Adaptive Depth Contour Following Behavior

Christopher W. Gagner NUWC Division Newport Code 2534 christopher.w.gagner.civ@us.navy.mil Scott R. Sideleau NUWC Division Newport Code 259 scott.r.sideleau.civ@us.navy.mil Michael J. Walsh NUWC Division Newport Code 1511 michael.j.walsh2.civ@us.navy.mil Michael L. Incze NUWC Division Newport Code 2534 Retired

Distribution Statement A: Unclassified, Approved for public release. Distribution unlimited.

Overview

- About US
 - NUWC Division Newport
 - Assets
- Adaptive Depth Contour Following
 - Concept of Operations (CONOPS)
 - Behavior / algorithm evolution
 - Supporting MOOS Apps
- Future Work

NUWC Division Newport

- RDT&E engineering and Fleet support facility for the US Navy
- Employing ~5k scientists and engineers (government and contractor support)
- Focus on all aspects of undersea warfare
 - Submarines
 - Offensive and Defensive Weapons Systems
 - Maritime UxVs

NUWC, Newport, RI

UxS Capability Development Team

- Cross-department team with:
 - MOOS-IvP behavior development expertise
 - MOOS Application development expertise •
 - Modeling & Simulation expertise
 - Operational expertise from participation in several US Navy ٠ and NATO exercises around the world over the past 15 years
- Maritime robotic platforms:
 - L3Harris Iver3 UUV Three (3)
 - Communications: 1.8 GHz RF, Wi-Fi, ACOMMS (Blueprint SeaTrac)
 - Secondary CPU for running autonomy and intelligent communication
 - Seabed Node
 - Communications: ACOMMS (Blueprint SeaTrac)
 - Arm processor for intelligent communication
 - Integrated Compass, Accelerometer, and GPS for position and time (while on surface)
 - Comms Box .
 - Communications: 1.8 GHz RF, Wi-Fi, ACOMMS (Blueprint SeaTrac)
 - Arm processor for intelligent communication
 - Integrated Compass, Accelerometer, and GPS for position and time

L3Harris Iver-3

Seabed Node

Comms Box

Modular assets with the ability to change on-board autonomy and communication protocols to meet exercise demands.

CONOPS: Three Pillars

Not just behavior development...

UNCLASSIFIED

nΠ

MOOS-IvP + CONOPS

Full operational concept development demonstrated on surrogate platforms.

Serial Missions & In-Situ Data Processing

Desire for Adaptive Depth Contour

- Warfighters increasingly in operational areas where low resolution data exists close to shore
- Warfighter need to map depth contours of interest for:
 - Ingress/Egress
 - Other types of route planning (mission specific)
 - Safety
- In the past, warfighter might have mapped contours manually or waited for third-party data
- Can we enable robots to increase the OPTEMPO?

Rapidly provide an 80% solution to the warfighter.

Rule-Based Adaptive Contour Behavior

• <u>Description</u>:

- Originally developed in 2010 by Scott Sideleau and Mike Incze – Presented at MOOS-DAWG 2015
- Utilizes single depth/altitude measurement to track desired total water depth
- Inputs:
 - Contours: List of Contours (m)
 - Distance to follow the contour (m)
 - Initial heading (degrees)
 - Maximum initial distance (m)
 - Deadband (m): Contour tolerance
 - First Turn Direction (Left/Right)

• <u>Approach</u>:

- On startup, determine if starting shallow or deep
- Travel on initial_heading until contour crossed
 - If max_distance reached without crossing contour, abort the behavior
- If we cross the contour of interest...
 - Mark the location (X,Y)
 - First Crossing:
 - Increment/decrement desired heading by 135degrees and resume search
 - To avoid traveling parallel to the contour if crossing was perpendicular
 - Subsequent crossings:
 - Increment/decrement desired heading by 45degrees and resume search
- If we don't cross the contour of interest (after first crossing)...
 - Spiral outward and continue the search
 - If max_distance (tracked while creating the spiral) reached without crossing contour, abort the behavior

Rule-Based: Single Contour Tracking

Rule-Based: Multiple Contour Tracking

Improving the Rule-Based Approach

lead = 4000

Next

The track-line

Proposed by Sideleau/Incze in 2015:

- Construct and map plane using DVL/ADCP data
 - By mapping plane, should be able to reduce total distance traveled
 - Desire to maintain a stream of points of contour of interest
 - Current approach only affords individual soundings on crossings

Plane-Based Adaptive Contour Behavior

- Additional Inputs:
 - Maximum Heading Change: Restricts the heading changes to prevent aggressive turns
 - Lead Distance (m):
 - Nudge Angle (degrees): Used to force the vehicle to cross the contour
- <u>Approach</u>:
 - On startup, determine if starting shallow or deep
 - Travel on initial_heading until contour crossed
 - If max_distance reached without crossing contour, abort the behavior
 - If we cross the contour of interest...
 - Mark the location (X,Y)
 - After Crossing:
 - Compute the ADCP Depth Plane
 - Intersect the ADCP Depth Plane with the desired depth plane to determine the track line
 - Intersect the desired bottom track line with a circle with the radius equal to the lead distance
 - Select the intersection point(s) that minimized heading change
 - Add or subtract the nudge angle (based on shallow or steep)
 - If there is no intersection, compute a heading perpendicular to the desired bottom track line
 - Clamp new desired heading to maximum heading change
 - If the planes do not intersect:
 - If we are within the deadband, continue on current heading
 - Otherwise, spiral outward and continue search
 - If we don't cross the contour of interest (after first crossing)...
 - Spiral outward and continue the search
 - If max distance (tracked while creating the spiral) reached without crossing contour, abort the behavior

Plane-Based: Single Contour Tracking

Plane-Based: Multiple Contour Tracking

Supporting MOOS Applications

• <u>uBathyProvider</u>:

- Subscribes to NAV_X and NAV_Y and publishes NAV_WATERDEPTH
- Supports gridded and sparse datasets (SQLite)
- Modified to support providing water depths at ADCP Beam locations

• <u>uSimRollPitch</u>:

• Augments uSimMarine by publishing NAV_PITCH and NAV_ROLL

<u>pContourCodec</u>:

 Subscribes to the contour crossing points published by the contour behavior(s) and publishes a simplified contour line

• pJAUSContourProvider:

 Subscribes to the simplified contour line produced by pContourCodec and distributes over the network using a custom JAUS service

Common Problems with Simulation

• Vehicle Dynamics:

- Depth control: Our UUVs cannot change depth without moving forward. Effects achieving initial depth from the surface and maintaining depths while submerged
- Roll/Pitch: uSimMarine does not provide roll or pitch. Effects projecting ADCP beams. Created uSimRollPitch.
- Data sampling:
 - DVL Beam simulator initially provided updates at 4Hz. Actual ADCP Beams are updated at 0.5 Hz.
- Lack of independent developers for creating simulator components and vehicle behaviors.
 - Same math/logic used in both places –Mistakes in one side fixed by the other side

Reality

Comparison of Plane-Based vs Rule-Based Contour

Data collected during Contested Urban Environment (CUE) 2021 – Portsmouth, UK

Comparison of Plane-Based vs Rule-Based Contour

- Reduces platform and operational risk
- Increases ONSTA time, transit opportunity, serial tasking, shared resources for dynamic re-tasking
- Improves accuracy with reduced vehicle dynamics
- Operates where standard mission profiles can not

Plane-Based Behavior: 30% increase in efficiency over Rule-Based (reduction in survey time)

Future Work

- Enable the contour behavior take a desired search area
 - Both behaviors currently
 - Only support an initial heading
 - Multi-contours are dependent on the initial heading
 - Require the use of BHV_OpRegion for safety
- Monte Carlo Behavior Evaluation
 - The new Plane-Based approach has addition input parameters that have been chosen based on manual tweaking
 - Utilizing a Monte Carlo simulation to evaluate the behavior parameters would allow for selecting the parameters that perform best in most environments
- Update the behavior to process live side-scan sonar bathymetry
- Collaborative multi-contour mapping

Backup

₩

Multi-Domain Vehicle Simulators

<u>Background</u>: Our demonstrations often involve vehicles in the air domain. Creating a comprehensive simulation helps identify potential problems in the mission. However, uSimMarine and BHV_ConstantDepth prohibit robots from achieving negative depth. <u>Workaround</u>:

- moos-ivp-umassd
 - uSimpleRobot: Basic vehicle simulator that allows for negative dept
 - BHV_SimpleDepth: Depth behavior that allows for negative depth
 - <u>https://github.com/scottsideleau/moos-ivp-umassd</u>
- pHelmIvPConfiguration: Modify depth domain to support negative depth:
 - Domain = depth, -200:0:4000:optional

Proposal:

- 1. Update manifest for moos-ivp-umassdand add it to moos-ivp.org
- 2. Solicit MOOS community for other open-source multi-domain simulators
- 3. Create a new simulator that supports multiple domains