
A software toolkit for rapid development of AUVs
using MOOS-IvP with MITFrontseat, HydroMAN and VECTORS

Dr. Supun Randeni

Dr. Michael Menjamin, Prof. Michael Triantafyllou & Prof. Henrik Schmidt

Massachusetts Institute of Technology, Cambridge, MA

MOOS-DAWG 2022

Design aspects of an AUV

Hullform Design

Actuator Design

Integration design Software Design

● Nose-cone & tail-cone
design

● Shapes, sizes & placement
of appendages

● Actuation style; e.g. control
surfaces, thrusters, fins, etc.

● Sizes & placement of
actuators

● Internal component general
arrangement (GA) design

● Watertight bottle design

● Bulkhead connector
arrangement

● Hydrostatic ballasting
method

● Structural design with room
for extendability

● Selecting a middleware

● Sensor & actuator driver
design

● Navigation software design

● Autonomy software design

● Low-level control software
design

● Mission & safety
management software
design

● Communication software
design

Electronics Design

● Sensor selection

● Processing board selection;
e.g. PC104, BeagleBoard,
Raspberry Pi, etc.

● Designing I/O boards (if
required)

● Electronics/power breakout
board design

● Designing actuator driving &
power management
electronics

Typical software architecture of a UUV
(a high-level overview)

Typical software architecture of a UUV
(a high-level overview)

Virtual environment

MITFrontseat, HydroMAN and VECTORS with MOOS-IvP

● MITFrontseat - Frontseat software of the vehicle

● HydroMAN - Self-leaning, vehicle flight dynamic model-aided navigation engine

● VECTORS - Virtual environment for construction and testing of oceanic robotics systems

Architecture of MITFrontseat (sensor drivers)
● Navigation sensors: Depth, IMU, GPS, GSM, battery/current management, embedded IMU (for BBBlue), Barometer

Architecture of MITFrontseat (sensor drivers)
● Navigation sensors: Depth, IMU, GPS, GSM, battery/current management, embedded IMU (for BBBlue), Barometer

● Hardware interfaces: I2C, UART, ADC, PWM, GPIO

Architecture of MITFrontseat (sensor drivers)
● Navigation sensors: Depth, IMU, GPS, GSM, battery/current management, embedded IMU (for BBBlue), barometer

● Hardware interfaces: I2C, UART, ADC, PWM, GPIO

● Sensor drivers: Communicates with sensors and publishes raw sensor data to the MOOSDB

Architecture of MITFrontseat (navigation)
● Navigation sensors: Depth, IMU, GPS, GSM, battery/current management, embedded IMU (for BBBlue), barometer

● Hardware interfaces: I2C, UART, ADC, PWM, GPIO

● Sensor drivers: Communicates with sensors and publishes raw sensor data to the MOOSDB

● HydroMAN interface: Passes raw sensor data to the HydroMAN, and receives the final navigation solution in return.

● HydroMAN: A self-learning vehicle flight dynamic model aided navigation system

Conventional INS-aided navigation

IMU Fusion engine

Underwater
position aiding

Surface sensors Underwater
velocity aiding

DVL DepthGPS

CVL Acoustic track
(LBL/USBL)

Terrain-aided

Final navigation
solution

FOG INS
E.g. IxBlue PHINS C3, C5, C7,

Kearfott T16, T24, etc.

While underwater - dead-reckoning with velocity aiding
● DVL bottom-track

○ Accurate navigation (i.e. <0.2% - 0.05% DT) when DVL bottom-lock
is available

○ Max range: 30 m for 1200 kHz, 200m for 300kHz
○ Power hungry

● CVL
○ Less accurate as compared to DVL
○ Max range: ~300m
○ Power hungry

While underwater - position aiding
● Acoustic positioning (e.g. LBL, USBL, SBL)

○ Potential outages and outliers
○ Time-lags in the position fix
○ Power hungry (specially active acoustic systems)

● Terrain-aided
○ Large uncertainty

Underwater
position aiding

Surface sensors Underwater
velocity aiding

DVL DepthGPS

CVL Acoustic track
(LBL/USBL)

Terrain-aided

Final navigation
solution

IMU Fusion engine

FOG INS
E.g. IxBlue PHINS C3, C5, C7,

Kearfott T16, T24, etc.

Self-learning vehicle dynamic model

HydroMAN 2.0

Sensor pre-processors

Fusion engine

HydroMAN Navigation System
A self-learning navigation fusion engine

1. Model learning
Using system identification to estimate the baseline vehicle flight
dynamic model

2. On-the-fly model self-calibration
When accurate sensors are available (e.g. DVL bottom-lock, LBL
solution), the model is calibrated to the operating environment

3. Model aiding for navigation
When accurate sensors are unavailable or turned
off, the model aids the navigation engine

HydroMAN Navigation System
Advantages over conventional INS-aided navigation

Morpheus AUV
at MIT sailing pavilion (2021)

Sandshark model-aided navigation
at MIT sailing pavilion (2018)

Pre-ICEX20 engineering tests
at Mass Bay (2019)

ICEX20 under-ice navigation
at Beaufort Sea, Arctic (2020)

MIT variant of MK-39 EMATT
at MIT sailing pavilion (2020)

GPS-denied navigation
at MIT sailing pavilion (2021) (on-going) (on-going)

Image credit: darpa.mil/program/manta-ray

(on-going)

Image credit: www.pliantenergy.com/

1. Improved model-aided navigation for low-cost AUVs with no INS and/or DVL

2. Able to maintain navigation accuracy when DVL bottom track is unavailable

3. Able to switch off navigation sensors to save power

4. Able to effectively use time-lagged acoustic navigation updates

5. Able to limit the vehicle to an IMU

HydroMAN 2.0
Generalizing HydroMAN as an independent navigation engine

HydroMAN 2.0 Client-A system

Navigation engine

Track engine

Fault detection

Autonomy aiding

Sensor drivers

iH
yd

ro
M

A
N

_g
at

ew
ay

iH
yd

ro
M

A
N

_c
lie

nt
-A

MOOS-IvP Helm

GPS Depth

Acoustic track
(LBL/USBL)

Terrain-aided

IMU

DVL

CVL

Hardware (any combination of these)

A standard interface
based on a Google

Protocol Buffer
(protobuf) scheme,

encoded with b64 over a
TCP connection

● The client system provides raw sensor data, and HydroMAN returns
the fused navigation solution

● A standard interface for communication between the two systems (i.e.
a protobuf scheme, encoded with b64, over a TCP connection)

● HydroMAN is independent of the client system’s architecture and
middleware

● HydroMAN could run in a separate computer if required

Raw sensor data

Final nav solution

Architecture of MITFrontseat (navigation)
● Navigation sensors: Depth, IMU, GPS, GSM, battery/current management, embedded IMU (for BBBlue), barometer

● Hardware interfaces: I2C, UART, ADC, PWM, GPIO

● Sensor drivers: Communicates with sensors and publishes raw sensor data to the MOOSDB

● HydroMAN interface: Passes raw sensor data to the HydroMAN, and receives the final navigation solution in return.

● HydroMAN: A self-learning vehicle flight dynamic model aided navigation system

Architecture of MITFrontseat (autonomy)
● Autonomy system: Produces desired heading, depth and speed

Architecture of MITFrontseat (autonomy)
● Autonomy system: Produces desired heading, depth and speed

● Payload autonomy: Interfaces with a payload autonomy system; a.k.a. backseat driver (MOOS-IvP based or otherwise)

Architecture of MITFrontseat (autonomy)
● Autonomy system: Produces desired heading, depth and speed

● Payload autonomy: Interfaces with a payload autonomy system; a.k.a. backseat driver (MOOS-IvP based or otherwise)

● pHelmIvP on frontseat: Run the pHelmIvP instance inside the MITFrontseat MOOS community. With

pFrontseatMissionManager watching over the helm.

Architecture of MITFrontseat (autonomy)
● Autonomy system: Produces desired heading, depth and speed

● Payload autonomy: Interfaces with a payload autonomy system; a.k.a. backseat driver (MOOS-IvP based or otherwise)

● pHelmIvP on frontseat: Run the pHelmIvP instance inside the MITFrontseat MOOS community. With

pFrontseatMissionManager watching over the helm.

● Simple passive helm (pHelmPassive): No navigation is required. Very useful during initial testing phase of the vehicle.

Architecture of MITFrontseat (autonomy)

//--
// pHelmPassive config block

ProcessConfig = pHelmPassive
{
 AppTick = 4
 CommsTick = 4

 ADD_LEG: start_time=15, heading=180, speed=2, depth=1.5
 ADD_LEG: start_time=25, heading=160, speed=2, depth=1.5, depth_kp=2.3
 ADD_LEG: start_time=35, heading=200, speed=2, depth=1.5
 ADD_LEG: start_time=45, heading=160, speed=2, depth=1.5, pitch_kd=1.1

 mission_end_time = $(MISSION_END_TIME)
}

● Autonomy system: Produces desired heading, depth and speed

● Payload autonomy: Interfaces with a payload autonomy system; a.k.a. backseat driver (MOOS-IvP based or otherwise)

● pHelmIvP on frontseat: Run the pHelmIvP instance inside the MITFrontseat MOOS community. With

pFrontseatMissionManager watching over the helm.

● Simple passive helm (pHelmPassive): No navigation is required. Very useful during initial testing phase of the vehicle.

Architecture of MITFrontseat (low-level control)
● Control engine (pControlEngine): Produces control correctives in speed, heading, depth, pitch and roll. Able to take in

dynamic PID updates.

Architecture of MITFrontseat (low-level control)
● Control engine (pControlEngine): Produces “control correctives” in speed, heading, depth, pitch and roll. Able to take

in dynamic PID updates.

● Actuator mapping (e.g. pActuatorMap_CRay): Maps out “control correctives” to the actuators of a specific vehicle class

Architecture of MITFrontseat (low-level control)
● Control engine (pControlEngine): Produces “control correctives” in speed, heading, depth, pitch and roll. Able to take

in dynamic PID updates.

● Actuator mapping (e.g. pActuatorMap_CRay): Maps out “control correctives” to the actuators of a specific vehicle class

● Actuator drivers: Sends the commands to actuators

VECTORS
Virtual Environment for Construction and Testing of Oceanic Robotics Systems

Architecture of VECTORS
• Vehicle simulators: Simulates the motion of a

vehicle platform according to its actuator
movements and surrounding environmental
forces

• Environmental simulators: Simulates
environmental features such as bathymetry
(both above and below surface), water currents,
waves, etc.

• Sensor simulators: According to vehicle’s
ground truth motion response, environmental
factors and sensor error model, a stream of raw
sensor data outputs will be published

VECTORS
uSimUnderseaVehicle: A configurable, physics-based 6-DOF UUV simulator

• Auto-generates hydrodynamic coefficients
on-startup using empirical formulae

• Configurable hullform shape

• Configurable number of additional hulls

• Configurable control surfaces with shape,
size, position, orientation, buoyancy, etc.

• Configurable static surfaces (i.e. fins, wings,
shrouds) with shape, size, position,
orientation, etc.

• Simulates effective velocity due to currents

• Simulates free surface hydrostatic variation

• Simulates seabed grounding forces

VECTORS
uSimUnderseaVehicle: A configurable, physics-based 6-DOF UUV simulator

6-DOF forces &
moments acting on the

vehicle
● Hydrostatics
● Hydrodynamic lift
● Hydrodynamic drag
● Actuator forces
● External forces

a = F/m

6-DOF mass
properties

Body-fixed linear
& angular
velocities

∫dt
Earth-fixed
velocities

Ground-truth
position and pose

∫dt

Water currents

VECTORS
uSimUnderseaVehicle: Configured for Morpheus UUV

//--
// uSimUnderseaVehicle config block for Morpheus

ProcessConfig = uSimUnderseaVehicle
{
 AppTick = 4
 CommsTick = 4
 log_path = .
 log_name = LOG_$(COMMUNITY)__hydro_summary_
 plot_name = LOG_$(COMMUNITY)__veh_config_
 log_name__time_sufix = false

 // ------------- CONFIGURING THE MAIN HULL OF THE VEHICLE -------------

HULLFORM_PROFILE: length=0.912, diameter=0.124, cd=1.1, cd_res=0.008, cd_axial=0.02, profile = 0.4560:0.0| 0.355:0.062|
0.253:0.062| 0.152:0.062| 0.051:0.062| -0.051:0.062| -0.152:0.062| -0.253:0.062| -0.355:0.037| -0.456:0.0

 // ------------- CONFIGURING THE ACTUATORS OF THE VEHICLE -------------

ADD_ACTUATOR: name=prop, index=0, type=fixed_thruster, Xprop=7.9763

ADD_ACTUATOR: name=rudder_top, index=1, type=control_surface, orientation=0, xg=-0.42, xb=-0.42, zg=-0.0285, zb=-0.0285,
surface_area=0.000977, surface_ar=3, surface_deltae=0.9

ADD_ACTUATOR: name=rudder_btm, index=2, type=control_surface, orientation=0, xg=-0.42, xb=-0.42, zg=0.0285, zb=0.0285,
surface_area=0.000977, surface_ar=3, surface_deltae=0.9

ADD_ACTUATOR: name=elevator_port, index=3, type=control_surface, orientation=90, xg=-0.42, xb=-0.42, yg=-0.0285, yb=-0.0285,
surface_area=0.000977, surface_ar=3, surface_deltae=0.9

ADD_ACTUATOR: name=elevator_stbd, index=4, type=control_surface, orientation=90, xg=-0.42, xb=-0.42, yg=0.0285, yb=0.0285,
surface_area=0.000977, surface_ar=3, surface_deltae=0.9

ADD_ACTUATOR: name=fwdmorph_top, index=5, type=control_surface, orientation=0, xg=0.25, xb=0.25, zg=-0.0285, zb=-0.0285,
surface_area=0.0014655, surface_ar=3, surface_deltae=0.9, is_deployed=false

ADD_ACTUATOR: name=fwdmorph_top, index=6, type=control_surface, orientation=0, xg=0.25, xb=0.25, zg=0.0285, zb=0.0285,
surface_area=0.0014655, surface_ar=3, surface_deltae=0.9, is_deployed=false

}

VECTORS
uSimUnderseaVehicle: Configured for C-Ray UUV

Main center hull:

• Modeled as a rigid-body hull

Fins:

• Also modeled as rigid-body hulls, but connected to the
main hull; i.e. all hydrodynamic forces/moments acting on
fins get transferred to the center hull

• Two propellers are modeled on each fin to simulate the
axial and side thrust generated from undulating fins

• As the tilt servos operate, the relative angles & CG (=CB)
will shift accordingly.

• Depending on relative roll and relative pitch of the fins, the
thrust directions will also change

VECTORS
uSimUnderseaVehicle: Free surface hydrostatics

● Hull is divided into N sections

● If all sections are under the surface:

○ effective_buoyancy = buoyancy

○ effective_CB = CB

● If any part of a section is above the surface, the above surface surface volume is reduced from buoyancy, and effective_CB
is re-calculated accordingly

Effective_buoyancy = buoyancy

Effective_CB = CB

Effective_buoyancy is reduced

Effective_CB is lowered
Effective_buoyancy is reduced

Effective_CB is moved lower astern

VECTORS
uSimUnderseaVehicle: Grounding simulation (beta)

● Hull is divided into N (10) sections

● If any section is below the seabed (i.e. provided by uSimBathy) a reaction force is provided to the hull accordingly

VECTORS
uSimOceanCurrent: A configurable ocean current simulator

• Any number of radial underwater current sources can be
configured with:

• location
• mean speed
• amplitude
• Wavelength
• Current variation with depth as:

speed = depSq*depth^2 + dep*depth + mean_speed

• At each vehicle’s ground-truth position, the resultant current
velocity is calculated, and a CURRENT_RESPONSE is posted

//--
// uSimVECTORS_OceanCurrents config block

ProcessConfig = uSimVECTORS_OceanCurrents
{
 AppTick = 4
 CommsTick = 4

 #ifdef BATCH_SIMULATION yes

ADD_SOURCE: x=-400, y=-1650, mean_speed=$(VECTORS_CURRENT_SPD),
amplitude=$(VECTORS_CURRENT_AMPL), wavelength=$(VECTORS_CURRENT_WAVELEN), depSq=0, dep=0

 #else
ADD_SOURCE: x=-100, y=-400, mean_speed=0.2, amplitude=0.05, wavelength=20, depSq=-0.0005,
dep=-0.0001
ADD_SOURCE: x=-200, y=-300, mean_speed=0.3, amplitude=0.10, wavelength=10, depSq=-0.0005,
dep=-0.0001
ADD_SOURCE: x=-400, y=-350, mean_speed=0.1, amplitude=0.00, wavelength=40, depSq=-0.0005,
dep=-0.0001

 #endif
}

source 1

source 2

source 3

VECTORS
uSimVECTORS_DVL: A DVL and ADCP simulator

• Match the sensor to a particular vehicle
• Able to have more than one DVL per vehicle (e.g. upward and

downward looking)
• Configurable sensor orientation w.r.t. vehicle axis
• Configurable DVL bottom-track error model
• Configurable range, blanking distance, update rate
• Configurable DVL water-track mode & water-track bin
• DVL-ADCP dual mode support
• Configurable ADCP error model
•

//--
// uSimVECTORS_DVL config block
ProcessConfig = uSimVECTORS_DVL
{
 AppTick = 4
 CommsTick = 4

 platform_id = 1 // Vehicle ID (unsigned int)
 sensor_id = 1 // If there are >1 sensors per UUV (unsigned int)

 // -----------------------------------
 // Sensor axis vs. AUV axis
 deg_around_auv_x = 180.0 // in deg
 deg_around_auv_y = 0.0 // in deg
 deg_around_auv_z = 0.0 // in deg

 // -----------------------------------
 // DVL specs and error model
 dvl_update_interval = 0.5 // in s
 dvl_random_error = 0.2 // in m/s
 dvl_bias_error = 0.05 // in m/s
 dvl_scale_error = 0.05 // Scale error as a percentage of velocity

 max_range = 50 // in m
 min_range = 0.3 // in m
 max_speed = 10 // in m/s
 bin_height = 0.50 // in m
 water_track_mode_exists = true // bool
 water_track_bin = 1 // the bin number, starting with nearest bin

 // auto_adjust_update_interval = false // This mode is not supported yet.
 // -----------------------------------
 // ADCP mode and specs
 dvl_adcp_dual_mode = true // bool
 adcp_random_error = 0.3 // in m/s
 adcp_bias_error = 0.06 // in m/s
 adcp_scale_error = 0.06 // Scale error as a percentage of velocity

}

MITFrontseat - HydroMAN - VECTORS with MOOS-IvP in action

Credit for RViz visualization tool
implementation with MOOS-ROS bridge:
Ethan Park <Park@pliantenergy.com>

Simulating the autonomy
stack of C-Ray vehicle

developed by Pliant Energy
Systems

https://docs.google.com/file/d/1KNMms8LRc1KRlbuLSiO_SqLgMoWiCydw/preview

Acknowledgements

Pr
e

- H
yd

ro
M

A
N

H
yd

ro
M

A
N

 1
.0

HydroMAN 2.0

Sandshark model-aided navigation
at MIT sailing pavilion (2018)

Pre-ICEX20 engineering tests
at Mass Bay (2019)

ICEX20 under-ice navigation
at Beaufort Sea, Arctic (2020)

MIT variant of MK-39 EMATT
at MIT sailing pavilion (2020) (on-going) (on-going)Morpheus AUV

at MIT sailing pavilion (2021)
GPS-denied navigation

at MIT sailing pavilion (2021) (on-going)

Image credit: darpa.mil/program/manta-ray

