
MOOS::V10

Paul Newman
BP Professor of Information Engineering

University of Oxford

MOOS::V10 is on github

www.themoos.org

It is still small

Language files blank comment code

C++ 66 4733 3528 13382
C/C++ Header 122 2871 4935 7265
CMake 8 133 55 292
MATLAB 1 7 0 21

SUM: 197 7744 8518 20960

and has no non-system dependencies

What was wrong?
• DB was single threaded : dodgey comms

held everyone up

• Clients’ push and pull was coupled

• Registration was cumbersome

• No useful callback mechanisms on message
reception

• Shocking directory structure

Part 1

Faster, more responsive communications

Most Common
Problem’s

• in bad networks large latency

• point to point comms was synchronous
and a bit slow

• comms was not active - it was kind-a-
passive

AsyncCommClient

A Threading Model

Old API Preserved

..but it is much more zippy....(behind the scenes)

Accessing Zippyness

you can install a callback
which is invoked the instant

mail arrives

Install a callback

called every time a
message arrives

expect <0.1ms latency

OK, simple but crude

• All mail goes through same route

• we have “cloggable” pipleline

• callback in read() of client.

Active Queues

you can setup a callback
which is invoked the instant a
particular messages arrives -

in dedicated thread

MOOS::ThreadPrint gPrinter(std::cout);

bool OnConnect(void * pParam){
	 CMOOSCommClient* pC = reinterpret_cast<CMOOSCommClient*> (pParam);
	 pC->Register("X",0.0);
	 pC->Register("Y",0.0);
	 pC->Register("Z",0.0);

	 return true;
}

bool OnMail(void *pParam){
 // extra code here....
	 return true;
}

bool funcX(CMOOSMsg & M, void * TheParameterYouSaidtoPassOnToCallback){
	 gPrinter.SimplyPrintTimeAndMessage("call back for X", MOOS::ThreadPrint::CYAN);
	 return true;
}

bool funcY(CMOOSMsg & M, void * TheParameterYouSaidtoPassOnToCallback){
	 gPrinter.SimplyPrintTimeAndMessage("call back for Y", MOOS::ThreadPrint::MAGENTA);
	 return true;
}

int main(int argc, char * argv[]){
 // extra code here....
	 //configure the comms
	 MOOS::MOOSAsyncCommClient Comms;
	 Comms.SetOnMailCallBack(OnMail,&Comms);
	 Comms.SetOnConnectCallBack(OnConnect,&Comms);

	 //here we add per message callbacks
	 Comms.AddMessageCallback("callback_X","X",funcX,NULL);
	 Comms.AddMessageCallback("callback_Y","Y",funcY,NULL);

	 //start the comms running
	 Comms.Run(db_host,db_port,my_name);

	 //for ever loop sending data
	 std::vector<unsigned char> X(1000);
	 for(;;){
	 	 MOOSPause(10);
	 	 Comms.Notify("X",X); //for callback_X
	 	 Comms.Notify("Y","This is Y"); //for callback_Y
	 	 Comms.Notify("Z",7.0); //no callback
	 }
	 return 0;
}

Y

Z

X

read-thread

“callback_X”

“callback_Y”

Active Queues are good and
offer a very flexible

mechanism. No clogging.

bool DefaultMail(CMOOSMsg & M, void *
TheParameterYouSaidtoPassOnToCallback){
	 gPrinter.SimplyPrintTimeAndMessage("default handler "+M.GetKey(),
MOOS::ThreadPrint::CYAN);
	 return true;
}

bool funcA(CMOOSMsg & M,
void * TheParameterYouSaidtoPassOnToCallback){
	 gPrinter.SimplyPrintTimeAndMessage("funcA "+M.GetKey(),
MOOS::ThreadPrint::CYAN);
	 return true;
}

int main(int argc, char * argv[]){
	
	 //configure the comms
	 MOOS::MOOSAsyncCommClient Comms;
	 Comms.SetOnConnectCallBack(OnConnect,&Comms);

	 //here we add per message callbacks
	 Comms.AddMessageCallback("callbackA","V1",funcA,NULL);

	 //add a default handler
	 Comms.AddMessageCallback("default","*",DefaultMail,NULL);

	 //start the comms running
	 Comms.Run(db_host,db_port,my_name);

	 //for ever loop sending data
	 std::vector<unsigned char> data(1000);
	 for(;;){
	 	 MOOSPause(10);
	 	 Comms.Notify("V1",data); //for funcA
	 	 Comms.Notify("V2","This is stuff"); //will be caught by default
	 }
	 return 0;
}

Use the “*” queue to have all
mail not caught by other
named active queues handled
in a comms-independent
thread

everything other than
“V1’ ends up here...

Final Notes on AQ’s
• You don’t need a queue per message. Any

number can be sent to a given named
queue

• you can send a message to multiple queues

• there is +1 copy per queue

• you can easily forget that you are in thread
land.....

Part 2

Wildcard Registration

?attern Matching
Registration

• ...give me anything from pHelm.

• ...give me all data from pHelm which has a
name ending in “jelly”

• ...just give me everything

• ...send me all messages 4 char long with “t”
as the 3rd character from any source with
“Lionel” in its name

Server-side subscriptions

• previously clients had to do dynamic
registration by looking for variable and
client summaries.

• now the DB will do it for you.

• You register a pattern and as variables
appear that match they will be pushed to
you.

bool OnConnect1(void * pParam){
	 CMOOSCommClient* pC = reinterpret_cast<CMOOSCommClient*> (pParam);

	 //wildcard registration for any variable from a client who's name begins with C
	 return pC->Register("*","C*",0.0);
}

bool OnConnect2(void * pParam){
	 CMOOSCommClient* pC = reinterpret_cast<CMOOSCommClient*> (pParam);

	 //wildcard registration any two character name beginning with V
	 //from a client who's name ends in "2"
	 return pC->Register("V?","*2",0.0);
}

bool OnConnect3(void * pParam){
	 CMOOSCommClient* pC = reinterpret_cast<CMOOSCommClient*> (pParam);

	 //wildcard registration for everything
	 return pC->Register("*","*",0.0);
}

int main(int argc, char * argv[]){
	
	 MOOS::MOOSAsyncCommClient Comms1;
	 Comms1.SetOnConnectCallBack(OnConnect1,&Comms1);
	 Comms1.AddMessageCallback("default","*",DefaultMail,&Comms1);
	 Comms1.Run(db_host,db_port,"C-"+my_name+"-1");

	 MOOS::MOOSAsyncCommClient Comms2;
	 Comms2.SetOnConnectCallBack(OnConnect2,&Comms2);
	 Comms2.AddMessageCallback("default","*",DefaultMail,&Comms2);
	 Comms2.Run(db_host,db_port,"C-"+my_name+"-2");

	 MOOS::MOOSAsyncCommClient Comms3;
	 Comms3.SetOnConnectCallBack(OnConnect3,&Comms3);
	 Comms3.AddMessageCallback("default","*",DefaultMail,&Comms3);
	 Comms3.Run(db_host,db_port,"C-"+my_name+"-3");

}

Use wildcard registration
when you don’t know the
detail of what you want
upfront. Or if you are lazy.

Other Side of the Coin
DB-Threading

Preventing Excessive Zeal

flexible way to limit IO bandwidth on
a per client basis

write at no more than
• 50Hz to any client beginning with “camera” followed by two letters
• 100Hz to a client called “VisualOdometry”
• 50Hz for everyone else

DB Control

Performance
Does it Make a Difference?

Part 3

1KB@20Hz sent to 5 Clients

E(latency)=0.45 ms

E(latency)=25ms ms

E(latency)=0.49 ms

1KB@20Hz sent to 5 Clients

la
te

nc
y

(m
s)

10KB@20Hz sent to 5 Clients

E(latency)=0.55 ms

E(latency)=24ms ms

E(latency)=1.1 ms

10KB@20Hz sent to 5 Clients

la
te

nc
y

(m
s)

100KB@20Hz sent to 5

E(latency)=2.6 ms

E(latency)=28ms ms

E(latency)=6.6 ms

100KB@20Hz sent to 5 Clients

la
te

nc
y

(m
s)

1MB@20Hz sent to 5 Clients

E(latency)=22.0 ms

E(latency)=55ms ms

E(latency)=43 ms

1MB@20Hz sent to 5 Clients

la
te

nc
y

(m
s)

Is It Reliable ?

Part 4

Considerations
• There is a good deal of

new code (but you can
revert to old code with
switches!)

• Performance not
formally verified

• Unit tests are multiplying

• And we rely on it to run
some pretty demanding
projects....

Part5

Structure, Building and
Using

core-moos Structure
#include “MOOS/libMOOS/<MODULE>/<header>.h”

Comms
Utils
Apps

Thirdparty

Now one single library: libMOOS.a

Compiling and Using

build properties and location discovered automagically

Binary Compatibility

Designed so legacy binaries can
work with upgraded binaries

Source Compatibility

Designed so legacy source can leverage V10 with zero
code change. But this is a lazy thing.....

Part 6

MOOSApp++

CMOOSApp Revisited

All the communications upgrades are
available...and more

App::OnMessage

Have ::OnMessage called for each registered message in a
seperate thread. Simple AsyncComms in CMOOSApp

And Also Your Own CB

Active Queues are thus exposed to CMOOSApp

Controlling App Flow

Three ways to control OnNewMail and
Iterate behaviour

The old way....

Event Driven + LockStep

Event Driven
::OnNewMail()

then always cal
::Iterate()

Independent Event Driven
Mail

Event Mail
::OnNewMail()

only call
::Iterate()

when scheduled

New Niceties
 /** called just before OnStartUp is called
 virtual bool OnStartUpPrepare(){return true;};

 /** called just after OnStartUp has finished ...
 virtual bool OnStartUpComplete(){return true;};

 /** make a status string - overload this in a
 virtual std::string MakeStatusString();

 /** called before OnStartUp and before
virtual bool OnProcessCommandLine();

	 /** called when command line is asking
	 virtual void OnPrintHelpAndExit();

	 /** called when command line is asking
	 virtual void OnPrintExampleAndExit();

	 /** called when command line is asking
	 virtual void OnPrintInterfaceAndExit();

	 /** called when command line is asking
	 virtual void OnPrintVersionAndExit();

More granularity in
execution

New Niceties
 /** called just before OnStartUp is called
 virtual bool OnStartUpPrepare(){return true;};

 /** called just after OnStartUp has finished ...
 virtual bool OnStartUpComplete(){return true;};

 /** make a status string - overload this in a
 virtual std::string MakeStatusString();

 /** called before OnStartUp and before
virtual bool OnProcessCommandLine();

	 /** called when command line is asking
	 virtual void OnPrintHelpAndExit();

	 /** called when command line is asking
	 virtual void OnPrintExampleAndExit();

	 /** called when command line is asking
	 virtual void OnPrintInterfaceAndExit();

	 /** called when command line is asking
	 virtual void OnPrintVersionAndExit();

Status now automatically
i n c l u d e s C P U l o a d
information

Command Line Processing
 /** called just before OnStartUp is called
 virtual bool OnStartUpPrepare(){return true;};

 /** called just after OnStartUp has finished ...
 virtual bool OnStartUpComplete(){return true;};

 /** make a status string - overload this in a
 virtual std::string MakeStatusString();

 /** called before OnStartUp and before
virtual bool OnProcessCommandLine();

	 /** called when command line is asking
	 virtual void OnPrintHelpAndExit();

	 /** called when command line is asking
	 virtual void OnPrintExampleAndExit();

	 /** called when command line is asking
	 virtual void OnPrintInterfaceAndExit();

	 /** called when command line is asking
	 virtual void OnPrintVersionAndExit();

o p p o r t u n i t y t o c a p t u re
command line options using
MOOS::CommandLineParser

Using the Parser

Built-in Options

A l l A p p s
i n h e r i t a n d
handle these
switches

Part 7

Bridging Communities

Sharing with pShare

UDP (inc. multicast) data sharing between communities

Wildcard Aware
ProcessConfig = pShare

{

Output = src_name = X?, route = fancymachine:9021

Output = src_name = Q?:procA, route = 192.168.4.10:9021

Output = src_name = W∗:∗A, route = multicast_7

}

Forward any two letter variable
beginning with “X” to port 9021 on

“fancymachine”

Multicast Forwarding
ProcessConfig = pShare

{

Output = src_name = X?, route = fancymachine:9021

Output = src_name = Q?:procA, route =multicast_8

Output = src_name = W∗:∗A, route = multicast_7

}

Forward any variable beginning with
“W” from a client ending in “A” to

channel multicast_7

Dynamic Forwarding

On the fly configuration of sharing

And what remains?

Part 8

What am I working on?

• Unit testing suite

• Application level testing suite

• pAntler revisited

• IOS / Android interfaces

• Rich documentation

Big Thanks To

• Battelle for sponsorship (Rob Carnes)

• Mike Benjamin for making everything
happen

• POCO community and F Schaefer (getpot)

• Alon Yaari and Josh Leighton for Beta
Testing

Hope it is helpful

www.themoos.org

