

Using the MOOS-IvP with machine learning and AUV behaviors for target classification based on acoustic scattered fields

Erin Fischell Henrik Schmidt LAMSS

oast3 data file free for 3_50 deg - N - Az= 0

F= 9000.0Hz SD= 3.0M

Goal: Use acoustic scattered field to learn things about target.

the scattered field

Classification Methodology

- Vehicle Behaviors, Signal Processing and Machine Learning used for target processing
- Support Vector Machines (SVMs) for actual classification
 - Acoustic amplitudes mapped to geometric feature space
- Two Parts:
 - Model Training and Analysis
 - Classification

Model Training and Analysis (Offline)

- Offline process (not run onboard)
- Input: 3D scattered field data (real or simulated)
- Output: SVM model, confidence model, critical waypoints for AUV behaviors

Classification (Onboard)

- Run on the vehicle
- Input: SVM model, confidence model, critical waypoints, target information
- Action: MOOS applications and behaviors, interfacing with third party tools (svm_light, Bellhop)
 - Outputs: Classification and associated confidence
 - Integrate this with MOOS-IvP

Experiment Setup- GOATS'14

- CMRE (Harbor Environment)
 - 8-12 m water depth
- Classification Spherical v. Cylindrical Targets
- Source ~50-75m from target(s), 7-11kHz
- LAMSS AUV Unicorn
 - Bluefin 21" AUV
 - 16 element nose array
- Goals
 - Collect full acoustic data sets
 - Classify targets in real time on the vehicle

LAMSS MOOS-IvP Simulation Environment

- Vehicle and environment simulation
- High fidelity acoustic simulation
- Integrating classification processing chain with this

COMPACT OF THE

Classification- Vehicle Behaviors

Behavior Concept

- Hit "Critical Waypoints" selected from test examples
 - Selected based on greatest classification confidence across all frequencies and target types
 - Order does not matter from a classification standpoint
- Criteria for a good path:
 - Path length
 - Obey vehicle turn radius and depth change constraints
 - Remain broadside to the target as much as possible to ensure best acoustic data

"Broadsideness"

- Keep vehicle's array perpendicular to target
- Gives best acoustic data
- Metric: weighted sum of angle differences from broadside
- broadside_cost = (cos(dh_1) + cos(dh_2) + cos(dh_3) + cos(dh_4) + 4)*arcLen/4

Arc Path Planner – pOrderWaypoints

- Calculates when DEPLOY_MISSION= Pathfollow
- Orders waypoints using a* search
- Uses circular segments between waypoints.
- Obeys turning radius constraint and max pitch angle/depth change
- Cost includes weighted combination of "Broadsideness", depth change and arc length
- Publishes ORDERED_WAYPOINTS message, CLASSIFY_TARGET flag
- Alternate formulation uses lines instead of arcs

Arc Path Planner - Paths

- Takes in ORDERED_WAYPOINTS
- Outputs PATH_UPDATE
 - Passes points one-at-a-time to bhv_pathfollow
 - This allows for path planning updates (including any future online implementations)
 - separate depth and x,y behavior commands
 - x,y behavior info includes center of arc prescribed by pOrderWaypoints

Translating Paths with IvP

- Arc Pathfollow behavior
 - Runs when MODE == PATHFOLLOW
 - Updates with PATH_UPDATE
 - Hit waypoint while broadside to a centerpoint
 - Updates desired heading (course)
- Depth behavior
 - PATH_UPDATE messages include depth
 - Simple depth behavior handles depth changes (commands prompted w/ each new waypoint)

Arc Pathfollow

- Heading
 - In general: desired heading is tangent to the arc (always circles the centerpoint)
 - Two regimes:
 - Broadside (far from next_wpt)
 - Capture (near to next_wpt)
- Speed
 - Whatever is sent in updates (or in initialization)

Arc Pathfollow

- Broadside
 - Desired heading is heading broadside to centerpoint
 - Maintains heading_broadside when on that radius
 - Adjusts heading to return to broadside_radius if it gets off

Arc Pathfollow

- Capture -
 - r <= wpt_radius, full weight on heading to the next_wpt
 - r <1.5*wpt_radius, linear interpolation between broadside and waypoint headings
 - r<radius, the waypoint is "hit", move on to next waypoint (pManageWaypoints)

CAUNT OF THE

WIND OF THE

WIND OF THE

WIND OF THE

COUNT OF THE

Classification- Processing Chain

Classification Processing Chain

- Runs when CLASSIFY_TARGET is published by pOrderWaypoints
- Parallel simulation and real time processing chains
 - Allows testing of behaviors and classification in simulation environment
 - Identical interface to simulation and runtime data

Classification Processing Chain: Real Time

Simulation Tools

- Bellhop
 - Ray tracing acoustic simulator
- uSimActiveSonar
 - Calls on Bellhop
 - Constructs time series on simulated array
- OASES SCATT
 - High fidelity target scattering model
 - Includes bottom scattering
- uSimSCATT
 - Uses SCATT model to output amplitude for current vehicle position for particular target

Classification Processing Chain: Simulated Data

- Developed broadside pathfollow behaviors for sampling acoustic fields (hit key waypoints while staying broadside to target)
- Integrated classification processing chain with moos-ivp simulation environment
- Real time classification of targets (real or simulated) onboard a (real or simulated) vehicle

Moving Forward

- GOATS'14 Experiment
- Further development of sampling behaviors
- Cleaning up the offline processes
 - Full integration of SCATT with moos-ivp simulation environment
 - Model generation on the fly with new SCATT models

Acknowledgements

- This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 0645960, and by ONR Grant No. N00014-08-1-0011
- Thanks to LAMSS: A. Balasuriya, M. Benjamin, S. Fried, S. Danesh, I. Katz, S. Petillo, T. Schneider, A. Yaari
- Thanks also to my advisor, Henrik Schmidt

INT COLUMN