### MassMIND: A semantically segmented labeled dataset of long wave infrared images in marine environment

SHAILESH NIRGUDKAR, MICHAEL DEFILLIPO, MICHAEL SACARNY, MICHAEL BENJAMIN, PAUL ROBINETTE 11 AUGUST 2022 MOOS-DAWG 2022



# **SENSORS IN MARINE ENVIRONMENT**

- Surface vehicles can become autonomous only if they have awareness of surroundings
  - Other boats, bridges, buoys etc.
- Radar as a traditional sensor
  - Slow refresh rate
  - Low fidelity
- Optical cameras as a preferred choice
  - Small form factor
  - Excellent results with deep learning
  - Great resolution
  - Limitations
    - Glitter, reflections deteriorate image quality
    - Cannot be used in bright sunlight, low light environment



Credit: Images from MaSTR1325 dataset\*

2







# **RELATED RESEARCH**

| Authors                                                            | Title                                                                                                                                                                                           | Brief                                                                                                                                                                                          |                           |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| D. D. Bloisi, L. locchi, A.<br>Pennisi and L. Tombolini            | ARGOS-Venice Boat<br>Classification," 2015 12th IEEE<br>International Conference on<br>Advanced Video and Signal Based<br>Surveillance (AVSS), 2015, pp. 1-6                                    | <ul> <li>Boat classification dataset<br/>(each image: 800 x 240<br/>pixels)</li> <li>14 survey cells covering<br/>Grand Canal of Venice</li> <li>24 specific categories +<br/>water</li> </ul> |                           |
| M. M. Zhang, J. Choi, K.<br>Daniilidis, M. T. Wolf and C.<br>Kanan | VAIS: A dataset for recognizing<br>maritime imagery in the visible and<br>infrared spectrums," 2015 IEEE<br>Conference on Computer Vision and<br>Pattern Recognition Workshops<br>(CVPRW), 2015 | <ul> <li>1000 paired RGB and<br/>infrared images</li> <li>6 ship categories</li> <li>Sensors installed on the<br/>pier</li> </ul>                                                              | Sailing<br>Sailing<br>Tug |
| B. Bovcon, J. Muhovič, J. Perš<br>and M. Kristan                   | The MaSTr1325 dataset for training<br>deep USV obstacle detection<br>models," 2019 IEEE/RSJ<br>International Conference on<br>Intelligent Robots and Systems<br>(IROS), 2019                    | <ul> <li>Semantic segmentation of optical images</li> <li>3 classes : Sky, water and obstacle</li> <li>1325 images, 1278 x 958 pixels</li> </ul>                                               |                           |

# **COMPARISON OF OPTICAL IMAGES WITH LWIR**

- Water dynamics
- Reflection and sun glitter
- Weather conditions





# PROBLEM

- The publicly available datasets are mostly created with optical images which has limitations in marine environment.
- The VAIS dataset captured the infrared images from a static viewpoint and has only boat classification labels.



# **CURRENT RESEARCH**

• There is a need to create a dataset which is not impacted by marine environment.

• To be useful for surface vehicle autonomy

- The dataset should capture real life images from different viewpoints
- The labeling information should be comprehensive such as semantic segmentation

#### • MassMIND:

- Around 2900 LWIR images, semantically segmented into 7 classes.
- Raw images captured over a period of 2 years in and around Boston harbor.

# **ASV SETUP**



Video recordings were done over a period of 2 years (2019-2021)





## **CHALLENGES FACED IN DATASET CREATION**

• What kind of label?



Segmentation mask contains much more information

Learning with Purpose

Sky

# LABELING PROCESS

- 7 classes Sky, water, background, bridge, obstacle, living obstacle and self
- Annotation tool



segments.ai

# **VERIFICATION OF LABELING**

- Manual
- Programmatic
  - Check if each pixel is assigned a class id



- Incorrect label ids (off by 1 difference in API)

# **DATA AUGMENTATION**

- Around 2900 images were labeled
- Dataset is increased by augmentation
  - Rotation and mirror





# **DATASET METRIC**

#### Spread of classes in MassMIND

| Class            | Total number of instances | % distribution of pixel<br>area |
|------------------|---------------------------|---------------------------------|
| Sky              | 2902                      | 30.58                           |
| Water            | 2916                      | 52.21                           |
| Bridge           | 715                       | 1.67                            |
| Obstacles        | 7120                      | 0.94                            |
| Living obstacles | 4350                      | 0.05                            |
| Background       | 2860                      | 11.28                           |
| Self             | 1501                      | 3.25                            |

Though obstacles occupied only 1% of area overall, it was adequate to run inference



## **DEEP LEARNING ARCHITECTURES**

- Unet: One of the first segmentation architectures, simple yet powerful
- PSPNet: Uses global context to predict local regions, better performance
- DeepLabv3: Most advanced, best performance



#### **EARLIER RESULTS: NO SHUFFLING**



UNet

#### **EARLIER RESULTS: NO SHUFFLING**



UNet

in regions with no issues. Object detected where strong reflection

Deep lab is strong on handling reflections



Deeplab



# **IMPROVING TRAINING OUTCOME**

- Images were chronologically fed to the classifiers
  - Shuffled the order
- Rotation of masks had to be done in a certain way to avoid creation of incorrect class labels.
- Smaller size images were used earlier resulting in loss of small obstacles.
   Original image size (640 x 580) was used



# **MEASURING THE ACCURACY OF SEGMENTATION**

#### Intersection over Union



For multi-class classification, it is best to consider each class separately.

## **DATASET EVALUATION**

For class 'obstacle'

|           | Threshold | Precision (%) | Recall (%) | F1   |
|-----------|-----------|---------------|------------|------|
| UNet      | 0.6       | 55.0          | 21.9       | 31.3 |
|           | 0.3       | 76.5          | 58.6       | 66.4 |
| DeepLabv3 | 0.6       | 72.7          | 40.7       | 52.2 |
|           | 0.3       | 82.7          | 72.8       | 77.4 |
| PSPNet    | 0.6       | 73.3          | 41.8       | 53.3 |
|           | 0.3       | 82.9          | 73.6       | 78.0 |

Precision: #true positives/total elements labeled as positive Recall: #true positives/total elements actually belonging to the positive class

# **INFERENCE**



UMASS

### **Dataset is published on Github!**

- https://github.com/uml-marine-robotics/MassMIND\*
- The dataset paper is currently under review

\*Reference: https://seagrant.mit.edu/auvlab-datasets-marine-perception-2-3/



#### **PERCEPTION TRACKING\***



\* ICRA 2022 robotics perception and mapping workshop



# **PERCEPTION TRACKING: DEMO**





# Next steps

- Auto calibration between camera sensors and radar
- Integration with MOOS



# Acknowledgement

This work is partially sponsored by the Brunswick Corporation

