
label parameter provides a unique identifier for the beacon. If a beacon entry is provided using a
previously used label, the new beacon will overwrite the prior beacon in the simulator. If no label is
provided, an automatic label will be generated equivalent to the index of the new beacon. The freq

parameter specifies, in seconds, how often unsolicited range reports are generated for each beacon.
A simple numerical value may be given, or a colon-separated pair of values as shown above may be
used to specify a uniformly random interval of possible durations. The duration between posts will
be reset after each post. The report range parameter specifies the distance, in meters, that a vehicle
must be to hear a range report generated by a beacon. The shape parameter indicates the shape
used by applications like pMarineViewer when rendering the beacon. The uFldBeaconRangeSensor

application generates a VIEW MARKER post to the MOOSDB for each beacon, once upon startup of
the simulator. The VIEW MARKER structure and possible shapes are described in the pMarineViewer

section in [1]. The color parameter specifies the color to be used when rendering the beacon. Legal

304

color strings are described in Appendix B. The width parameter is used to indicate the width, in
meters, when rendering the beacon.

For convenience, default values for several of the above properties may be provided with the
following five supported configuration parameters:

default_beacon_report_range = 100

default_beacon_shape = circle

default_beacon_color = orange

default_beacon_width = 4

default_beacon_freq = never

The above configuration values also represent all the default values. A beacon configuration that
includes any of the above five parameters explicitly, will override any default values.

29.3.2 Unsolicited Beacon Range Reports

The simulator may be configured to have all its beacons periodically generate a range report to all
vehicles within range. The schedule of reporting may be uniform across all beacons, or individually
set for each beacon. The interval of time between reports may also be set to vary according to a
uniformly random time interval. By default, beacons are configured to never generate unsolicited
range reports unless their frequency parameter is set to something else besides the default value of
"never". The default value for all beacons may be configured with the following parameter in the
uFldBeaconRangeSensor configuration block with the following:

default_beacon_freq = 120

The parameter value is given in seconds. To configure an interval to vary randomly on each post
within a given range, e.g., somewhere between one and two minutes, the following may be used
instead:

default_beacon_freq = 60:120

To configure the simulator to never generate an unsolicited range report, i.e., only solicited reports,
use the following:

default_beacon_freq = never

Upon each range report post to the MOOSDB, the interval until the next post is recalculated. The
beacon schedule may also be configured to be unique to a given beacon. The beacon configuration
line accepts the freq parameter as described earlier in Section 29.3.1. The configuration provided
for an individual beacon overrides the default frequency configuration.

Once a beacon has generated a report, it will not generate another unsolicited report until after
the prevailing time interval has passed. However, if the simulator detects that the beacon has been
solicited for a range report via an explicit range request from a nearby vehicle, a range report may
be generated immediately. In this case the clock counting down to the beacon’s next unsolicited
report is reset.

305

29.3.3 Solicited Beacon Range Reports

The uFldBeaconRangeSensor application accepts requests from vehicles, and may or may not gen-
erate one or more range reports for beacons within range of the vehicle making the request. In
short, things operate like this: (a) a range request is received by uFldBeaconRangeSensor through
its mailbox on the variable RANGE REQUEST, (b) a determination is made as to whether the request
is within range of the beacon and whether the request is allowed based on limits on the frequency
of range requests, (c) a range report is generated and posted to the variable BRS RANGE REPORT. The
following is an example of the range request format:

BRS_RANGE_REQUEST = "name=charlie"

Note that if a vehicle generates a range request triggering a range report from a beacon, the range
report is sent to all vehicles within range of the beacon. Presumably the simulator has also received,
at some point in the past, a node report, typically generated from the pNodeReporter application
(described in the pNodeReporter section in [1]) running on the vehicle. So the simulator not only
knows which vehicle is making the range request, but also where that vehicle is located. It needs the
vehicle location to determine the range between the vehicle and beacon, to generate the requested
range report. The simulator also uses this range information to decide if it wants regard the beacon
as being close enough to hear the request, and whether the vehicle is close enough to the beacon
to hear the report.

29.3.4 Limiting the Frequency of Vehicle Range Requests

From the perspective of operating a vehicle, one may ask: why not request a range report from
all beacons as often as possible? There may be reasons why this is not feasible outside simulation.
Limits may exist due to power budgets of the vehicle and/or beacons, and there may be prevailing
communications protocols that make it at least impolite to be pushing range requests through a
shared communications medium.

To reflect this limitation, the uFldBeaconRangeSensor application may be configured to limit the
frequency in which a vehicle’s range request (or ping) will be honored with a range report reply.
By default this frequency is set to once every 30 seconds for all vehicles. The default for all vehicles
may be changed with the following configuration in the .moos file:

ping_wait = default = 60

If the time interval as above is set to 60 seconds, what happens if a vehicle requests a range report
40 seconds after its previous request? Is it simply ignored, needing to wait another 20 seconds?
Or is the clock reset to zero forcing the vehicle to wait 60 seconds before a ping is honored? By
default, the former is the case, but the simulator may be configured to the more draconian option
with:

ping_payments = upon_request

306

Suppose the minimum time interval has elapsed, but the querying/pinging vehicle is too far out of
range from any beacon to hear even a single range report. Will the result be that the clock is reset
to zero, forcing the vehicle to wait another 60 seconds before a query is honored? By default this
is the case, but the simulator may be configured to not reset the clock unless the querying vehicle
has received at least one range report for its query:

ping_payments = upon_response

In short, the simulator configuration parameter, ping payments, may be configured with one of three
options, "upon request", "upon response", or "upon accept", with the default being the latter.

29.3.5 Producing Range Measurements with Noise

In the default configuration of uFldBeaconRangeSensor, range reports are generated with the most
precise range estimate as possible, with the only error being due to the latency of the communica-
tions generating the range request and range report. Additional noise/error may be added in the
simulator for each range report with the following configuration parameter:

rn_algorithm = uniform,pct=0.12 // Values in the range [0,1]

Currently the only noise algorithm supported is the generation of uniformly random noise on the
range measurement. The noise level, θ, set with the parameter rn uniform pct, will generate a noisy
range from an otherwise exact range measurement r, by choosing a value in the range [θr, r + θr].
The range without noise, i.e., the ground truth, may also be reported by the simulator if desired
by setting the configuration parameter:

ground_truth = true

This will result in an additional MOOS variables posted, BRS RANGE REPORT GT, with the same format
as BRS RANGE REPORT, except the reported range will be given without noise.

29.3.6 Terminal and AppCast Output

The uFldBeaconRangeSensor application produces some useful information to the terminal and iden-
tical content through appcasting. An example is shown in Listing 112 below. On line 2, the name
of the local community or vehicle name is listed on the left. On the right, "0/0(1478) indicates
there are no configuration or run warnings, and the current iteration of uFldBeaconRangeSensor is
1478.

Lines 4-12: Beacon Configuration

Lines 4-12 convey the prevailing beacon configuration settings. They may reflect the default values
or values read from the configuration block like the one shown previously in Listing 109. Each
beacon has an ID (first column), and the location in local coordinates in the next two columns.
The fourth column indicates whether reports are generated in response to a poll, i.e., range request,

307

or on a regular timed cycle as in beacon #03. If the latter type, the fifth column indicates the number
of unsolicited pings generated. The Pings Recvd and Pings Gen’d columns show the number of range
requests received and generated. Noise column indicates if there is any noise applied to the reports.
The last two columns show the push and pull distances.

Listing 112 - Example uFldBeaconRangeSensor console or appcast output.

1 ===

2 uFldBeaconRangeSensor hotel 0/0(1478)

3 ===

4 Beacons(5):

5 Pings Pings Pings Push Pull

6 ID X Y Freq Unsol Recvd Gen’d Noise Dist Dist

7 -- ---- ---- ---- ----- ----- ----- ----- ---- ----

8 05 115 -150 poll 0 0 0 0 33 95

9 04 -65 -345 poll 0 16 16 0 85 75

10 03 0 -200 15.0 46 16 16 0 85 75

11 02 -100 -100 poll 0 14 14 0 85 75

12 01 200 0 poll 0 0 0 0 85 75

13

14 Vehicles(1):

15 Push Pull Unsol Pings Pings Too Too

16 VName Dist Dist Rec’d Gen’d Rep’d Freq Far

17 ----- ---- ---- ----- ----- ----- ---- ---

18 hotel 100 100 22 24 46 0 74

19

20 ===

21 Most Recent Events (8):

22 ===

23 [864.51]: Beacon[03]))--> Range Broadcast to HOTEL

24 [849.27]: Beacon[03] --> Range Reply to HOTEL

25 [849.27]: Beacon[03] <---- Ping from HOTEL

26 [849.27]: Beacon[04] --> Range Reply to HOTEL

27 [849.27]: Beacon[04] <---- Ping from HOTEL

28 [849.27]: Range Request resets the clock for vehicle HOTEL

29 [849.27]: Valid Range Request from HOTEL. Checking beacon ranges...

30 [836.27]: Beacon[03]))--> Range Broadcast to HOTEL

Unless the verbose setting is turned on, the output ending on line 37 above should be the last
output written to the console for the duration of the simuator.

In the verbose mode, the simulator will produce event-based output as shown in the example
above beginning on line 38. The asterisks in lines 39, 46, and 50 are not merely visual separators.
An asterisk represents a single receipt of a NODE REPORT message. Receiving node reports is essential
for the operation of the simulator and this provides a bit of visual verification that this is occurring.
Presumably node reports are being received much more often than range requests and range reports
are handled, as is the case in the above example. The first time a node report is received for a
particular vehicle, an announcement is made as shown on line 38.

In addition to handling incoming node reports, on any given iteration, the simulator may also
handle an incoming range request, or may generate an unsolicited range report based on a beacon
schedule. Console output for incoming range requests may look like that shown in lines 40-45 above.
First the range request and the requesting vehicle is announced as online 40. The elapsed time

308

since the vehicle last made a range request is shown as on line 41. If the request is honored by the
simulator, this is indicated as shown on line 42. Otherwise a reason for denial may be shown. If the
query is accepted, range reports may be generated for one or more vehicles. For each such vehicle,
a line announcing the new report is generated, as in lines 43-45. On an iteration where unsolicited
range reports are generated, output similar to that shown in lines 47-49 will generated. For each
report, the beacon and receiving vehicle are named.

29.4 Interaction between uFldBeaconRangeSensor and pMarineViewer

The uFldBeaconRangeSensor application will post certain messages to the MOOSDB that may
be subscribed for by GUI based applications like pMarineViewer for visualizing the posting of
BRS RANGE REPORT and BRS RANGE REQUEST messages, as well as visualizing the beacon locations. A
snapshot of the pMarineViewer window is shown below, with one vehicle and several beacons.

Figure 108: Beacons in the pMarineViewer: The VIEW RANGE PULSE message is passed to pMarineViewer to
render unsolicited range reports (here in green), range requests from a vehicle (here in white), and solicited range
reports in response to a range requeste (here in pink). The viewer alse renders the beacons and their labels upon
receiving VIEW MARKER messages posted by the uFldBeaconRangeSensor application. The pulses are only momemtarily
visible until another VIEW RANGE PULSE message is received.

The VIEW MARKER Data Structure

The uFldBeaconRangeSensor application, upon startup, posts the beacon locations in the form of
the VIEW MARKER data structure. This MOOS variable is one of the default variables registered for by
the pMarineViewer application. The types of supported markers are described in the pMarineViewer

section in [1]. The marker type, size and color are configurable in the uFldBeaconRangeSensor

309

configuration block. The user may use the variation in marker rendering to correspond to variation
in beacon reporting or querying characteristics.

The VIEW RANGE PULSE Data Structure

A range pulse message is used by the uFldBeaconRangeSensor application to convey visually the
generation of a range report, or the receipt of a range request. The pulse is rendered as a ring with
a growing radius having either the beacon or the vehicle at the center. A pulse eminating from a
beacon indicates a range report, and a pulse eminating from a vehicle indicates a range request.
By default different colors may be used for solicited and unsolicited range reports. In Figure 108
for example, the green rings represent unsolicited reports, the white ring represents a range request
made by the vehicle, and the pink ring represents a response to the range request made by the one
beacon within range to the vehicle.

The VIEW RANGE PULSE message is a data structure implemented in the XYRangePulse class, with
the following format by example:

VIEW_RANGE_PULSE = x=-40,y=-150,radius=40,duration=15,fill=0.25,fill_color=green,

label=04,edge_color=green,time=3892830128.5,edge_size=1

The x and y parameters convey the center of the pulse. The radius parameter indicates the radius
of the circle at its maximum. The duration parameter is the number of seconds the pulse will be
rendered. The pulse will grow its radius linearly from zero meters at zero seconds to radius meters
at duration seconds. The fill parameter is in the range [0, 1], where 0 is full transparency (clear)
and 1 is fully opaque. The pulse transparency increases linearly as the range ring is rendered.
The starting transparency at radius = 0 is given by the fill parameter. The transparency at the
maximum radius is zero. The fill color parameter specifies the color rendered to the internal part
of the range pulse. The choice of legal colors is described in Appendix B. The label is a string
that uniquely identifies the range instance to consumers like pMarineViewer. As with other objects
in pMarineViewer, if it receives an object the same label and type as one previously received, it will
replace the old object with the new one in its memory. The edge color parameter describes the
color of the ring rendered in the range pulse. The edge size likewise describes the line width of the
rendered ring. The time parameter indicates the UTC time at which the range pulse object was
generated.

29.5 The Indigo Example Mission Using uFldBeaconRangeSensor

The indigo mission is distributed with the MOOS-IvP source code and contains a ready example
of the uFldBeaconRangeSensor application, configured with three beacons acting as long baseline
(LBL) beacons as described at the beginning of Section 29.3. Assuming the reader has downloaded
the source code available at www.moos-ivp.org and built the code according to the discussion in
Section 1.2.9, the indigo mission may be launched by:

$ cd moos-ivp/ivp/missions/s9_indigo/

$./launch.sh 10

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,

310

the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY button. The vehicle will traverse a survey pattern over the rectangular operation region
shown in Figure 107, periodically generating a range request to the three beacons. With each range
request, a white range pulse should be visible around the vehicle. Almost immediately afterwards,
a range report for each beacon is generated and a red range pulse around each beacon is rendered.
The snapshot in Figure 107 depicts a moment in time where the range report visual pulses are
beginning to grow around the beacons and the range request visual pulse is still visible around the
one vehicle.

How does the simulated vehicle generate a range request? In practice a user may implement
an intelligent module to reason about when to generate requests, but in this case the uTimerScript

application is used by creating a script that repeats endlessly, generating a range request once
every 25-35 seconds. The script is also conditioned on (NAV SPEED > 0), so the pinging doesn’t
start until the vehicle is deployed. The configuration for the script can be seen in the uTimerScript

configuration block in the indigo.moos file. More on the uTimerScript application can be found in
Section 6.

Examining the Log Data from the Indigo Mission

After the launch script above has launched the simulation, the script should leave the console
user with the option to “Exit and Kill Simulation” by hitting the ’2’ key. Once the vehicle has
been deployed and traversed to one’s satisfaction, exit the script. A log directory should have
been created by the pLogger application in the directory where the simulation was launched. The
directory name should be begin with MOOSLog with the remainder of the directory name composed
from the timestamp of the launch.

Let’s take a look at some of the data related to the simulation and uFldBeaconRangeSensor in
particular. A dump of the entire file reveals a deluge of information. To look at the information
relevant to the uFldBeaconRangeSensor application, the file is pruned with the aloggrep tool:

$ aloggrep MOOSLog_21_2_2011_____22_32_48.alog uFldBeaconRangeSensor uTimerScript

This produces a subset of the alog file similar to that shown in Listing 113, showing only log
entries made by either the uFldBeaconRangeSensor application, or the uTimerScript application
which generated all the range requests as described above. The first three posts made to the
MOOSDB by uFldBeaconRangeSensor are the VIEW MARKER posts representing a visual cue for the
pMarineViewer application to render the three beacons.

Listing 113 - A subset of the data logged from the Indigo example mission’s alog file.

%%%

%% LOG FILE: ./MOOSLog_22_2_2011_____17_27_06/MOOSLog_22_2_2011_____17_27_06.alog

%% FILE OPENED ON Tue Feb 22 17:27:06 2011

%% LOGSTART 23371445284.8

%%%

55.697 VIEW_MARKER uFldBeaconRangeSensor x=0,y=-200,label=03,color=orange,type=circle,width=4

55.698 VIEW_MARKER uFldBeaconRangeSensor x=400,y=-200,label=02,color=orange,type=circle,width=4

55.698 VIEW_MARKER uFldBeaconRangeSensor x=200,y=0,label=01,color=orange,type=circle,width=4

100.663 BRS_RANGE_REQUEST uTimerScript name=indigo

100.846 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=-97.65,y=-64.84,radius=50,duration=6,...

100.846 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=166.7446,id=03,time=23371445385.6

311

100.846 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=0,y=-200,radius=40,duration=15,...

100.846 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=515.6779,id=02,time=23371445385.6

100.846 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=400,y=-200,radius=40,duration=15,...

100.847 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=304.6305,id=01,time=23371445385.6

100.847 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=200,y=0,radius=40,duration=15,...

160.419 BRS_RANGE_REQUEST uTimerScript name=indigo

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=-197.96,y=-129.16,radius=50,duration=6,...

160.597 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=210.2533,id=03,time=23371445445.3

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=0,y=-200,radius=40,duration=15,...

160.597 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=602.1416,id=02,time=23371445445.3

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=400,y=-200,radius=40,duration=15,...

160.597 BRS_RANGE_REPORT uFldBeaconRangeSensor vname=indigo,range=418.3951,id=01,time=23371445445.3

160.597 VIEW_RANGE_PULSE uFldBeaconRangeSensor x=200,y=0,radius=40,duration=15,...

The first range request is generated at time 100.663 by the uTimerScript. The uFldBeaconRangeSensor
application receives this mail and posts a range pulse at time 100.846 conveying the range request
from the vehicle, e.g., the white circle in Figure 107. The range request is met immediately and
two posts are generated for each beacon. The VIEW RANGE PULSE message indicates the simulator
has generated a range report for the beacon (the red circle in Figure 107. The BRS RANGE REPORT

message is the actual range report to be used by the vehicle as it sees fit.

29.5.1 Generating Range Report Data for Matlab

The log files generated as in Listing 113 above may processed to form a table of values suitable for
Matlab processing. The alog2rng tool may be run on an alog file from the command line:

$ alog2rng MOOSLog_21_2_2011_____22_32_48.alog

This will generate a table of data like that below. The left column is the timestamp from the log file.
The next N columns are the range measurements from each beacon. And the last three columns
are the “ground truth” vehicle position and heading. The last three columns may be excluded with
the --nav=false switch on the command line.

Time 03 02 01 NAV_X NAV_Y NAV_HDG

100.846 166.7446 515.6779 304.6305 -99.371 -65.917 238.000

160.597 210.2533 602.1416 418.3951 -198.538 -130.397 197.456

224.844 163.4205 558.5143 433.6937 -155.744 -248.991 159.000

The alog2rng tool is part of the Alog-Toolbox along with other tools for examining and modifying
alog files generated by pLogger.

312

30 uFldContactRangeSensor: Detecting Contact Ranges

30.1 Overview

The uFldContactRangeSensor application is a tool for simulating range measurements to off-board
contacts, as a proxy for an on-board active sonar sensor. The range-only measurements are provided
conditionally, depending on the range between the pinging vehicle and the contact. The simulator
may optionally be configured to provide range measurements with noise.

Figure 109: Simulated Active Sonar: A vehicle determines its range to another vehicle by producing a simulated
sonar ping (a range request to the simulator), and the simulator conditionally responds to the querying vehicle with
a report containing the range to nearby vehicles. All vehicles send frequent and regular node reports to the simulator
so the simulator can report the range between any two vehicles at any time. The simulator may or may not reply to
the range request depending on the range between the two vehicles and thresholds configured by the user.

In the uFldContactRangeSensor application, the beacon and vehicle locations are known to the
simulator, and a tidy RANGE REPORT message is sent to the vehicle(s) as a proxy to the actual
range sensor and calculations that would otherwise reside on the vehicle. The MOOS app may be
configured to have beacons provide a range report either (a) solicited with a range request, or (b)
unsolicited. One may also configure the range at which a range request will be heard, and the range
at which a range report will be heard. The app may be further configured to either (1) include the
beacon location and ID, or (2) not include the beacon location or ID.

30.2 Using uFldContactRangeSensor

30.2.1 Typical Topology

The typical module topology is shown in Figure 110 below. Multiple vehicles may be deployed
in the field, each periodically communicating with a shoreside MOOS community running a single
instance of uFldContactRangeSensor. Each vehicle regularly sends a node report noted by the
simulator to keep an updated calculation of each vehicle to each simulated beacon. When a vehicle
wants to simulate a ping, or range request, it generates the CRS RANGE REQUEST message sent to the
shore. After the simulator calculates the range, a reply message, CRS RANGE REPORT message is sent
to the vehicle, using pShare or similar app.

313

Figure 110: Typical uFldContactRangeSensor Topology: The simulator runs in a shoreside computer MOOS
community. All deployed vehicles periodically send node reports to the shoreside community. The simulator maintains
a running estimate of the range between vehicles, modulo latency. A vehicle simulates a ping by sending a range
request to shore and receiving a range report in return from the simulator. The simulator also posts visual artifacts
(VIEW RANGE PULSE messages) read by the pMarineViewer app optionally running shoreside.

If running a pure simulation (no physically deployed vehicles), both MOOS communities may
simply be running on the same machine configured with distinct ports. The pShare application is
shown here for communication between MOOS communities, but there are other alternatives for
inter-community communication and the operation of uFldContactRangeSensor is not dependent on
the manner of inter-communication communications.

30.2.2 Required MOOS Variable Bridges

Using uFldContactRangeSensor requires certain information flowing between the shoreside and ve-
hicles communities as shown in Figure 110. From the vehicle to the shoreside, three variables need
to be bridged. The below three lines should appear in the uFldNodeBroker configuration block on
all vehicles.

// Bridges from Vehicle to Shoreside - in uFldNodeBroker configuration

bridge = src=APPCAST

bridge = src=NODE_REPORT_LOCAL, alias=NODE_REPORT

bridge = src=CRS_RANGE_REQUEST

The first two lines above would likely already be present due to their use in other applications. The
CRS RANGE REQUEST is generated locally on the vehicle and sent to the shoreside community running

314

uFldContactRangeSensor. The above three lines may also be found in the Hugo example mission
discussed in Section 30.7.

The below two lines should appear in the uFldShoreBroker configuration block in the shoreside
MOOS community.

// Bridges from Shoreside to Vehicle - in uFldShore Broker configuration

bridge = src=APPCAST_REQ

bridge = src=CRS_RANGE_REPORT_$V, alias=CRS_RANGE_REPORT

The first line deals with appcasting and would likely be present anyway due to its use in other
applications as well. The second line ensures that a separate bridge is made for all distinct known
vehicles, as they become known to the shoreside. A range report posted by uFldContactRangeSensor

to be sent to archie would be posted locally in the shoreside to the variable CRS RANGE REPORT ARCHIE

which would be sent only to the archie vehicle by pShare.

30.2.3 Range Requests and Range Reports

Range requests are made from vehicles to the simulator of the form:

CRS_RANGE_REQUEST = "name=archie"

The simulator only needs to know the requesting vehicle’s name. It is also aware of the requesting
and other vehicles’ locations via incoming NODE REPORT messages. When a range request is made,
the simulator applies range and other criteria, discussed in the following sections. For a request
from a vehicle named archie for example, the simulator may reply with a range report similar to:

CRS_RANGE_REPORT_ARCHIE = "range=126.54,target=jackal,time=19656022406.44"

If the ground truth is set to true (the default), ground truth reports are also published of the form:

CRS_RANGE_REPORT_GT_ARCHIE = "range=127.12,target=jackal,time=19656022406.44"

These reports have the simulated range noise removed and are not typically sent to the vehicles. If
the simulator is configured with report vars set to "short", the above to posts are made with the
following form instead:

CRS_RANGE_REPORT_ = "vname=archie,range=126.54,target=jackal,time=19656022406.44"

CRS_RANGE_REPORT_GT = "vname=archie,range=127.12,target=jackal,time=19656022406.44"

The name of the requesting vehicle is embedded in the report content rather than the MOOS
variable. The default setting for report vars is "long", producing the first style of reports above.

315

30.2.4 Configuring the Range Criteria

When a ping is received by the simulator, via CRS RANGE REQUEST, the simulator may or may not reply
with an range report depending on the range between the two vehicles. The uFldContactRangeSensor

simulator has two range configuration parameters:

reach_distance = default = <meters> // or "nolimit"

reply_distance = default = <meters> // or "nolimit"

Two separate range parameters are used so that the simulator can support scenarios where some
vehicles have a more powerful sonar than others, and some targets are harder to detect (absorb or
deflect more energy) than others. Both parameters are given in meters. If the user provides no
configuration parameters, all vehicles will default to have the same reach and reply distances of 100
meters. The default values may be overridden with something like:

reach_distance = default = 120

reply_distance = default = 80

The above two lines, in effect, are the same as reach distance = 100 and reply distance = 100.
Things become interesting when individual vehicles are given values different from the default.
Consider the more advantageously configured vehicle, victor, below:

reach_distance = victor = 250

reply_distance = victor = 20

If either the reach or reply distance for a given pair of vehicles is set to nolimit, then a range report
will always be generated regardless of current range between the two vehicles. Future enhancements
to this simulator module may include the factoring of vehicle speed and relative bearing to one
another in the threshold determination of sending range reports.

30.2.5 Limiting the Frequency of Vehicle Range Requests

From the perspective of operating a vehicle, one may ask: why not request a range report (ping)
as often as possible? There may be reasons why this is not feasible outside simulation. Limits may
exist due to power budgets of the vehicle, and there may be prevailing protocols that make it at
least impolite to be frequently pinging.

To reflect this limitation, the uFldContactRangeSensor utility may be configured to limit the
frequency in which a vehicle’s range request (or ping) will be honored with a range report reply.
By default this frequency is set to once every 30 seconds for all vehicles. The default for all vehicles
may be changed with the following configuration in the .moos file:

ping_wait = default = 60

The limits for a particular vehicle may be set with a similar configuration line:

ping_wait = henry = 90

316

30.2.6 Producing Range Measurements with Noise

In the default configuration of uFldContactRangeSensor, range reports are generated with the most
precise range estimate as possible, with the only error being due to the latency of the communica-
tions generating the range request and range report. Additional noise/error may be added in the
simulator for each range report with the following configuration parameter:

rn_algorithm = uniform,pct=0.12 // Values in the range [0,1]

or

rn_algorithm = gaussian,sigma=20 // Values in the range [0,inf]

For uniform random noise, the noise level, θ, set with the parameter pct subfield, will generate
a noisy range from an otherwise exact range measurement r, by choosing a value in the range
[θr, r+ θr]. The range without noise, i.e., the ground truth, may also be reported by the simulator
if desired by setting the configuration parameter:

ground_truth = true

This will result in an additional MOOS variables posted, CRS RANGE REPORT GT, with the same format
as CRS RANGE REPORT, except the reported range will be given without noise.

30.3 Configuration Parameters of uFldContactRangeSensor

The following parameters are defined for uFldContactRangeSensor. A more detailed description is
provided in other parts of this section. Parameters having default values are indicated so.

Listing 30.114: Configuration Parameters for uFldContactRangeSensor.

allow echo types: A list of platform types for which an reply will be generated from another
source. Legal values: auv, uuv, usv, asv, kayak, kingfisher, glider, and
ship. The default is the empty set, indicating that all types are honored.

ground true: If true, ground truth reports are also published alongside the normal
range reports, with noise removed. This information is not bridge to the
vehicles however. Legal values: true, false. The default is true. Section
30.2.3.

ping color: Visual preference: color of initiating ping message. Legal values: any
color in Appendix B. The default is white.

ping wait: Minimum seconds enforced between pings. The default is 30. Section
30.2.5.

reach distance: Distance out to which the pinging vehicle will be heard. Legal values:
any numerical value or the keyword "nolimit". The default is 100. Sec-
tion 30.2.4.

317

reply distance: Distance out to which the pinged vehicle will be heard. Legal values: any
numerical value or the keyword "nolimit". The default is 100. Section
30.2.4.

reply color: Visual preference: color of replying message Legal values: any color in
Appendix B. The default is chartreuse.

rn algorithm: Algorithm for adding random noise to the range measurement. Legal
parameter values discussed in Section 30.2.6. The default is no noise.

report vars: Determines variable name style used for range reports. Legal values:
short, long, both. The default is long. Section 30.2.3.

An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command line:

$ uFldContactRangeSensor --example

This will show the output shown in Listing 115 below.

Listing 115 - Example configuration of the uFldContactRangeSensor application.

1 ===

2 uFldContactRangeSensor Example MOOS Configuration

3 ===

4

5 ProcessConfig = uFldContactRangeSensor

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 // Configuring aspects of the vehicles in the sim

11 reach_distance = default = 100 // in meters or {nolimit}

12 reply_distance = default = 100 // in meters or {nolimit}

13 ping_wait = default = 30 // in seconds

14

15 push_distance = jackal = 50

16 push_distance = archie = 190

17 ping_wait = archie = 32

18

19 // Configuring manner of reporting

20 report_vars = short // or {long, both}

21 ground_truth = true // or {false}

22

23 // Configuring visual artifacts

24 ping_color = white

25 reply_color = chartreuse

26

27 // Configuring Artificial Noise

28 rn_algorithm = uniform,pct=0.04

29 }

318

30.4 Publications and Subscriptions for uFldContactRangeSensor

The interface for uFldContactRangeSensor, in terms of publications and subscriptions, is described
below. This same information may also be obtained from the terminal with:

$ uFldContactRangeSensor --interface

30.4.1 Variables Published by uFldContactRangeSensor

The primary output of uFldContactRangeSensor to the MOOSDB is the posting of range reports
and visual cues for the range reports.

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 30.5.

• CRS RANGE REPORT: A report on the range from a particular vehicle to the pinging vehicle.
Section 30.2.4.

• CRS RANGE REPORT NAMEJ: A report on the range from a particular named NAMEJ, to the
pinging vehicle.

• VIEW RANGE PULSE: A description for visualizing the beacon range report. Section 30.6.

30.4.2 Variables Subscribed for by uFldContactRangeSensor

The uFldContactRangeSensor application will subscribe for the following MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. Section 11.10.4.

• CRS RANGE REQUEST: A request to generate range reports for all targets to all vehicles within
range of the target.

• NODE REPORT: A report on a vehicle location and status.

• NODE REPORT LOCAL: A report on a vehicle location and status.

Command Line Usage of uFldContactRangeSensor

The uFldContactRangeSensor application is typically launched as a part of a batch of processes
by pAntler, but may also be launched from the command line by the user. To see command-line
options enter the following from the command-line:

$ uFldContactRangeSensor --help

This will show the output shown in Listing 116 below.

Listing 116 - Command line usage for the uFldContactRangeSensor tool.

1 Usage: uFldContactRangeSensor file.moos [OPTIONS]

2

3 Options:

4 --alias=<ProcessName>

319

5 Launch uFldContactRangeSensor with the given process

6 name rather than uFldContactRangeSensor.

7 --example, -e

8 Display example MOOS configuration block

9 --help, -h

10 Display this help message.

11 --version,-v

12 Display the release version of uFldContactRangeSensor.

30.5 Terminal and AppCast Output

The uFldContactRangeSensor application produces some useful information to the terminal and
identical content through appcasting. An example is shown in Listing 117 below. On line 2, the
name of the local community or vehicle name is listed on the left. On the right, "0/0(848) indicates
there are no configuration or run warnings, and the current iteration of uFldContactRangeSensor is
848. Lines 4-10 convey the prevailing configuration settings. They may reflect the default values
or values read from the configuration block like the one shown previously in Listing 115.

Listing 117 - Example uFldContactRangeSensor console or appcast output.

1 ===

2 uFldContactRangeSensor shoreside 0/0(848)

3 ===

4 Default Ping Wait: 30

5 Random Noise Algorithm: uniform

6 Random Noise Uniform Pct: 0.04

7 Gaussian Noise: 0

8 Ping Color: white

9 Echo Color: chartreuse

10 Ground Truth Reporting: true

11 Allow Echo Types: all types

12

13 Vehicles(3):

14 Node Ping Push Pull Pings Echos Too Too Echos

15 VName Reps Wait Dist Dist Gen’d Rec’d Freq Far Sent

16 ------ ---- ---- ---- ---- ----- ----- ---- --- -----

17 archie 411 32 190 100 11 5 6 0 0

18 betty 410 30 100 100 0 0 0 0 0

19 jackal 411 30 50 100 0 0 0 0 5

20

21 ===

22 Most Recent Events (8):

23 ===

24 [211.60]: ARCHIE <-- JACKAL

25 [211.60]: ARCHIE ----))

26 [181.40]: ARCHIE ----)) XXX too frequent. (4.03)

27 [177.37]: ARCHIE <-- JACKAL

28 [177.37]: ARCHIE ----))

29 [146.23]: ARCHIE ----)) XXX too frequent. (30.66)

30 [144.22]: ARCHIE ----)) XXX too frequent. (28.64)

31 [115.58]: ARCHIE <-- JACKAL

In the block of output beginning on line 13, the information is organized by vehicle name in each
row. The first two columns show the vehicle name and number of node reports received for that
vehicles.

The next three columns reflect configuration settings for particular vehicles. For example, the
Ping Wait time of 32 seconds reflects line 17 in Listing 115. The Push Dist value reflects line 16

320

in Listing 115. The last five columns reflect the results of pings generated by vehicles. THe Pings
Gen’d column shows how many CRS SENSOR REQUEST messages have been received by that vehicle.
The next column shows how many replies were sent back to the vehicle. The Too Freq and Too Far
columns explain why a ping may not have been replied. The Echos Sent column shows how many
echos were sent to others about that vehicle. In this snapshot, archie has receieved five ping echos
about the jackal vehicle.

The last block, lines 21-31 show the most recent events with their timestamps. Line 28 shows
an example where a ping was generated by archie, followed by a reply about jackal on line 27. Lines
like 26 indicate that a ping was rejected by the simulator as being too soon after the previous ping.

30.6 Interaction between uFldContactRangeSensor and pMarineViewer

The uFldContactRangeSensor application will post certain messages to the MOOSDB that may
be subscribed for by GUI based applications like pMarineViewer for visualizing the posting of
CRS RANGE REPORT and CRS RANGE REQUEST messages. A range pulse message conveys visually the
generation of a range report, or the receipt of a range request. The pulse is rendered as a ring with
a growing radius having the vehicle at the center. Range pulses are posted to the MOOS variable
VIEW RANGE PULSE with a form similar to:

VIEW_RANGE_PULSE = "x=-40,y=-150,radius=40,duration=15,fill=0.25,fill_color=green,

label=04,edge_color=green,time=3892830128.5,edge_size=1"

The x and y parameters convey the center of the pulse. The radius parameter indicates the radius
of the circle at its maximum. The duration parameter is the number of seconds the pulse will be
rendered. The pulse will grow its radius linearly from zero meters at zero seconds to radius meters
at duration seconds. The fill parameter is in the range [0, 1], where 0 is full transparency (clear)
and 1 is fully opaque. The pulse transparency increases linearly as the range ring is rendered.
The starting transparency at radius = 0 is given by the fill parameter. The transparency at the
maximum radius is zero. The fill color parameter specifies the color rendered to the internal part
of the range pulse. The choice of legal colors is described in Appendix B. The label is a string
that uniquely identifies the range instance to consumers like pMarineViewer. As with other objects
in pMarineViewer, if it receives an object the same label and type as one previously received, it will
replace the old object with the new one in its memory. The edge color parameter describes the
color of the ring rendered in the range pulse. The edge size likewise describes the line width of the
rendered ring. The time parameter indicates the UTC time at which the range pulse object was
generated.

One further note to developers of other apps perhaps wishing to also generate a range pulse for
viewing - the recommended manner to generate a range pulse string is to create an instance of the
XYRangePulse class using the defined class interface. The string should be obtained by invoking the
serialization method for that class. This will better ensure compatibility as the software evolves.
The class is defined in lib geometry in the MOOS-IvP tree.

30.7 The Hugo Example Mission Using uFldContactRangeSensor

The hugo mission is distributed with the MOOS-IvP source code and contains a ready example
of the uFldContactRangeSensor application. Assuming the reader has downloaded the source code

321

available at www.moos-ivp.org and built the code according to the discussion in Section 1.2.9, the
hugo mission may be launched by:

$ cd moos-ivp/ivp/missions/m8_hugo/

$./launch.sh 10

The argument, 10, in the line above will launch the simulation in 10x real time. Once this launches,
the pMarineViewer GUI application should launch and the mission may be initiated by hitting the
DEPLOY button. Two vehicles should be visibly moving, one surface vehicle labeled "archie" and
one UUV labeled "jackal", as shown in Figure 111.

Figure 111: The Hugo Example Mission: The Hugo example mission involves two simulated vehicles. The first
vehicle is a surface vehicle, archie, traversing a lawnmower shaped search pattern. The second vehicle, is a UUV,
jackal, traversing a polygon pattern overlapping the first pattern. Periodically archie emits a ping (range request).
This example contains three distinct MOOS communities - one for each simulated vehicle, and one for the shoreside
community running uFldContactRangeSensor.

The surface vehicle will traverse a survey pattern over the region shown in Figure 111, peri-
odically generating a range request (ping). With each range request, a white range pulse should
be visible around the vehicle. Almost immediately afterwards, a range report for each neighboring
vehicle within range is generated and a green range pulse around each “target” vehicle is rendered.
The snapshot in Figure 111 depicts a moment in time where the range request visual pulses are
around both vehicles. The larger pulse around the surface vehicle indicates it was generated just
prior to the reply pulse around the UUV.

322

How does the simulated vehicle generate a range request? In practice a user may implement
an intelligent module to reason about when to generate requests, but in this case the uTimerScript

application is used by creating a script that repeats endlessly, generating a range request once
every 25-35 seconds. The script is also conditioned on (NAV SPEED > 0), so the pinging doesn’t
start until the vehicle is deployed. The configuration for the script can be seen in the uTimerScript

configuration block in the shoreside.moos file. More on the uTimerScript application can be found
in the uTimerScript section in [1].

323

A Use of Logic Expressions

Logic conditions are employed in both the pHelmIvP and uTimerScript applications, to condition
certain activities based on the prescribed logic state of elements of the MOOSDB. The use of
logic conditions in the helm is done in behavior file (.bhv file). For the uTimerScript application,
logic conditions are used in the configuration block of the mission file (.moos file). The MOOS
application using logic conditions maintains a local buffer representing a snapshot of the MOOSDB
for variables involved in the logic expressions. The key relationships and steps are shown in Figure
112:

Figure 112: Logic conditions in a MOOS application: Step 1: the applications registers to the MOOSDB for
any MOOS variables involved in the logic expressions. Step 2: The MOOS application reads incoming mail from the
MOOSDB. Step 3: Any new mail results in an update to the information buffer. Step 4: Within the applications
Iterate() method, the logic expressions are evaluated based on the contents of the information buffer.

The logic conditions are configured as follows:

condition = <logic-expression>

The parameter condition is case insensitive. When multiple conditions are specified, it is implied
that the overall criteria for meeting conditions is the conjunction of all such conditions. In what
remains below, the allowable syntax for <logic-expression> is described.

Simple Relational Expressions

Each logic expression is comprised of either Boolean operators (and, or, not) or relation operators
(≤, <,≥, >,=, ! =). All expressions have at least one relational expression, where the left-hand
side of the expression is treated as a variable, and the right-hand side is a literal (either a string or
numerical value). The literals are treated as a string value if quoted, or if the value is non-numerical.
Some examples:

condition = (DEPLOY = true) // Example 1

condition = (QUALITY >= 75) // Example 2

Variable names are case sensitive since MOOS variables in general are case sensitive. In matching
string values of MOOS variables in Boolean conditions, the matching is case insensitive. If for
example, in Example 1 above, the MOOS variable DEPLOY had the value "TRUE", this would satisfy
the condition. But if the MOOS variable deploy (lowercase is unconventional, but legal) had the
value "true", this would not satisfy Example 1.

324

Simple Logical Expressions with Two MOOS Variables

A relational expression generally involves a variable and a literal, and the form is simplified by
insisting the variable is on the left and the literal on the right. A relational expression can also
involve the comparison of two variables by surrounding the right-hand side with $(). For example:

condition = (REQUESTED_STATE != $(RUN_STATE)) // Example 3

The variable types need to match or the expression will evaluate to false regardless of the relation.
The expression in Example 3 will evaluate to false if, for example, REQUESTED STATE="run" and
RUN STATE=7, simply because they are of different type, and regardless of the relation being the
inequality relation.

Complex Logic Expressions

Individual relational expressions can be combined with Boolean connectors into more complex
expressions. Each component of a Boolean expression must be surrounded by a pair of parentheses.
Some examples:

condition = (DEPLOY = true) or (QUALITY >= 75) // Example 4

condition = (MSG != error) and !((K <= 10) or (w != 0)) // Example 5

A relational expression such as (w != 0) above is false if the variable w is undefined. In MOOS,
this occurs if variable has yet to be published with a value by any MOOS client connected to the
MOOSDB. A relational expression is also false if the variable in the expression is the wrong type,
compared to the literal. For example (w != 0) in Example 5 would evaluate to false even if the
variable w had the string value "alpha" which is clearly not equal to zero.

325

B Colors

Below are the colors used by IvP utilities that use colors. Colors are case insensitive. A color may
be specified by the string as shown, or with the ’ ’ character as a separator. Or the color may be
specified with its hexadecimal or floating point form. For example the following are equivalent:
“darkblue”, “DarkBlue”, “dark blue”, “hex:00,00,8b”, and “0,0,0.545”. In the latter two styles,
the ’%’, ’$’, or ’#’ characters may also be used as a delimiter instead of the comma if it helps when
embedding the color specification in a larger string that uses its own delimeters. Mixed delimeters
are not supported however.

antiquewhite, (fa,eb,d7)
aqua (00,ff,ff)
aquamarine (7f,ff,d4)
azure (f0,ff,ff)
beige (f5,f5,dc)
bisque (ff,e4,c4)
black (00,00,00)
blanchedalmond(ff,eb,cd)
blue (00,00,ff)
blueviolet (8a,2b,e2)
brown (a5,2a,2a)
burlywood (de,b8,87)
cadetblue (5f,9e,a0)
chartreuse (7f,ff,00)
chocolate (d2,69,1e)
coral (ff,7f,50)
cornsilk (ff,f8,dc)
cornflowerblue(64,95,ed)
crimson (de,14,3c)
cyan (00,ff,ff)
darkblue (00,00,8b)
darkcyan (00,8b,8b)
darkgoldenrod (b8,86,0b)
darkgray (a9,a9,a9)
darkgreen (00,64,00)
darkkhaki (bd,b7,6b)
darkmagenta (8b,00,8b)
darkolivegreen(55,6b,2f)
darkorange (ff,8c,00)
darkorchid (99,32,cc)
darkred (8b,00,00)
darksalmon (e9,96,7a)
darkseagreen (8f,bc,8f)
darkslateblue (48,3d,8b)

darkslategray (2f,4f,4f)
darkturquoise (00,ce,d1)
darkviolet (94,00,d3)
deeppink (ff,14,93)
deepskyblue (00,bf,ff)
dimgray (69,69,69)
dodgerblue (1e,90,ff)
firenrick (b2,22,22)
floralwhite (ff,fa,f0)
forestgreen (22,8b,22)
fuchsia (ff,00,ff)
gainsboro (dc,dc,dc)
ghostwhite (f8,f8,ff)
gold (ff,d7,00)
goldenrod (da,a5,20)
gray (80,80,80)
green (00,80,00)
greenyellow (ad,ff,2f)
honeydew (f0,ff,f0)
hotpink (ff,69,b4)
indianred (cd,5c,5c)
indigo (4b,00,82)
ivory (ff,ff,f0)
khaki (f0,e6,8c)
lavender (e6,e6,fa)
lavenderblush (ff,f0,f5)
lawngreen (7c,fc,00)
lemonchiffon (ff,fa,cd)
lightblue (ad,d8,e6)
lightcoral (f0,80,80)
lightcyan (e0,ff,ff)
lightgoldenrod(fa,fa,d2)
lightgray (d3,d3,d3)
lightgreen (90,ee,90)

326

lightpink (ff,b6,c1)
lightsalmon (ff,a0,7a)
lightseagreen (20,b2,aa)
lightskyblue (87,ce,fa)
lightslategray(77,88,99)
lightsteelblue(b0,c4,de)
lightyellow (ff,ff,e0)
lime (00,ff,00)
limegreen (32,cd,32)
linen (fa,f0,e6)
magenta (ff,00,ff)
maroon (80,00,00)
mediumblue (00,00,cd)
mediumorchid (ba,55,d3)
mediumseagreen(3c,b3,71)
mediumslateblue(7b,68,ee)
mediumspringgreen(00,fa,9a)
mediumturquoise(48,d1,cc)
mediumvioletred(c7,15,85)
midnightblue (19,19,70)
mintcream (f5,ff,fa)
mistyrose (ff,e4,e1)
moccasin (ff,e4,b5)
navajowhite (ff,de,ad)
navy (00,00,80)
oldlace (fd,f5,e6)
olive (80,80,00)
olivedrab (6b,8e,23)
orange (ff,a5,00)
orangered (ff,45,00)
orchid (da,70,d6)
palegreen (98,fb,98)
paleturquoise (af,ee,ee)
palevioletred (db,70,93)
papayawhip (ff,ef,d5)
peachpuff (ff,da,b9)
pelegoldenrod (ee,e8,aa)
peru (cd,85,3f)
pink (ff,c0,cb)
plum (dd,a0,dd)
powderblue (b0,e0,e6)
purple (80,00,80)
red (ff,00,00)
rosybrown (bc,8f,8f)
royalblue (41,69,e1)

saddlebrowm (8b,45,13)
salmon (fa,80,72)
sandybrown (f4,a4,60)
seagreen (2e,8b,57)
seashell (ff,f5,ee)
sienna (a0,52,2d)
silver (c0,c0,c0)
skyblue (87,ce,eb)
slateblue (6a,5a,cd)
slategray (70,80,90)
snow (ff,fa,fa)
springgreen (00,ff,7f)
steelblue (46,82,b4)
tan (d2,b4,8c)
teal (00,80,80)
thistle (d8,bf,d8)
tomatao (ff,63,47)
turquoise (40,e0,d0)
violet (ee,82,ee)
wheat (f5,de,b3)
white (ff,ff,ff)
whitesmoke (f5,f5,f5)
yellow (ff,ff,00)
yellowgreen (9a,cd,32)

327

References

[1] Michael R. Benjamin. MOOS-IvP Autonomy Tools Users Manual Release 4.2.1. Technical
Report MIT-CSAIL-TR-201136, MIT Computer Science and Artificial Intelligence Lab, July
2011.

[2] Michael R. Benjamin, Paul M. Newman, Henrik Schmidt, and John J. Leonard. An Overview
of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software. Technical Report
MIT-CSAIL-TR-2009-028, MIT Computer Science and Artificial Intelligence Lab, June 2009.

[3] Mary M. Hunt, William M. Marquet, Donald A. Moller, Kenneth R. Peal, Woollcott K. Smith,
and Rober C. Spindel. An Acoustic Navigation System. Technical Report WHOI-74-6, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts, December 1974.

[4] P. A. Milne. Underwater Acoustic Positioning Systems. Gulf Publishing Co., Houston TX,
January 1983.

[5] Roger P. Sokey and Thomas C. Austin. Sequential Long-Baseline Navigation for REMUS,
an Autonomous Underwater Vehicle. Proceedings of SPIE, the Internation Society for Optical
Engineering, 3711:212–219a, 1999.

[6] Louis L. Whitcomb, Dana R. Yoerger, and Hanumant Singh. Combined Doppler/LBL Based
Navigation of Underwater Vehicles. In 11th International Symposium on Unmanned Untethered
Submersible Technology (UUST99), Durham, New Hampshire, August 1999.

328

Index

alog2rng, 312
alogclip, 18, 216

Command Line Usage, 216
Example Output, 217
Overview, 216

aloggrep, 18, 217, 218, 311
Command Line Usage, 217
Example Output, 218
Overview, 217

alogrm, 18, 218, 219
Command Line Usage, 218
Example Output, 219
Overview, 218

alogscan, 18, 213–215
Command Line Usage, 213
Example Output, 214
Overview, 213

alogview, 18, 220, 221
Command Line Usage, 221
Overview, 220
Vehicle Trajectories, 222

AppCasting, 26
pMarineViewer, 53

Behavior-Posts, 71
Buoyancy, 145, 180

Command and Control
uPokeDB, 192
uTermCommand, 208

Command Line Usage
alogclip, 216
aloggrep, 217
alogrm, 218
alogscan, 213
alogview, 221
pBasicContactMgr, 127
pHostInfo, 189
pNodeReporter, 84
pSearchGrid, 207
uFldBeaconRangeSensor, 302
uFldContactRangeSensor, 319

uFldHazardMetric, 295
uFldHazardMgr, 287
uFldHazardSensor, 276
uFldMessageHandler, 251
uFldNodeBroker, 228
uFldScope, 255
uFldShoreBroker, 238
uPokeDB, 192
uSimMarine, 140, 175
uXMS, 98

Comms Pulses
pMarineViewer, 46

Conditions, 324
Configuration Parameters

pBasicContactMgr, 125
pEchoVar, 196, 199
pHostInfo, 188, 189
pMarineViewer, 61
pNodeReporter, 82, 84, 86
pSearchGrid, 205, 207
uFldBeaconRangeSensor, 299
uFldContactRangeSensor, 317
uFldHazardMetric, 293
uFldHazardMgr, 283
uFldHazardSensor, 273
uFldMessageHandler, 249
uFldNodeBroker, 227
uFldNodeComms, 245
uFldPathCheck, 259
uFldScope, 254
uFldShoreBroker, 236
uHelmScope, 74
uMACView, 153
uPokeDB, 192
uProcessWatch, 135
uSimCurrent, 211
uSimMarine, 137, 140, 172, 175
uTermCommand, 208
uTimerScript, 112
uXMS, 93, 98

Contact Management, 119

329

Depth Simulation, 145, 180

Example Config Block
uTimerScript, 114

GPS, 115

iBatteryMonitor, 101
iCompass, 101
iGPS, 101
IvP Behavior Parameters

updates, 70
IvP Behaviors

Dynamic Configuration, 70
IvP Domain, 69

varbalk, 69
IvP Helm

Contact Management, 123

Logic Expressions, 324
logview, 220

MOOS
Acronym, 20
Background, 20
Documentation, 22
Operating Systems, 22
Source Code, 20
Sponsors, 20

MOOSDB, 46, 57, 66, 68, 73, 330
Mouse

Mouse Poke Configuration, 58
Mouse Pokes in pMarineViewer, 58

pAntler, 129, 168, 210, 228, 255
pBasicContactMgr, 17, 119–121, 123–127, 132

Command Line Usage, 127
Configuration Parameters, 125
Coordination with the IvP Helm, 123
Publications and Subscriptions, 126

pEchoVar, 17, 196, 198–201
Configuration Parameters, 196, 199
Configuring Echo Event Mappings, 196
Publications and Subscriptions, 200
Variable Flipping, 196

pHelmIvP, 66, 68, 77–79, 84, 92, 324
pHostInfo, 18, 187–190, 226, 230, 231, 236

Command Line Usage, 189
Configuration Parameters, 188, 189
Publications and Subscriptions, 188

pLogger, 18, 41, 42, 221, 311, 312
pMarinePID, 137, 151, 172, 186
pMarineViewer, 16, 17, 33–38, 40–48, 51–56,

58, 59, 61, 65–67, 69, 77, 79, 81, 92,
93, 100, 101, 120, 121, 130, 152, 158,
203, 205, 209, 244, 269, 270, 278, 288,
289, 297, 304, 309–311, 321, 322

Actions, 56
Background Images, 40
Configuration Parameters, 61
Drop Points, 48
Full-Screen Mode, 42
Geometric Objects, 43
Hash Marks, 42
Image Shifting To Vehicles, 52
Markers, 45
Panning and Zooming, 39
Poking the MOOSDB, 56, 58
Publications and Subscriptions, 66
Pull-Down Menu (Action), 56
Pull-Down Menu (AppCasting), 53
Pull-Down Menu (BackView), 39
Pull-Down Menu (GeoAttributes), 42
Pull-Down Menu (MouseContext), 58
Pull-Down Menu (ReferencePoint), 59
Pull-Down Menu (Scope), 56
Pull-Down Menu (Vehicles), 50
Range Pulses, 46, 47
Stale Vehicles, 51
Vehicle Colors, 52
Vehicle Name Mode, 50
Vehicle Shapes, 51
Vehicle Trails, 52

pMOOSShare, 232, 235
pNodeReporter, 17, 77–86, 207, 240, 248, 259,

282, 306
Command Line Usage, 84
Configuration Parameters, 82, 84, 86
Publications and Subscriptions, 83

pSearchGrid, 17, 203–207
Command Line Usage, 207
Configuration Parameters, 205, 207

330

Publications and Subscriptions, 206
pShare, 24, 78, 130, 189, 226–228, 230–233,

236–238, 242, 249, 263, 269, 275, 282,
283, 290, 299, 301, 313–315

Publications
uFldContactRangeSensor, 319

Publications and Subscriptions
pBasicContactMgr, 126
pEchoVar, 200
pHostInfo, 188
pMarineViewer, 66
pNodeReporter, 83
pSearchGrid, 206
uFldBeaconRangeSensor, 301
uFldContactRangeSensor, 319
uFldHazardMetric, 294
uFldHazardMgr, 286
uFldHazardSensor, 275
uFldMessageHandler, 250
uFldNodeBroker, 228
uFldNodeComms, 247
uFldPathCheck, 259
uFldScope, 254
uFldShoreBroker, 237
uHelmScope, 75
uPokeDB, 194
uProcessWatch, 136
uSimCurrent, 211
uSimMarine, 139, 174
uTermCommand, 210
uTimerScript, 113
uXMS, 102

Range Pulses
pMarineViewer, 47

Scoping the MOOSDB
uHelmScope, 70

Source Code
Building, 21
Obtaining, 20

Stale Vehicles
pMarineViewer, 51

Staleness
uFldNodeComms, 240

Start Delay

uTimerScript, 110

Thrust Map, 149, 184
Time Warp

uTimerScript, 109

uFldBeaconRangeSensor, 19, 25, 47, 298, 299,
301–307, 309–312

Command Line Usage, 302
Configuration Parameters, 299
Publications and Subscriptions, 301

uFldContactRangeSensor, 19, 25, 47, 313–317,
319–321

Command Line Usage, 319
Configuration Parameters, 317
Publications, 319
Publications and Subscriptions, 319

uFldHazardMetric, 19, 263, 289–296
Command Line Usage, 295
Configuration Parameters, 293
Publications and Subscriptions, 294

uFldHazardMgr, 19, 281–288, 290, 297
Command Line Usage, 287
Configuration Parameters, 283
Publications and Subscriptions, 286

uFldHazardSensor, 19, 261–270, 272, 273, 275–
278, 282–286, 290

Command Line Usage, 276
Configuration Parameters, 273
Publications and Subscriptions, 275

uFldMessageHandler, 19, 249–252
Command Line Usage, 251
Configuration Parameters, 249
Publications and Subscriptions, 250

uFldMessageHandler—hyperpage, 249
uFldNodeBroker, 18, 24, 226–229, 231, 238,

283, 290, 314
Command Line Usage, 228
Configuration Parameters, 227
Publications and Subscriptions, 228

uFldNodeComms, 19, 25, 46, 47, 239, 240,
242–245, 247–249

Asymetric Intervehicle Message Arrival,
241

Configuration Parameters, 245
CriticalRange, 240

331

Enhanced Stealth, 241
Handling Node Reports, 240
Maximum Message Length, 243
Message Handling, 242
Minimum Message Length, 243
Publications and Subscriptions, 247
Routing Criteria, 242
Staleness, 240
Transmissin with pShare, 242

uFldPathCheck, 19, 258–260
Configuration Parameters, 259
Publications and Subscriptions, 259

uFldScope, 19, 24, 253–257
Command Line Usage, 255
Configuration Parameters, 254
Publications and Subscriptions, 254

uFldShoreBroker, 18, 24, 226, 228, 231–238,
242, 269, 283, 290, 291, 315

Command Line Usage, 238
Configuration Parameters, 236
Publications and Subscriptions, 237

uFldTimerScript, 111
uHelmScope, 16, 68–75, 134

Configuration Parameters, 74
IvP Domain, 69
Publications and Subscriptions, 75
Scoping the MOOSDB, 70
User Input, 71

uHelmScope N, 73
uMAC, 16, 17, 53, 69, 100, 101, 154–157
uMAC 5991, 156
uMACView, 16, 17, 53, 69, 101, 152–158

Configuration Parameters, 153
uMacView, 157
uMOOSPoke, 192
uMS, 130, 192
uPokeDB, 17, 98, 134, 192–194

Command Line Usage, 192
Publications and Subscriptions, 194

uProcessWatch, 16, 92, 102, 107, 129–136, 157
Configuration Parameters, 135
Publications and Subscriptions, 136

uProcWatchSummary, 133
uSimCurrent, 17, 211, 212

Configuration Parameters, 211

Publications and Subscriptions, 211
uSimMarine, 17, 117, 137, 139–143, 145, 147–

151, 172, 174–178, 180, 182–186, 199,
211, 212

Command Line Usage, 140, 175
Configuration Parameters, 137, 140, 172,

175
Depth Simulation, 145, 180
Initial Vehicle Position and Pose, 141, 176
Propagating Vehicle Altitude, 146, 181
Propagating Vehicle Position and Pose,

141, 176
Publications and Subscriptions, 139, 174
Resetting, 141, 176
Thrust Map, 149, 184

uTermCommand, 18, 192, 208–210
Command and Control, 208
Configuration Parameters, 208
Publications and Subscriptions, 210

uTimerScript, 18, 104–116, 133, 141, 148, 176,
183, 192, 311, 312, 322–324

Arithmetic Expressions, 109
Atomic Scripts, 107
Conditional Pausing, 107
Configuration Parameters, 107, 112
Configuring the Event List, 104
Example Config Block, 114
Exiting, 107
Fast Forwarding in Time, 107
Jumping To the Next Event, 107
Logic Conditions, 107
Macros, 108, 116, 118
Macros Built-In, 108
Pausing the Script, 106
Pausing the Script with Conditions, 107
Publications and Subscriptions, 113
Quitting, 107
Random Variables, 108
Resetting, 105, 116, 118
Restart Delays, 110
Script Flow Control, 106, 107
Simulated GPS Unit, 115
Simulated Random Wind Gusts, 117
Simulated Range Requests, 311, 322
Start Delay, 110, 116, 118

332

Start Delays, 110
Status Messages, 110
Time Warp, 109

uTimerScript—hyperpage, 107
uXMS, 16, 70, 87–93, 95–102, 130, 134

Command Line Usage, 98
Configuration Parameters, 93, 98
Console Interaction, 99
Publications and Subscriptions, 102

varbalk
uHelmScope, 69

Virgin Variables, 71

Wind, 117

333

Index of MOOS Variables

DESIRED HEADING, 90
MVIEWER LCLICK, 58
MVIEWER RCLICK, 58
PROC WATCH EVENT, 129
PROC WATCH SUMMARY, 129
TRAIL RESET, 53
APPCAST REQ <COMMUNITY>, 66
APPCAST REQ, 54, 66, 67, 75, 84, 102, 114, 127,

136, 140, 153, 155, 157, 169, 175, 189,
200, 207, 228, 238, 247, 251, 255, 259,
276, 286, 294, 302, 319

APPCAST, 66, 67, 75, 84, 102, 113, 126, 136,
139, 153, 155–157, 174, 188, 200, 206,
228, 237, 247, 250, 254, 259, 275, 286,
294, 301, 319

BCM DISPLAY RADII, 121, 127
BCM OK, 132
BHV WARNING, 69
BRS RANGE REPORT GT, 307
BRS RANGE REPORT NAMEJ, 301
BRS RANGE REPORT, 298, 301, 304, 306, 307, 309,

312
BRS RANGE REQUEST, 298, 302, 304, 309
BUOYANCY RATE, 146, 181
BUOYANCY REPORT, 139, 174
CONTACTS ALERTED, 122, 126
CONTACTS LIST, 122, 126
CONTACTS RECAP, 122, 126
CONTACTS RETIRED, 122, 126
CONTACTS UNALERTED, 122, 126
CONTACT MGR WARNING, 126
CONTACT RESOLVED, 123, 127
CRS RANGE REPORT GT, 317
CRS RANGE REPORT NAMEJ, 319
CRS RANGE REPORT, 313, 317, 319, 321
CRS RANGE REQUEST, 313–316, 319, 321
CRS SENSOR REQUEST, 321
DB CLIENTS, 16, 91, 100, 102, 129, 131, 132,

134–136
DB UPTIME, 102, 108

DESIRED ELEVATOR, 137, 140, 141, 145, 172, 175,
176, 180

DESIRED HEADING, 90, 92, 334
DESIRED RUDDER, 137, 140–143, 172, 175–178
DESIRED THRUST, 137, 140–143, 172, 175–178
DRIFT VECTOR ADD, 140, 147, 148, 175, 182, 183
DRIFT VECTOR MULT, 140, 147, 175, 182
DRIFT VECTOR, 140, 147, 175, 182, 211, 212
DRIFT X, 140, 147, 175, 182, 211
DRIFT Y, 140, 147, 175, 182, 211
EXITED NORMALLY, 107, 113, 114, 133, 136
GPS RECEIVED, 115
GPS UPDATE RECEIVED, 116, 117
HAZARDSET EVAL <VNAME>, 294
HAZARDSET EVAL FULL, 293, 294
HAZARDSET EVAL, 292, 294
HAZARDSET REPORT EVAL, 290
HAZARDSET REPORT, 282, 283, 286, 290, 291, 294
HAZARDSET REQUEST, 282, 285, 286, 297
HAZARD SEARCH START, 292, 294, 296
HELM MAP CLEAR, 66
HOST INFO REQUEST, 188, 189
IVPHELM ALLSTOP, 84
IVPHELM DOMAIN, 73, 76
IVPHELM LIFE EVENT, 73, 75
IVPHELM MODESET, 73, 76
IVPHELM REJOURNAL, 73, 75
IVPHELM STATEVARS, 70, 73, 74, 76
IVPHELM STATE, 73, 76, 78, 79, 84
IVPHELM SUMMARY, 73, 75, 78, 79, 84
IVP DOMAIN, 74
MAX ACCELERATION, 142, 177
MAX DECELERATION, 142, 177
MVIEWER LCLICK, 58, 59, 66, 334
MVIEWER RCLICK, 58, 59, 66, 334
NAV DEPTH, 84, 115–117, 137, 172
NAV GT X, 80
NAV GT Y, 80
NAV HEADING, 84, 117, 127, 137, 172
NAV LAT, 84
NAV LONG, 84

334

NAV SPEED, 78, 84, 117, 127, 137, 142, 172, 177
NAV X, 80, 84, 115, 117, 127, 137, 172, 212
NAV YAW, 84
NAV Y, 80, 84, 115, 117, 127, 137, 172, 212
NODE BROKER ACK, 226, 228, 230, 232, 238
NODE BROKER PING, 226, 228, 231, 236, 238
NODE MESSAGE <VNAME>, 247
NODE MESSAGE, 240, 242, 247, 249–251
NODE REPORT <VNAME>, 247
NODE REPORT LOCAL, 67, 77, 78, 80, 82, 84, 207,

248, 259, 276, 302, 319
NODE REPORT, 34, 67, 77, 78, 119, 127, 207, 240,

242, 248, 253, 256, 259, 270, 276, 302,
308, 315, 319

PHI HOST INFO, 228, 230, 238
PHI HOST IP ALL, 189
PHI HOST IP VERBOSE, 189
PHI HOST IP, 187, 189, 190
PHI HOST PORT DB, 189
PHI HOST PORT INFO, 189
PLATFORM REPORT LOCAL, 82, 84, 85
PLATFORM REPORT, 77, 84
PLAT REPORT SUMMARY, 85
PLOGGER CMD, 41, 66
PMB REGISTER, 237
PROC WATCH EVENT, 130, 132, 133, 136, 334
PROC WATCH FULL SUMMARY, 132, 133, 136
PROC WATCH SUMMARY, 16, 92, 102, 129, 130, 132–

136, 334
PROC WATCH SUMMRY, 130
PSG GRID RESET, 205, 207
PSHARE CMD, 228, 230
PSHARE INPUT SUMMARY, 189
RANGE REPORT, 313
RANGE REQUEST, 306
ROTATE SPEED, 140, 144, 175, 179
SYSTEM LENGTH, 79
TRAIL RESET, 53, 67, 334
TRIM REPORT, 139, 174
UHZ CONFIG ACK ARCHIE, 269
UHZ CONFIG ACK, 263, 275, 282, 286
UHZ CONFIG REQUEST, 263, 265, 267, 282, 284,

286
UHZ DETECTION REPORT, 282, 285, 286
UHZ HAZARD REPORT NAMEJ, 275

UHZ HAZARD REPORT, 261–263, 275
UHZ OPTIONS SUMMARY, 269, 275
UHZ SENSOR CONFIG, 276
UHZ SENSOR REQUEST, 262, 263, 276, 282, 285,

286
UMH SUMMARY MSGS, 251
UNC EARANGE, 242, 248
UNC STEALTH, 241, 248
UNC VIEW NODE RPT PULSES, 248
UPC ODOMETRY REPORT, 259
UPC SPEED REPORT, 259
UPC TRIP RESET, 259
USC CFIELD SUMMARY, 212
USER-DEFINED, 103
USM ALTITUDE, 139, 146, 174, 181
USM BUOYANCY RATE, 140, 175
USM CURRENT FIELD, 140, 175
USM DEPTH, 139, 140, 174, 175
USM DRIFT SUMMARY, 139, 140, 174, 175
USM DRIFT VECTOR ADD, 117
USM DRIFT VECTOR MULT, 147, 182
USM DRIFT VECTOR, 117
USM HEADING OVER GROUND, 140, 175
USM HEADING, 139, 140, 144, 174, 175, 179
USM LAT, 140, 175
USM LONG, 140, 175
USM RESET COUNT, 140, 175
USM RESET, 140, 141, 175, 176
USM SIM PAUSED, 140, 175
USM SPEED OVER GROUND, 140, 175
USM SPEED, 140, 143, 175, 178
USM WATER DEPTH, 146, 181
USM X, 140, 175
USM YAW, 140, 175
USM Y, 140, 175
UTS FORWARD, 107, 112, 114
UTS NEXT, 114
UTS PAUSE, 106, 107, 113, 114
UTS RESET, 105, 113, 114
UTS STATUS, 110, 111, 113
VIEW CIRCLE, 67, 120, 127, 270, 275
VIEW COMMS PULSE, 46, 67, 243, 244, 247
VIEW GRID CONFIG, 67
VIEW GRID DELTA, 67
VIEW GRID, 67, 205, 206

335

VIEW MARKER, 45, 46, 63, 67, 275, 301, 304, 309,
311

VIEW POINT, 67
VIEW POLYGON, 67, 269, 275
VIEW RANGE PULSE, 47, 67, 301, 310, 312, 314,

319, 321
VIEW SEGLIST, 44, 67
VIEW VECTOR, 67, 212
WATER DEPTH, 140, 175

336

Index of Configuration Parameters: All MOOS Apps

AppTick, 199
LatOrigin, 123
LongOrigin, 123
MOOSTimeWarp, 233
action+, 57
action, 57, 66
alert cpa range, 122
alert, 120, 125
allow echo types, 317
allow retractions, 135
alt nav name, 80, 82
alt nav prefix, 80, 82
app tick, 80
appcast color scheme, 55, 65, 153
appcast font size, 55, 65, 153
appcast height, 54, 65, 153
appcast viewable, 35, 37, 53, 65
appcast width, 54, 65
apptick, 85, 145, 180
back shade, 61
beacon, 299, 304
bearing lines viewable, 64
behaviors concise, 74
blackout interval, 81, 82
blackout variance, 81, 82
bridge, 227, 230, 236
buoyancy rate, 137, 145, 146, 172, 180, 181
button four, 66
button one, 39, 66
button three, 66
button two, 66
center view, 52, 64
circle viewable all, 62
circle viewable labels, 62
cmd, 208
colormap, 93, 94
comms pulse viewable all, 62
comms range, 240, 246
comss range, 240
condition, 107, 112, 198, 199, 324
contact local coords, 123, 125

contact max age, 122, 125
content mode, 93, 95
critical range, 240–242, 246
cross fill policy, 80, 82
current field active, 137, 172, 211
current field, 137, 172, 211
datum color, 62
datum size, 62
datum viewable, 62
debug, 246
default alert range, 120, 125
default beacon color, 300
default beacon freq, 300
default beacon report range, 300
default beacon shape, 300
default beacon width, 300
default benign color, 273
default benign shape, 273
default benign width, 273
default cpa range color, 125
default cpa range, 125
default hazard color, 273
default hazard shape, 273
default hazard width, 273
default hostip force, 188
default hostip, 188
default water depth, 138, 146, 173, 181
delay reset, 110, 112
delay restart, 118
delay start, 110, 112, 117
dipplay virgins, 96
display*, 95
display all, 93, 95
display aux source, 93, 95
display bhv posts, 74
display community, 93
display empty strings, 89
display history var, 91, 93, 96
display moos scope, 74
display radii, 121, 125
display source, 93, 99

337

display time, 93
display virgins, 74, 89, 93
drift vector, 138, 147, 173, 182
drift x, 138, 147, 173, 182
drift y, 138, 147, 173, 182
drop point coords, 49, 62
drop point vertex size, 63
drop point viewable all, 49, 62
earange, 241, 242, 246
echo latest only, 199, 201
echo, 196, 199, 200
event, 104, 105, 107, 108, 112, 113
flip, 197, 200
forward var, 107, 112
full screen, 37, 42, 61
grid config:, 205
grid config, 204
grid viewable all, 63
grid viewable labels, 63
grid viewable opaqueness, 63
ground true, 317
ground truth, 300, 315
groups, 240, 246
hash delta, 61
hash shade, 42, 61
hash viewable, 42, 62
hazard file, 273, 293
history var, 91, 93, 96
history, 259
hold messages, 198, 200, 201
keyword, 227
layout:, 254
lclick ix start, 59, 66
left context, 58, 66
log the image, 41, 62, 66
marker edge width, 63
marker scale, 63
marker viewable all, 63
marker viewable labels, 63
marker, 63
max acceleration, 138, 173
max deceleration, 138, 173
max depth rate speed, 138, 145, 146, 173, 180,

181
max depth rate, 138, 145, 146, 173, 180, 181

max msg length, 243, 246
max time, 291, 293
max turn rate, 273
min acceleration, 142, 177
min msg interval, 246
node report output, 78, 82
nodes font size, 55, 65, 153
nohelm threshold, 79, 82
nowatch, 131, 134, 135
nowatcth, 157
oparea viewable all, 63
oparea viewable labels, 63
oparea, 66
options summary interval, 269, 274
pause var, 106, 113
paused, 74, 106, 113
pd, 284
penalty false alarm, 293
penalty max time overage, 291, 293
penalty max time over, 291, 293
penalty missed hazard, 293
ping color, 317
ping payments, 300, 307
ping wait, 300, 317
plat report input, 82
plat report output, 82
platform length src, 79
platform length, 82
platform type, 82
point viewable all, 63
point viewable labels, 63
polygon viewable all, 63
polygon viewable labels, 63
post mapping, 135, 136
prefix, 138, 173, 199
procs font size, 55, 65, 153
qbridge, 234–236
rand var, 108, 113
range pulse viewable all, 63
rclick ix start, 59, 66
reach distance, 300, 317
refresh mode, 55, 65, 88, 94, 96, 153
reply color, 318
reply distance = 100, 316
reply distance, 318

338

report vars, 300, 315, 318
reset max, 105, 113, 117, 118
reset time, 105, 113, 117, 118
reset var, 105, 113
right context, 58, 66
rn algorithm, 300, 318
rn uniform pct, 307
rotate speed, 138, 144, 173, 179
scope:, 254
scope, 56, 66, 255
script atomic, 107, 113
script name, 111, 113
seed random, 274
seglist viewable all, 63
seglist viewable labels, 63
sensor config, 274, 277
sensor pd, 284
show hazards, 274
show reports, 274
show swath, 274
shuffle, 105, 113
sim pause, 138, 173
source, 94, 96, 103
stale nodraw thresh, 51, 64
stale report thresh, 51, 64
stale time, 240, 246
stale vehicles viewable, 51, 64
start depth, 138, 141, 173, 176
start heading, 138, 141, 173, 176
start pos, 138, 141, 173, 176
start speed, 138, 141, 173, 176
start x, 138, 141, 173, 176
start y, 138, 141, 173, 176
status var, 110, 113
stealth, 241, 246
strict addressing, 250
summary wait, 133, 135
swath length, 274
swath transparency, 274
swath width, 284
temp file dir, 188, 190
term report interval, 88, 94, 97
thrust factor, 138, 173
thrust map, 138, 149, 151, 173, 184, 186
thrust reflect, 138, 150, 151, 173, 185, 186

tiff file b, 62
tiff file, 62
tiff type, 62
tiff viewable, 62
time warp, 113, 118
trail color, 52
trails color, 64
trails connect viewable, 53, 64
trails length, 53, 64
trails point size, 52, 64
trails viewable, 52, 64
trunc data, 94, 97
try shore host, 227
tuncated output, 74
turn loss, 138, 142, 173, 177
turn rate, 138, 173
upon awake, 106, 113
var, 74, 94, 97, 103
vector viewable all, 63
vector viewable labels, 63
vehicles active color, 64
vehicles inactive color, 64
vehicles name color, 51, 65
vehicles name mode, 65
vehicles shape scale, 64
vehicles viewable, 65
verbose, 113, 246, 250, 274, 300
view center, 62
view node report pulses, 47
view node rpt pulses, 246
watch all, 131, 135
watch, 131, 135, 136

339

	Introduction
	Overview of the MOOS-IvP Project and MOOS-IvP Tools
	Module Overview
	Mission Monitoring Modules
	Mission Execution Modules
	Mission Simulation Modules
	Modules for Poking the MOOSDB
	The Alog Toolbox
	The uField Toolbox
	Brief Background of MOOS-IvP
	Sponsors of MOOS-IvP
	The Software
	Building and Running the Software
	Operating Systems Supported by MOOS and IvP
	Where to Get Further Information

	The uField Toolbox
	Motivations for the uField Toolbox
	Introduction to AppCasting
	Motivation For AppCasting
	MOOS Applications and Terminal Output
	Viewing AppCasts and Navigating AppCast Collections
	The AppCast Data Structure
	A Preview of AppCast Viewing Utilities

	pMarineViewer: A GUI for Mission Monitoring and Control
	Overview
	The Shoreside-Vehicle Topology
	Description of the pMarineViewer GUI Interface
	The AppCasting, FullScreen and Traditional Display Modes
	Run-Time and Mission Configuration
	Command-and-Control

	The BackView Pull-Down Menu
	Panning and Zooming
	Background Images
	Local Grid Hash Marks
	Full-Screen Mode

	The GeoAttributes Pull-Down Menu
	Polygons, SegLists, Points, Circles and Vectors
	Markers
	Comms Pulses
	Range Pulses
	Drop Points

	The Vehicles Pull-Down Menu
	The Vehicle Name Mode
	Dealing with Stale Vehicles
	Supported Vehicle Shapes
	Vehicle Colors
	Centering the Image According to Vehicle Positions
	Vehicle Trails

	The AppCast Pull-Down Menu
	Turning On and Off AppCast Viewing
	Adjusting the AppCast Viewing Panes Height and Width
	Adjusting the AppCast Refresh Mode
	Adjusting the AppCast Fonts
	Adjusting the AppCast Color Scheme

	The MOOS-Scope Pull-Down Menu
	The Action Pull-Down Menu
	The Mouse-Context Pull-Down Menu
	Generic Poking of the MOOSDB with the Operation Area Position
	Custom Poking of the MOOSDB with the Operation Area Position

	The Reference-Point Pull-Down Menu
	Configuration Parameters for pMarineViewer
	Configuration Parameters for the BackView Menu
	Configuration Parameters for the GeoAttributes Menu
	Configuration Parameters for the Vehicles Menu
	Configuration Parameters for the AppCast Menu
	Configuration Parameters for the Scope, MouseContext and Action Menus

	Publications and Subscriptions for pMarineViewer
	Variables Published by pMarineViewer
	Variables Subscribed for by pMarineViewer

	uHelmScope: Scoping on the IvP Helm
	Overview
	The Helm Summary Section of the uHelmScope Output
	The Helm Status (Lines 1-8)
	The Helm Decision (Lines 9-11)
	The Helm Behavior Summary (Lines 12-17)

	The MOOSDB-Scope Section of the uHelmScope Output
	The Behavior-Posts Section of the uHelmScope Output
	Console Key Mapping and Command Line Usage
	Helm-Produced Variables Used by uHelmScope
	Configuration Parameters for uHelmScope
	Publications and Subscriptions for uHelmScope
	Variables Published by uHelmScope
	Variables Subscribed for by uHelmScope

	pNodeReporter: Summarizing a Node's Position and Status
	Overview
	Using pNodeReporter
	Overview Node Report Components
	Helm Characteristics
	Platform Characteristics
	Dealing with Local versus Global Coordinates
	Processing Alternate Navigation Solutions

	The Optional Blackout Interval Option
	Configuration Parameters for pNodeReporter
	Publications and Subscriptions for pNodeReporter
	Variables Published by pNodeReporter
	Variables Subscribed for by pNodeReporter
	Command Line Usage of pNodeReporter

	The Optional Platform Report Feature
	An Example Platform Report Configuration Block for pNodeReporter

	uXMS: Scoping the MOOSDB from the Console
	Overview
	The uXMS Refresh Modes
	The Streaming Refresh Mode
	The Events Refresh Mode
	The Paused Refresh Mode

	The uXMS Content Modes
	The Scoping Content Mode
	The History Content Mode
	The Processes Content Mode

	Configuration File Parameters for uXMS
	The colormapparams]colormap Configuration Parameter
	The content_modeparams]content_mode Configuration Parameter
	The display*params]display* Configuration Parameters
	The history_varparams]history_var Configuration Parameter
	The refresh_modeparams]refresh_mode Configuration Parameter
	The sourceparams]source Configuration Parameter
	The term_report_intervalparams]term_report_interval Configuration Parameter
	The trunc_dataparams]trunc_data Configuration Parameter
	The varparams]var Configuration Parameter

	Command Line Usage of uXMS
	Console Interaction with uXMS at Run Time
	Running uXMS Locally or Remotely
	Connecting multiple uXMS processes to a single MOOSDB
	Using uXMS with Appcasting
	Publications and Subscriptions for uXMS
	Variables Published by uXMS
	Variables Subscribed for by uXMS

	uTimerScript: Scripting Events to the MOOSDB
	Overview
	Using uTimerScript
	Configuring the Event List
	Setting the Event Time or Range of Event Times
	Resetting the Script

	Script Flow Control
	Pausing the Timer Script
	Conditional Pausing of the Timer Script and Atomic Scripts
	Fast-Forwarding the Timer Script
	Quitting the Timer Script

	Macro Usage in Event Postings
	Built-In Macros Available
	User Configured Macros with Random Variables
	Support for Simple Arithmetic Expressions with Macros

	Time Warps, Random Time Warps, and Restart Delays
	Random Time Warping
	Random Initial Start and Reset Delays
	Status Messages Posted to the MOOSDB by uTimerScript

	Terminal and AppCast Output
	Configuration File Parameters for uTimerScript
	Publications and Subscriptions for uTimerScript
	Variables Published by uTimerScript
	Variables Subscribed for by uTimerScript
	An Example MOOS Configuration Block

	Examples
	A Script Used as Proxy for an On-Board GPS Unit
	A Script as a Proxy for Simulating Random Wind Gusts

	pBasicContactMgr: Managing Platform Contacts
	Overview
	Using pBasicContactMgr
	Contact Alert Messages
	Contact Alert Triggers
	Contact Alert Record Keeping
	Contact Resolution

	Deferring to Earth Coordinates over Local Coordinates
	Usage of the pBasicContactMgr with the IvP Helm
	Terminal and AppCast Output
	Configuration Parameters for pBasicContactMgr
	An Example MOOS Configuration Block

	Publications and Subscriptions for pBasicContactMgr
	Variables Published by pBasicContactMgr
	Variables Subscribed for by pBasicContactMgr
	Command Line Usage of pBasicContactMgr

	uProcessWatch: Monitoring MOOS Application Health
	Overview
	Typical uProcessWatch Usage Scenarios
	Using uProcessWatch with AppCasting and pMarineViewer
	Directly Accessing the PROC_WATCH_SUMMARYvars]PROC_WATCH_SUMMARY Output

	Using and Configuring the uProcessWatch Utility
	The DB_CLIENTSvars]DB_CLIENTS Variable for Detecting Missing Processes
	Defining the Watch List
	Reports Generated
	Watching and Reporting on a Single MOOS Process
	A Heartbeat for the Watch Dog
	Excusing a Process
	Allowing Retractions if a Process Reappears

	Configuration Parameters of uProcessWatch
	Publications and Subscriptions for uProcessWatch
	Variables Published by uProcessWatch
	MOOS Variables Subscribed for by uProcessWatch

	uSimMarine: Basic Vehicle Simulation
	Configuration Parameters for uSimMarine
	Publications and Subscriptions for uSimMarine
	Variables Published by uSimMarine
	Variables Subscribed for by uSimMarine
	Command Line Usage of uSimMarine

	Setting the Initial Vehicle Position, Pose and Trajectory
	Propagating the Vehicle Speed, Heading, Position and Depth
	Propagating the Vehicle Speed
	Propagating the Vehicle Heading
	Propagating the Vehicle Position
	Propagating the Vehicle Depth

	Propagating the Vehicle Altitude
	Simulation of External Drift
	External X-Y Drift from Initial Simulator Configuration
	External X-Y Drift Received from Other MOOS Applications

	The ThrustMap Data Structure
	Automatic Pruning of Invalid Configuration Pairs
	Automatic Inclusion of Implied Configuration Pairs
	A Shortcut for Specifying the Negative Thrust Mapping
	The Inverse Mapping - From Speed To Thrust
	Default Behavior of an Empty or Unspecified ThrustMap

	The uMAC Utilities
	The uMACView Utility
	Publications and Subscriptions
	Configuration File Parameters
	Command Line Arguments and Options
	Refresh Modes

	The uMAC Utility
	Content Modes
	Refresh Modes
	A Tip Regarding Process Monitoring and uMAC Sessions
	Publications and Subscriptions
	Configuration File Parameters
	Command Line Arguments and Options

	The uMACView Utility Integrated with pMarineViewer

	Enabling a MOOS Application for AppCasting
	Sub-classing the AppCastingMOOSApp Superclass
	Invoking Superclass Methods in the Iterate() Method
	Invoking a Superclass Method in the OnNewMail() Method
	Invoking a Superclass Method in the OnStartUp() Method
	Invoking a Superclass Method When Registering for Variables
	Implementing a buildReport Method for Generating AppCasts
	Posting Events
	Posting Run Warnings
	Posting Configuration Warnings
	Under The Hood - On-Demand AppCasting
	Motivation
	AppCast Generation Criteria
	Terminal Switching
	AppCast Requests
	Limiting the AppCast Frequency
	Generating and AppCast vs. Publishing and AppCast
	Monitoring AppCast Traffic Volume

	uSimMarine: Basic Vehicle Simulation
	Configuration Parameters for uSimMarine
	Publications and Subscriptions for uSimMarine
	Variables Published by uSimMarine
	Variables Subscribed for by uSimMarine
	Command Line Usage of uSimMarine

	Setting the Initial Vehicle Position, Pose and Trajectory
	Propagating the Vehicle Speed, Heading, Position and Depth
	Propagating the Vehicle Speed
	Propagating the Vehicle Heading
	Propagating the Vehicle Position
	Propagating the Vehicle Depth

	Propagating the Vehicle Altitude
	Simulation of External Drift
	External X-Y Drift from Initial Simulator Configuration
	External X-Y Drift Received from Other MOOS Applications

	The ThrustMap Data Structure
	Automatic Pruning of Invalid Configuration Pairs
	Automatic Inclusion of Implied Configuration Pairs
	A Shortcut for Specifying the Negative Thrust Mapping
	The Inverse Mapping - From Speed To Thrust
	Default Behavior of an Empty or Unspecified ThrustMap

	pHostInfo: Detecting and Sharing Host Info
	Configuration Parameters for pHostInfo
	Publications and Subscriptions for pHostInfo
	Variables Published by pHostInfo
	Variables Subscribed for by pHostInfo
	Command Line Usage of pHostInfo

	Usage Scenarios the pHostInfo Utility
	Handling Multiple IP Addresses

	A Peek Under the Hood
	Temporary Files
	Possible Gotchas

	uPokeDB: Poking the MOOSDB from the Command Line
	Overview
	Command-line Arguments of uPokeDB
	MOOS Poke Macro Expansion
	Providing the ServerHost and ServerPort on the Command Line
	Session Output from uPokeDB
	Publications and Subscriptions for uPokeDB

	pEchoVar: Re-publishing Variables Under a Different Name
	Overview
	Using pEchoVar
	Configuring Echo Mapping Events
	Configuring Flip Mapping Events
	Applying Conditions to the Echo and Flip Operation
	Holding Outgoing Messages Until Conditions are Met
	Limiting the Echo Posting Frequency to the AppTick Setting

	Configuring for Vehicle Simulation with pEchoVar
	Configuration Parameters for pEchoVar
	Publications and Subscriptions for pEchoVar
	Variables Posted by pEchoVar
	Variables Subscribed for by pEchoVar

	Terminal and AppCast Output

	pSearchGrid: Using a 2D Grid Model for Track History
	Using pSearchGrid
	Basic Configuration of Grid Cells
	Cell Variables
	Serializing and De-serializing the Grid Structure
	Resetting the Grid
	Viewing Grids in pMarineViewer
	Examples

	Configuration Parameters of pSearchGrid
	Publications and Subscriptions for pSearchGrid
	Variables Published by pSearchGrid
	Variables Subscribed for by pSearchGrid
	Command Line Usage of pSearchGrid

	uTermCommand: Poking the MOOSDB with Pre-Set Values
	Configuration Parameters for uTermCommand
	Run Time Console Interaction
	Connecting uTermCommand to the MOOSDB Under an Alias
	Publications and Subscriptions for uTermCommand

	uSimCurrent: Simulating Drift Effects
	Configuration Parameters for uSimCurrent
	Publications and Subscriptions for uSimCurrent
	MOOS Variables Published by uSimCurrent
	MOOS Variables Subscribed for by uSimCurrent

	The Alog-Toolbox for Analyzing and Editing Mission Log Files
	Overview
	An Example .alog File
	The alogscan Tool
	Command Line Usage for the alogscan Tool
	Example Output from the alogscan Tool

	The alogclip Tool
	Command Line Usage for the alogclip Tool
	Example Output from the alogclip Tool

	The aloggrep Tool
	Command Line Usage for the aloggrep Tool
	Example Output from the aloggrep Tool

	The alogrm Tool
	Command Line Usage for the alogrm Tool
	Example Output from the alogrm Tool

	The alogview Tool
	Command Line Usage for the alogview Tool
	Description of Panels in the alogview Window
	The Op-Area Panel for Rendering Vehicle Trajectories
	The Helm Scope Panels for View Helm State by Iteration
	The Data Plot Panel for Logged Data over Time
	Automatic Replay of the Log file(s)

	uFldNodeBroker: Brokering Node Connections
	Overview of the uFldNodeBroker Interface and Configuration Options
	Configuration Parameters of uFldNodeBroker

	Publications and Subscriptions for uFldNodeBroker
	Variables Published by uFldNodeBroker
	Variables Subscribed for by uFldNodeBroker
	Command Line Usage of uFldNodeBroker

	Terminal and AppCast Output

	uFldShoreBroker: Brokering Shore Connections
	Bridging Variables Upon Connection to Nodes
	Inter-MOOSDB Bridging with pShare
	Handling a Valid Incoming Ping from a Remote Node
	Vanilla Bridge Arrangements
	Bridge Arrangements with Macros
	Shortcut to a Common Bridge Arrangement - the qbridgeparams]qbridge Parameter

	Usage Scenarios the uFldShoreBroker Utility
	Terminal and AppCast Output
	Configuration Parameters of uFldShoreBroker
	Publications and Subscriptions for uFldShoreBroker
	Variables Published by uFldShoreBroker
	MOOS Variables Subscribed for by uFldShoreBroker
	Command Line Usage of uFldShoreBroker

	uFldNodeComms: Simulating Intervehicle Communications
	Handling Node Reports
	The Criteria for Routing Node Reports
	Node Report Transmissions and pShare

	Handling Node Messages
	The Criteria for Routing Node Messages
	Enforcing a Minimum Time Between Node Messages
	Enforcing a Maximum Node Message Length
	Posting Messages to a Vehicle Group

	Visual Artifacts for Rendering Inter-Vehicle Communications
	Terminal and AppCast Output
	Configuration Parameters of uFldNodeComms
	Publications and Subscriptions for uFldNodeComms
	Variables Published by uFldNodeComms
	Variables Subscribed for by uFldNodeComms

	uFldMessageHandler: Handling Incoming Node Messages
	Configuration Parameters of uFldMessageHandler
	Publications and Subscriptions for uFldMessageHandler
	Variables Published by uFldMessageHandler
	Variables Subscribed for by uFldMessageHandler

	Terminal and AppCast Output

	uFldScope: Gathering a Multi-Vehicle Status Summary
	Configuration Parameters of uFldScope
	An Example MOOS Configuration Block

	Publications and Subscriptions for uFldScope
	Variables Published by uFldScope
	MOOS Variables Subscribed for by uFldScope

	Configuring the uFldScope Utility
	Configuring Scope Elements
	Configuring Scope Layouts
	Further Control of the Terminal Output

	uFldPathCheck: Monitoring Vehicle Path Properties
	Overview of the uFldPathCheck Interface and Configuration Options
	Configuration Parameters of uFldPathCheck

	Publications and Subscriptions for uFldPathCheck
	Variables Published by uFldPathCheck
	Variables Subscribed for by uFldPathCheck
	An Example MOOS Configuration Block

	Usage Scenarios the uFldPathCheck Utility

	uFldHazardSensor: Simulating an Simple Hazard Sensor
	Using uFldHazardSensor
	A Quick Start Guide
	Typical Simulator Topology

	Configuring the Hazard Field
	An Example Hazard Field
	Automatically Generating a Hazard Field

	Configuring the Possible Sensor Settings
	Sensor Swath Width Options
	Sensor ROC Curve Configuration Options
	Classification Configuration Options
	Dynamic Resetting of the Sensor
	Posting of Sensor Configuration Options

	Configuring the Simulator Visual Preferences
	Configuring the Sensor Field Swath Rendering
	Configuring the Hazard Field Renderings
	Configuring the Sensor Report Renderings

	Under the Hood: the Simulated Detection Algorithm
	Under the Hood: the Simulated Classification Algorithm
	Under the Hood: Sensor Blackouts During Turns
	Configuration Parameters of uFldHazardSensor
	An Example MOOS Configuration Block

	Publications and Subscriptions for uFldHazardSensor
	Variables Published by uFldHazardSensor
	Variables Subscribed for by uFldHazardSensor

	Terminal and AppCast Output
	The Jake Example Mission Using uFldHazardSensor
	What is Happening in the Jake Mission

	uFldHazardMgr: On-Board Managment of a Hazard Sensor
	Overview
	Using uFldHazardMgr
	Required MOOS Variable Bridges
	Configuration Parameters of uFldHazardMgr
	An Example MOOS Configuration Block
	Configuring the Swath Width
	Configuring the Probability of Detection Setting

	Under the Hood - Interacting with the Hazard Sensor
	Under the Hood - Processing Data and Generating Reports
	Publications and Subscriptions for uFldHazardMgr
	Variables Published by uFldHazardMgr
	Variables Subscribed for by uFldHazardMgr

	Terminal and AppCast Output
	The Jake Example Mission Using uFldHazardMgr

	uFldHazardMetric: Grading a HazardSet Report
	Overview
	Using uFldHazardMetric
	Required MOOS Variable Bridges
	The False-Alarm and Missed-Hazard Reward Structure
	The Max-Time and Time-Overage Reward Structure
	Raw and Normalized Scores
	The Report Evaluation Format

	Configuration Parameters of uFldHazardMetric
	Publications and Subscriptions for uFldHazardMetric
	Variables Published by uFldHazardMetric
	Variables Subscribed for by uFldHazardMetric

	Terminal and AppCast Output
	The Jake Example Mission Using uFldHazardMetric

	uFldBeaconRangeSensor: Simulating Vehicle to Beacon Ranges
	The uFldBeaconRangeSensor Interface and Configuration Options
	Configuration Parameters of uFldBeaconRangeSensor

	Publications and Subscriptions for uFldBeaconRangeSensor
	Variables Published by uFldBeaconRangeSensor
	Variables Subscribed for by uFldBeaconRangeSensor

	Using and Configuring uFldBeaconRangeSensor
	Configuring the Beacon Locations and Properties
	Unsolicited Beacon Range Reports
	Solicited Beacon Range Reports
	Limiting the Frequency of Vehicle Range Requests
	Producing Range Measurements with Noise
	Terminal and AppCast Output

	Interaction between uFldBeaconRangeSensor and pMarineViewer
	The Indigo Example Mission Using uFldBeaconRangeSensor
	Generating Range Report Data for Matlab

	uFldContactRangeSensor: Detecting Contact Ranges
	Overview
	Using uFldContactRangeSensor
	Typical Topology
	Required MOOS Variable Bridges
	Range Requests and Range Reports
	Configuring the Range Criteria
	Limiting the Frequency of Vehicle Range Requests
	Producing Range Measurements with Noise

	Configuration Parameters of uFldContactRangeSensor
	Publications and Subscriptions for uFldContactRangeSensor
	Variables Published by uFldContactRangeSensor
	Variables Subscribed for by uFldContactRangeSensor

	Terminal and AppCast Output
	Interaction between uFldContactRangeSensor and pMarineViewer
	The Hugo Example Mission Using uFldContactRangeSensor

	Use of Logic Expressions
	Colors

