
Michael R. Benjamin ���
MIT Dept. of Mechanical Engineering	

Computer Science and Artificial Intelligence Lab	

Laboratory for Autonomous Marine Sensing Systems	

mikerb@mit.edu	

New Features and Applications
in MOOS-IvP 13.5

Acknowledgements	

• Office of Naval Research (ONR 311) has sponsored MOOS-IvP for nearly 10 years.�
"Dr. Don Wagner, Dr. Behzad Kamgar-Parsi, Dr. Wen Masters.�
• Battelle has sponsored, beginning in 2010, MOOS-IvP, MOOS, the development of our
autonomy course at MIT, the purchase of the Kingfisher platforms, and the build-out of
our new Charles River facilities, and the development of our regression testing code.�

 Dr. Rob Carnes �

Faculty collaborators: �

Prof. Henrik Schmidt �
MIT MechE�

Prof. John Leonard�
MIT MechE/CSAIL �

Prof. Paul Newman �
Oxford�

LT Arthur Anderson �
MIT Navy PhD student �

LT Kyle Woerner�
MIT Navy MS student �

Michael Novitzky�
Georgia Tech Visiting PhD �

Alon Yaari�
MIT Research Scientist �

My group: �

Objectives and Motivations	

•  Algorithms / Software Functionality�
•  Documentation �
•  Verification and Validation �
•  Competitions�
•  Lab sequences�
•  Example Missions�
•  Online Tutorials / Lectures�

Post-graduate�
Academic Research�

Undergrad�
Education �

Industry �
Systems�

Objectives and Motivations	

•  Algorithms / Software Functionality (Stand-by Helm, uField Toolbox, AppCasting)�
•  Documentation (www.moos-ivp.org/download)�
•  Verification and Validation �
•  Competitions (Hazard Search Competition, Hunter-Prey Competition)�
•  Lab sequences (http://oceanai.mit.edu/2680)�
•  Example Missions (www.moos-ivp.org/download)�
•  Online Tutorials / Lectures (http://oceanai.mit.edu/2680)�

Post-graduate�
Academic Research�

Undergrad�
Education �

Industry �
Systems�

Autonomy�

Sensing � Communications�

2.680 Marine Autonomy, Sensing and Communications���
(Funded by Battelle)	

•  Effective autonomy can compensate for limits
in sensing and communications.�

•  Effective communications can compensate for
limits in sensing and autonomy. �

•  Understanding the ocean with marine robotic
platforms.�

•  Educational focus is on autonomous decision
making for marine robotic platforms.�

•  Students use an extensive MIT-developed
autonomy and simulation codebase.�

•  On-board sensor-processing, inter-vehicle
communications.�

Autonomy�

Sensing � Communications�

Class focus: Autonomy, Sensing and Communications�

•  Effective autonomy can compensate for limits in sensing and communications.�
•  Effective communications can compensate for limits in sensing and autonomy.�

2.680 Marine Autonomy, Sensing and Communications���
(Funded by Battelle)	

Autonomy�

Sensing � Communications�

Smart �
Per/vehicle�

Cost �

of vehicles�

System�
Effectiveness�

•  A “smarter” vehicle means more can be done with fewer vehicles.�
•  A “smarter” vehicle means more can be done with a less capable (cheaper) vehicle.�

Bottom line is system effectiveness�
for a given cost.�

2.680 Marine Autonomy, Sensing and Communications���
(Funded by Battelle)	

In-Class Competitions���
Autonomous Front Detection	

Objective: Detect and characterize a moving temperature gradient
Output: Parameters of the gradient: amplitude, period, angle, wavelength, offset, alpha, beta,

 temperature-north, temperature-south.
Given: A simulated CTD sensor and simulated annealer for parameter estimation.
Assignment: Build one or more vehicle behaviors for maneuvering the vehicle to collect CTD measurements.

offset = -90!
angle = -25!
amplitude = 7!
period = 75!
wavelength = 100!

alpha = 400!
beta = 20!
temp_north = 20!
temp_south = 25!

offset = -90!
angle = 5!
amplitude = 20!
period = 200!
wavelength = 200!

alpha = 400!
beta = 20!
temp_north = 20!
temp_south = 25!

Autonomous Front Detection���
Student Competion	

Behavior #1: BHV_GoSideways
- Desired heading along decision line, whichever

direction is closer.

Behavior #2: BHV_WaveFollow
-  Constant desired speed
-  Heading toward hot or cold with small offset
-  Bang-bang setpoint controller to crisscross

wavefront.

Behavior #3: BHV_RubberBand
-  Holds vehicle inside the operation area

Team Entry:
 Rob Truax,
 Isaac Evans •  Detection using three coordinated behaviors

•  Combined using multi-objective optimization

Autonomous Front Detection���
Student Competition	

Behavior #1: BHV_GoSideways
- Desired heading along decision line, whichever

direction is closer.

Behavior #2: BHV_WaveFollow
-  Constant desired speed
-  Heading toward hot or cold with small offset
-  Bang-bang setpoint controller to crisscross

wavefront.

Behavior #3: BHV_RubberBand
-  Holds vehicle inside the operation area

Team Entry:
 Rob Truax,
 Isaac Evans •  Detection using three coordinated behaviors

•  Combined using multi-objective optimization

MIT Autonomy Lab���
At the MIT Sailing Pavilion	

On-campus, nearly year-round facility�
•  Used by MIT 2.680 students, and graduate research for several faculty�
•  Yearly fees support by MIT Mechanical Engineering and Battelle�
•  Lab Equipment and vehicles funded by Battelle�

MIT Autonomy Lab���
At the MIT Sailing Pavilion	

On-campus, nearly year-round facility�
•  Used by MIT 2.680 students, and graduate research for several faculty�
•  Yearly fees support by MIT Mechanical Engineering and Battelle�
•  Lab Equipment and vehicles funded by Battelle�

MIT Autonomy Lab���
At the MIT Sailing Pavilion	

On-campus, nearly year-round facility�
•  Used by MIT 2.680 students, and graduate research for several faculty�
•  Yearly fees support by MIT Mechanical Engineering and Battelle�
•  Lab Equipment and vehicles funded by Battelle�

MIT Autonomy Lab���
At the MIT Sailing Pavilion	

On-campus, nearly year-round facility�
•  Used by MIT 2.680 students, and graduate research for several faculty�
•  Yearly fees support by MIT Mechanical Engineering and Battelle�
•  Lab Equipment and vehicles funded by Battelle�

MIT Autonomy Lab���
At the MIT Sailing Pavilion	

On-campus, nearly year-round facility�
•  Used by MIT 2.680 students, and graduate research for several faculty�
•  Yearly fees support by MIT Mechanical Engineering and Battelle�
•  Lab Equipment and vehicles funded by Battelle�

Outline	

• Objectives and Motivations�
•  The Marine Autonomy Courseware�
"Lectures, Labs, Documentation at http://oceanai.mit.edu/2680�
•  The uField Toolbox�
• AppCasting �
• Changes / Additions to the Helm�

The Shoreside/Vehicle Topology	

Communications Between���
Machines / Vehicles	

MOOS Application �

Machine #2�Machine #1 �
ServerHost = 12.34.56.78�
ServerPort = 9000�
. . .�

ServerHost = 12.34.56.78�
ServerPort = 9000�
. . .�

We’ve seen in our labs that MOOS apps do not necessarily have to be on the
same physical machine running the MOOSDB.�

Communications Between���
Machines / Vehicles	

MOOS Application �

Machine #1 �
ServerHost = 12.34.56.78�
ServerPort = 9000�
. . .�

How do we get two MOOSDB’s (communities) to talk to each other?�

Machine 2�
ServerHost = 12.34.56.78�
ServerPort = 9000�
. . .�

FOOBAR=123!

FOOBAR=123!

When the two machines are on the same network, we can use pShare.�

Inter MOOSDB Communications���
 with pShare	

pShare�

We use pShare for communications between two MOOS communities on the
same network.�

The pShare app is launched on both machines as part of their respective
communities.�

pShare�

pShare Configuration	

We use pShare for communications between two MOOS communities on the
same network.�

ProcessConfig = pShare!
{!
 input = route=localhost:9201!

 output = src_name=VIEW_POLYGON, route=localhost:9202, dest_name=POLYGON!
}!

The port *we* are listening on �

Name of variable locally�

IP address of �
target machine�

Port on which pShare is
listening in the target
community.�

Name on target machine�

The uField Toolbox
(Overview)

The uField Toolbox is:�
• A collection of about a dozen MOOS applications, each a Utility for Fielding
multiple vehicles with a shoreside/topside command-and-control MOOS Community.�

• All applications are documented in the MOOS-IvP Tools document, online. �
 http://oceanai.mit.edu/moos-ivp-pdf/moosivp-tools.pdf�

The uField Toolbox is comprised of three general capabilities: �
1.  Facilitation of Inter MOOSDB Share configuration �
2.  Simulation of Inter-Vehicle Messaging �
3.  Sensor Simulation �

The uField Toolbox
(Overview)

All applications are documented in the MOOS-IvP Tools document, online. �
 http://oceanai.mit.edu/moos-ivp-pdf/moosivp-tools.pdf�

(uField Toolbox Apps)�

The uField Toolbox���
(Overview)	

The uField Toolbox is comprised of three general capabilities: �
1.  Facilitation of Inter MOOSDB Share configuration �

2.  Simulation of Inter-Vehicle Messaging �

3.  Sensor Simulation �

•  pHostInfo �
•  uFldNodeBroker�
•  uFldShoreBroker�

•  uFldNodeComms�
•  uFldMessageHandler�

•  uFldHazardSensor�
•  uFldHazardMgr�
•  uFldHazardMetric�
•  uFldContactRangeSensor�
•  uFldBeaconRangeSensor�

The uField Toolbox	

MOOSDB �

pMarineViewer�

pShare�

WiFi�

MOOSDB � pHelmIvP�

pShare�

Shoreside�
Vehicles�

pNodeReporter�

MOOSDB � pHelmIvP�

pShare�

pNodeReporter�

WiFi�

User

NODE_REPORT!

Other Apps�

Inter-MOOSDB sharing needs to be configured: �

The uField Toolbox	

MOOSDB �

pMarineViewer�

pShare�

WiFi�

MOOSDB � pHelmIvP�

pShare�

NODE_BROKER_PING!
Shoreside�
Vehicles�

pNodeReporter�

uFldShoreBroker�pHostInfo �

MOOSDB � pHelmIvP�

pShare�

pNodeReporter�

WiFi�

User

pHostInfo �

uFldNodeBroker�uFldNodeBroker�

NODE_BROKER_ACK!

Other Apps�

pHostInfo �

We want this to be as automatic as possible.�

The uField Toolbox	

A MOOS app for automatically
determining the local machines IP
address, and publishing it to the
MOOSDB �

pHostInfo �

We want this to be as automatic as possible.�

The uField Toolbox	

We want this to be as automatic as possible.�

uFldNodeBroker�

A MOOS app for �
•  finding a shore side, �
•  determining it’s IP address and

pShare input route, �
•  Auto-configuring its own local

pShare outgoing route�

The uField Toolbox	

We want this to be as automatic as possible.�

uFldShoreBroker�

A MOOS app for �
•  Listening for incoming nodes�
•  Notifying the nodes of the

shoreside IP address and pShare
input route, �

•  Auto-configuring its own local
pShare outgoing route�

The uField Toolbox	

A MOOS app for automatically
determining the local machines IP
address, and publishing it to the
MOOSDB �

pHostInfo �

We want this to be as automatic as possible.�

The pHostInfo Utility	

Purpose: Determine the IP address of the machine.�
"Publish the result in PHI_HOST_IP!

 PHI_HOST_IP = 118.10.24.23!
 PHI_HOST_IP_ALL = 118.10.24.23,169.224.126.40!
PHI_HOST_IP_VERBOSE = OSX_ETHERNET2=118.10.24.23,OSX_AIRPOT=169.224.126.40!

The uField Toolbox���
uFieldNodeBroker	

uFldNodeBroker�

A MOOS app for �
•  finding a shore side, �
•  determining it’s IP address and

pShare input route, �
•  Auto-configuring its own local

pShare outgoing route�

The uField Toolbox���
uFieldNodeBroker	

uFldNodeBroker�

A MOOS app for �
•  finding a shore side, �
•  determining it’s IP address and

pShare input route, �
•  Auto-configuring its own local

pShare outgoing route�

•  Gets local host IP information from pHostInfo.�
•  Pings a candidate shoreside community with information about itself�
 NODE_BROKER_PING = community=henry,hostip=192.168.1.1,port_db=9000,!
 pshare_iroutes=192.168.1.1:9200,timewarp=8 !
•  Receives reply from shoreside with information about the shoreside community.�
 NODE_BROKER_ACK = community=shoreside,hostip=192.168.1.199,port_db=9000,

pshare_iroutes=192.168.1.199:9300,timewarp=8,status=ok!
•  Augments the local pShare configuration �
 PSHARE_CMD = src_name=NODE_REPORT_LOCAL, dest_name=NODE_REPORT, route=192.68.1.199:9300!

The uField Toolbox���
uFldShoreBroker	

uFldShoreBroker�

A MOOS app for �
•  Listening for incoming nodes�
•  Notifying the nodes of the

shoreside IP address and pShare
input route, �

•  Auto-configuring its own local
pShare outgoing route�

Runs in the shoreside �
community�

The uField Toolbox���
uFldShoreBroker	

uFldShoreBroker�

A MOOS app for �
•  Listening for incoming nodes�
•  Notifying the nodes of the

shoreside IP address and pShare
input route, �

•  Auto-configuring its own local
pShare outgoing route�

•  Gets local host IP information from pHostInfo.�
•  Receives a ping from a candidate shoreside community with information about a vehicle.�
 NODE_BROKER_PING = community=henry,hostip=192.168.1.1,port_db=9000,!
 pshare_iroutes=192.168.1.1:9200,timewarp=8 !

•  Sends reply from shoreside to vehicle with information about the shoreside community.�
 NODE_BROKER_ACK = community=shoreside,hostip=192.168.1.199,port_db=9000,

pshare_iroutes=192.168.1.199:9300,timewarp=8,status=ok!

•  Augments the local pShare configuration �
PSHARE_CMD = src_name=NODE_REPORT_LOCAL, dest_name=NODE_REPORT, route=192.68.1.199:9300!

Runs in the shoreside �
community�

The uField Toolbox���
(Overview)	

The uField Toolbox is comprised of four general capabilities: �
1.  Facilitation of Inter MOOSDB Share configuration �

2.  Simulation of Inter-Vehicle Messaging �

3.  Sensor Simulation �

•  pHostInfo �
•  uFldNodeBroker�
•  uFldShoreBroker�

•  uFldNodeComms�
•  uFldMessageHandler�

•  uFldHazardSensor�
•  uFldHazardMgr�
•  uFldHazardMetric�
•  uFldContactRangeSensor�
•  uFldBeaconRangeSensor�

The uFldMessageHander App
Inter-vehicle messaging

NODE_MESSAGE_LOCAL =
“src_node=alpha,dest_node=bravo,
var_name=STATUS,string_var=searching”!

(Some MOOS App)�
Publishes: �

Vehicle alpha (source vehicle)�

uFldMessageHandler
Subscribes/Handles:�

Publishes: �

Vehicle bravo (dest vehicle)�
NODE_MESSAGE = !
 “src_node=alpha,dest_node=bravo,

var_name=STATUS,string_var=searching”!

STATUS = “searching” !

The uFldMessageHander App
Typical Topology

The uFldMessageHandler app is running on all vehicles wishing to receive messages.�

Message Routing	

Message routing is handled on the shoreside �

Vehicle �

Shoreside�

NODE_MESSAGE_LOCAL

NODE_MESSAGE

Vehicle �

NODE_MESSAGE_HENRY

NODE_MESSAGE

Shoreside�

Field�

ProcessConfig = uFieldShoreBroker�
{�
 QBRIDGE = NODE_MESSAGE�
} �

ProcessConfig = uFieldNodeBroker�
{�
 BRIDGE = src=NODE_MESSAGE_LOCAL �
 alias=NODE_MESSAGE�
} �

uField Message Routing	

Message routing is handled on the shoreside �
But it’s not the case that all messages make it through�
They are handled by uFldNodeComms.�

Vehicle �

Shoreside�

NODE_MESSAGE_LOCAL

NODE_MESSAGE

Vehicle �

NODE_MESSAGE_HENRY

NODE_MESSAGE

Shoreside�

Field�

ProcessConfig = uFieldShoreBroker�
{�
 QBRIDGE = NODE_MESSAGE�
} �

ProcessConfig = uFieldNodeBroker�
{�
 BRIDGE = src=NODE_MESSAGE_LOCAL �
 alias=NODE_MESSAGE�
} �

The uFldNodeComms App���
Typical Topology	

The uFldNodeComms app runs on the shoreside, limits intervehicle messaging.�

The uFldNodeComms App���
Typical Application Topology	

The uFldNodeComms configuration parameters:�

ProcessConfig = uFieldNodeComms!
{!
 COMMS_RANGE = 200!
 MIN_MSG_INTERVAL = 60!
 MAX_MSG_LENGTH = 100!
}!

Distance in meters between vehicles�

Min time between messages from a vehicle�

Max chars in a string message�

The uField Toolbox���
(Sensor Simulation)	

The uField Toolbox is comprised of four general capabilities: �
1.  Facilitation of Inter MOOSDB Share configuration �

2.  Simulation of Inter-Vehicle Messaging �

3.  Sensor Simulation �

•  pHostInfo �
•  uFldNodeBroker�
•  uFldShoreBroker�

•  uFldNodeComms�
•  uFldMessageHandler�

•  uFldHazardSensor�
•  uFldHazardMgr�
•  uFldHazardMetric�
•  uFldContactRangeSensor�
•  uFldBeaconRangeSensor�

The uField Toolbox���
(Sensor Simulation)	

The uField Toolbox is comprised of four general capabilities: �
1.  Facilitation of Inter MOOSDB Share configuration �

2.  Simulation of Inter-Vehicle Messaging �

3.  Sensor Simulation �

•  pHostInfo �
•  uFldNodeBroker�
•  uFldShoreBroker�

•  uFldNodeComms�
•  uFldMessageHandler�

•  uFldHazardSensor�
•  uFldHazardMgr�
•  uFldHazardMetric�
•  uFldContactRangeSensor�
•  uFldBeaconRangeSensor�

The uField Toolbox���
(Sensor Simulation)	

The uField Toolbox is comprised of four general capabilities: �
1.  Facilitation of Inter MOOSDB Share configuration �

2.  Simulation of Inter-Vehicle Messaging �

3.  Sensor Simulation �

•  pHostInfo �
•  uFldNodeBroker�
•  uFldShoreBroker�

•  uFldNodeComms�
•  uFldMessageHandler�

•  uFldHazardSensor�
•  uFldHazardMgr�
•  uFldHazardMetric�
•  uFldContactRangeSensor�
•  uFldBeaconRangeSensor�

The uField Toolbox���
(Sensor Simulation)	

The uField Toolbox is comprised of four general capabilities: �
1.  Facilitation of Inter MOOSDB Share configuration �

2.  Simulation of Inter-Vehicle Messaging �

3.  Sensor Simulation �

•  pHostInfo �
•  uFldNodeBroker�
•  uFldShoreBroker�

•  uFldNodeComms�
•  uFldMessageHandler�

•  uFldHazardSensor�
•  uFldHazardMgr�
•  uFldHazardMetric�
•  uFldContactRangeSensor�
•  uFldBeaconRangeSensor�

Outline	

• Objectives and Motivations�
•  The Marine Autonomy Courseware�
•  The uField Toolbox�
• AppCasting �
• Changes / Additions to the Helm�
• Ongoing / Future Efforts�

AppCasting ���
in MOOS	

•  The biggest headache of users new to MOOS (students in MIT 2.680) was the
derailment of a mission due to an unnoticed configuration or runtime error.�

•  Debugging typically involves re-launching with app terminal windows open and
analyzing expected vs. observed output.�

•  Deploying multiple vehicles each with multiple MOOS Apps means a lot of
terminal windows are open.�

•  On a remotely deployed vehicle, one cannot ssh in and see any application
terminal output at all! �

•  Since terminal output is rarely viewable for the above practical reasons, apps
are rarely designed with much thought put into their terminal output.�

 … Introducing AppCasting in MOOS�

AppCasting was motivated by a few observations:

Without AppCasting	

With AppCasting	

MOOSDB

MOOS Application

•  Incoming Mail
•  Outgoing Mail
•  Status Report

MOOS Application I/O	

mail

•  A typical MOOS application interacts by way of mail and the MOOSDB.�

Terminal

Standard Output

•  Most applications also produce debugging/status info to the terminal.�
•  Often this format is an afterthought.�
•  Often this content is out of sight, if a terminal is not open.�

Typical Terminal Output	

Typical terminal output of a MOOSApp will show: �
•  Startup summary and health status, �
•  A simple heart beat character or other simple health indicator. �

pLogger �

Terminal

MOOSDB

MOOS Application

Status Report

AppCast
(serialized)

Standard Output

Introducing AppCasting	

AppCast

•  Generates an AppCast representing its status report. �
•  The AppCast is sent to the terminal standard output. �
"(From the user’s perspective it looks like any other MOOS application.)�

•  The AppCast is also serialized and sent to the MOOSDB.�

An AppCast-Enabled MOOS App: �

An Example AppCast���
From the uProcessWatch MOOSApp	

Application �
Iteration
Counter �

List of
Strings�

List of
Events�
(Limited)�

Terminal

MOOSDB

MOOS Application

AppCast

Standard Output

MOOS Application

AppCast Viewer

AppCast Viewing	

• Now a user can see application output even if an app initially was sending terminal output
to /dev/null.�

• A separate MOOS utility application may be run to view AppCasts from any AppCast-enabled
application.�

Status Report

AppCast

MOOSDB

MOOS App

AppCast

MOOS Application

AppCast Viewer

MOOS App

MOOS App

MOOS App

AppCast

AppCast

AppCast

AppCast Viewing	

• The AppCast viewer may “connect” to multiple applications. �
• The AppCast viewer can switch between “channels”.�
• The AppCast viewer brings Config and RunTime alerts to the user’s attention even when not
monitoring that channel. �

AppCast Viewing	

• The AppCast viewer may connect to multiple vehicles, diving down to the vehicle and
application it selects.�

MOOSDB

MOOS Application

AppCast Viewer

Shoreside Field

AppCast Viewing	

MOOSDB

MOOS Application

AppCast Viewer

AppCast Viewers	

What does an AppCast Viewer do?�
• Sends AppCast requests to clients.�
• Renders received AppCasts.�
• Allows the user to select/switch between different MOOSApps and vehicles�

(1) uMAC� (2) uMACView � (3) pMarineViewer�

Currently there are three AppCast Viewer applications: �

Terminal�
(good for ssh’ing into a
remote vehicle)�

GUI (fltk)� GUI (fltk)�

AppCast Viewing���
with the uMACView Tool	

• uMACView is a stand-alone, GUI-Based Viewer�
• Launch from the command-line or w/ pAntler.�

Shoreside �Field�

MOOSDB

Select the�
Vehicle/Node�

Select the�
MOOSApp �

View the �
AppCast �

AppCast Viewing���
with uMAC 	

• Terminal interface provides most of what the GUI tools provide.�
• Primary advantage: When a remote vehicle is not sending AppCasts to a shoreside, user can ssh into
the vehicle and launch uMAC to debug.�

Shoreside �Field�

MOOSDB

The AppCast Structure���
AppCast Config Warnings	

• An AppCast is an instance of the AppCast C++ class.�
•  It contains: �

Config warnings:�

•  Usually created at
App startup time.�

•  Unlimited in
quantity.�

Config �
Warnings�

Run �
Warnings�

General �
messages �

Events�

The AppCast Structure���
AppCast Run Warnings	

• An AppCast is an instance of the AppCast C++ class.�
•  It contains: �

Config �
Warnings�

Run �
Warnings�

General �
messages �

Events�

Run warnings: �

•  Created typically well
after launch time
when something goes
wrong.�

•  Limited in quantity,
(don’t want the size
of an appcast to
grow unbounded)�

•  Provisions are made
in AppCast Viewers to
ensure RunWarnings
come to the user’s
attention.�

The AppCast Structure���
AppCast Messages	

• An AppCast is an instance of the AppCast C++ class.�
•  It contains: �

Config �
Warnings�

Run �
Warnings�

General �
messages �

Events�

Messages: �

•  Free in format. Up to
the user to pick the
information and
layout.�

•  Typically “cleared” on
each generation of an
appcast. �

•  Just a list of strings.�
•  Tables, columns etc.

done by the user.�

The AppCast Structure���
AppCast Events	

• An AppCast is an instance of the AppCast C++ class.�
•  It contains: �

Config �
Warnings�

Run �
Warnings�

General �
messages �

Events�

Events: �

•  Created typically
after launch time
when something
“notable” happens.�

•  Limited in quantity.
(don’t want the size
of an appcast to
grow unbounded)�

•  Each event is just a
string.�

How do you make an �
“AppCast-Enabled”�
MOOS application?�

On-Demand AppCasting	

•  Apps must register for APPCAST_REQ mail. �
 An AppCast request will renew a token for some number of seconds�
"Until the token expires, the app generates an appcast repeatedly.�

•  Even while appcasting, the app only generates an AppCast every N secs.�
 The app keeps track of the last real-time appcast generation.�

•  Each app handles a config setting indicating whether an xterm is open.�
 This setting is a global variable in the .moos config file.�

So a new generic
“AppCastingMOOSApp”
class is used:�

Minimizes boilerplate in
individual apps.�

CMOOSApp

AppCastingMOOSApp

Subclass�

Your MOOSApp

Subclass�

To implement on-demand appcasting, a few things need to be done in each application.�

Using the AppCastingMOOSApp Superclass���
Six Steps	

Step 1: Subclass the AppCastingMOOSApp Superclass�
Step 2: Invoke two superclass methods in your Iterate()�

Step 3: Invoke a superclass method when you register variables. �
Step 4: Invoke a superclass method during OnNewMail().�

Step 5: Invoke a superclass method during OnStartUp()�

Step 6: Implement your buildReport() function.�

Trivial, 1-2 line changes
in each case�

This is where you get
to be creative about
what your app reports.�

Using the AppCastingMOOSApp Superclass���
Your Class Definition	

Step 1: Subclass the AppCastingMOOSApp Superclass�

#include “MOOS/libMOOS/Thirdparty/AppCasting/AppCastingMOOSApp.h”!
class YourMOOSApp : public AppCastingMOOSApp!
{!
 // All your normal class declaration stuff!

 bool buildReport();!
};!

 0!
 1!
 2!
 3!
 4!
 5!
 6!

The buildReport() function
is a virtual function in
the superclass. It is where
you can do the work of
constructing an AppCast. !

Using the AppCastingMOOSApp Superclass���
Modifying Your Iterate() and Registrations	

Step 2: Invoke two superclass methods in your Iterate()�

bool YourMOOSApp::Iterate()!
{!
 AppCastingMOOSApp::Iterate();!

 // Do all your normal Iterate stuff!

 AppCastingMOOSApp::PostReport();!
 return(true);!
};!

0!
1!
2!
3!
4!
5!
6!
7!
8!

Updates the current MOOSTime,
and # of iterations. !

Determines if an AppCast is
warranted, and invokes
buildReport() if so. !

Step 3: Invoke a superclass method when you register variables. �

void YourMOOSApp::registerVariables()!
{!
 AppCastingMOOSApp::RegisterVariables();!

 // Do all your other registrations!
}!

0!
1!
2!
3!
4!
5!

The superclass will register
for APPCAST_REQ, indicating
another app, like uMAC, is
interested in appcasts from
this app.!

Using the AppCastingMOOSApp Superclass���
Modifying Your OnNewMail() and OnStartUp()	

Step 4: Invoke a superclass method when you handle mail. �

bool YourMOOSApp::OnNewMail(MOOSMSG_LIST &NewMail)!
{!
 AppCastingMOOSApp::OnNewMail(NewMail);!

 // Do all your other normal mail handling.!
}!

0!
1!
2!
3!
4!
5!

The superclass will handle
the APPCAST_REQ mail.!

Step 5: Invoke a superclass method during OnStartUp()�

void YourMOOSApp::OnStartUp()!
{!
 AppCastingMOOSApp::OnStartUp();!

 // Do all your other startup stuff!
}!

0!
1!
2!
3!
4!
5!

The superclass will
register for APPCAST_REQ,
indicating another app,
like uMAC, is interested in
appcasts from this app.!

END	

