

Next Generation Bluefin-9:

A COTS AUV Enabling On-going and Advanced Platform Research

Cheryl Mierzwa, Systems Engineer Mikell Taylor, Systems Engineer

31 July 2013

553 South Street

Quincy, Massachusetts 02169 USA

T. +1 (617) 715-7000

www.bluefinrobotics.com

Overview

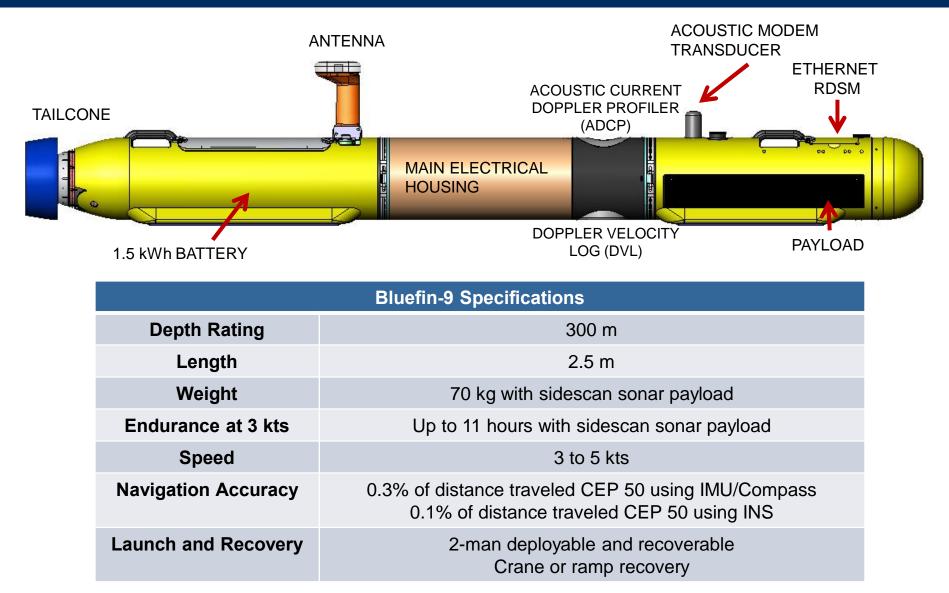
- " Sealion II Bluefin-9
- " The Next Generation Bluefin-9
- " Vehicle Overview
- " Payload Modularity
- " Empty Payload Options
- " Removable Data Storage Modularity
- " Summary
- " Questions

The Status Quo: Sealion II

- 2-man-portable vehicle weighing in at about 60 kg
- ["] Designed specifically for mine hunting operations
- Designed for the Marine Sonic 900/1800 kHz SSS
- ["] Includes a turbidity sensor and video camera
- " Does not have the ability to swap payloads
- ["] 4GB removable data storage module (RDSM)

- MOOS-IvP backseat driver installed on CPU in the main electrical housing in July 2011
- Capable of running AUV software that plug and play on a Gumstix via the RDSM USB port demonstrated July 2013

Next Generation Bluefin-9



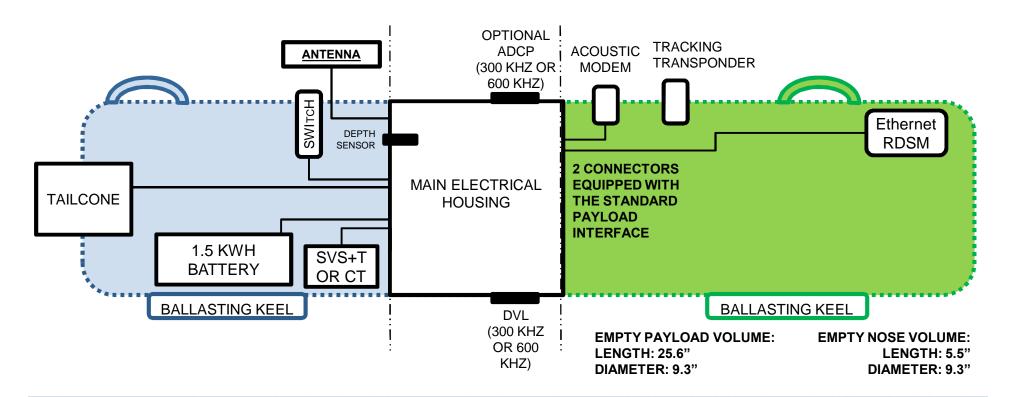
- Maintain 2-man portability and recoverability
- Increase flexibility (for customization) and modularity (for operation) compared to existing Sealion II model
 - Adds in the capability of a modular free-flooded payload
 - Modularity in manufacturing to reduce any added lead time
 - Modularity in maintenance
- "Bring the **technology** up to date
- ["] Increase commonality with the Bluefin-12 and Bluefin-21
- ["] Standard payload interface for **rapid integration** of sensors such as:
 - Side scan sonar
 - Multibeam
 - **Empty Payload**

Vehicle Overview

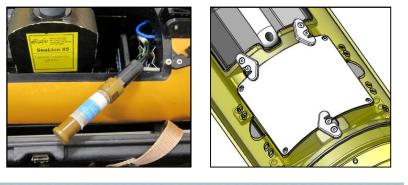

Swapping Payloads

This Bluefin-9 allows for swappable payloads. Whether the user wants to swap out a SSS payload and install a camera payload, the user must do the following steps:

- 1. Power off the vehicle
- 2. Remove the section joining band mechanism using an Allen wrench provided with the system
- 3. Disconnect the payload wet cable connection to the main electronics housing
- 4. Connect the new payload wet cable connection to the main electronics housing
- 5. Reinstall the section joining band mechanism using an Allen wrench
- 6. Power on the vehicle and select the new payload configuration in the Operator Interface


A trained operator can swap a payload section in under 15 minutes. No specialized tools are required, and no pressure seals are breached during the removal or installation of a payload section.

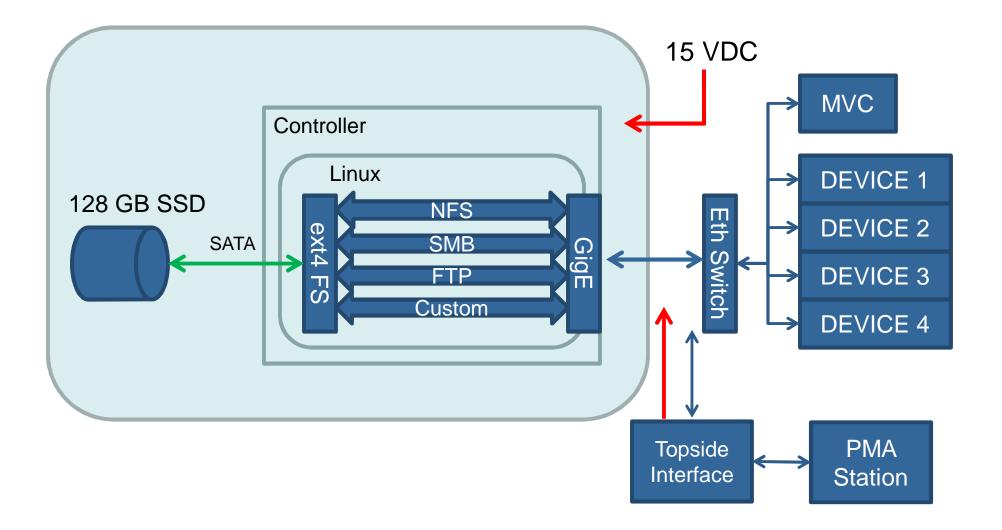
Standard Payload Interface


- " Empty Payload: the user has the ability to put their sensors into the payload section
- ["] This has been done in the past with Bluefin-21 and Bluefin-12 vehicles, now we are expanding this opportunity to our Bluefin-9 vehicles
- Bluefin will provide an empty section (shown in green) with all standard electrical interfaces and a RDSM if desired
- ["]Bluefin will provide strict constraints on section buoyancy, trim, and vertical stability

Ethernet RDSM Features

- " High capacity solid state drive
- " Fast data transfer rates
- " Low power
- " Gigabit Ethernet Interface
- " Supports multiple file systems
- "Easily removable and swappable for fast turnaround . no tools required
- "Wet-mateable connector
- " Lightweight and compact

Bluefin-9 Ethernet RDSM



Specifications	
Configuration	Computer On Module (COM) on COTS carrier board
Storage Capacity	128 GB industrial-temp MLC SATA SSD
Raw TCP throughput **	626 Mbits/s down, 917 Mbits/s up
NFS storage throughput **	68 MBytes/s read, 27 MBytes/s write
Supported Network Speeds	10/100/1000 MBit
Supported Protocols	NFS, SMB, FTP
Operating System	Debian GNU/Linux 7
Internal Operating Temperature	-40°C to 85°C (-40°F to 185°F) ambient
Dimensions	159mm W x 138mm L x 76mm H (6.25+W x 5.45+L x 3+H)
Weight	2 kg
Depth Rating	300m
Connector	Subconn Low Profile Power Ethernet
Housing Material	Aluminum 6061-T6, Hard Anodized

** Note: does not include losses due to wet cabling

Ethernet RDSM Integration Architecture

"Third parties may want to run processing tasks on RDSM Currently: Gumstix in BF9 RDSM enclosure

" Options:

User replaces contents of eRDSM, maintains the file storage for the vehicle

Internal volume: 49in³

User brings own COM module

- This involves minimal mechanical/manufacturing impact
- The carrier board stays the same; board-set height is part of the standard (carrier, module, heat spreader, standoffs)

User installs software under existing Linux installation on eRDSM board

User plugs a Gumstix into carrier board USB port

Summary

- ⁷ Upgrades to the Bluefin-9 have provided a customizable, flexible, and inexpensive AUV system to support sensor development and autonomy for all users
- The free-flooded payload section provides sensor integration
- " Electrical and software standard payload interface allows for rapid sensor integration
- The new innovative flexible interface of the eRDSM can straightforwardly accommodate MOOS-IvP, Backseat Driver, and other third-party interfaces to the vehicles autonomy

Questions?

Cheryl Mierzwa: cmierzwa@bluefinrobotics.com

Mikell Taylor:

mtaylor@bluefinrobotics.com