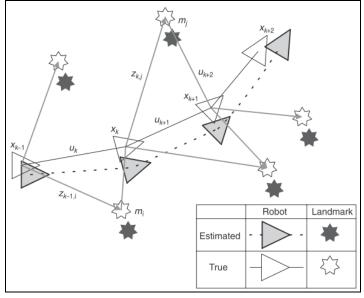
Using MOOS-IvP and Goby2 to Adapt Acoustic Data Rates for Improvement of Bandwidth in Collaborative AUV Missions

Dainis Nams 30 July 2013

Outline

- Background
 - Collaborative Mine Countermeasures Missions (MCM)
 - Simultaneous Localization and Mapping (SLAM)
 - Acoustic Communications
- Related Work
- Objectives
- Testing
 - Experimental Equipment
 - Timeline
 - Preliminary Trials
- Adaptive Algorithms


Background Mine Countermeasures Missions (MCM)

- Mine countermeasures missions are used to locate and neutralize anti-ship mines.
- To successfully search for mines an AUV must be able to:
 - Localize itself
 - Detect mines
 - Generate a map
- Mine hunting in large areas can be made faster by having multiple AUVs cooperate.
- My focus is on improving the localization and map-making for multiple AUV missions.

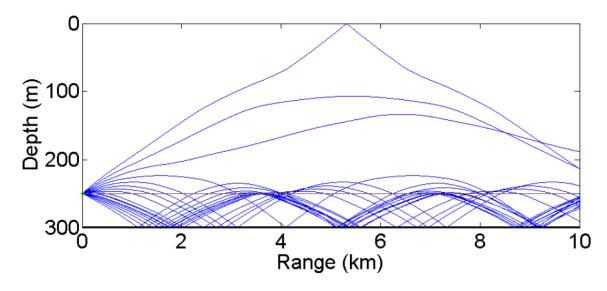
Background Simultaneous Localization and Mapping (SLAM)

- The SLAM problem requires a vehicle be capable of entering an unknown environment and building a consistent map while simultaneously locating itself within the map.
- Numerous single-vehicle flavours of SLAM have been implemented on aerial, terrestrial, and underwater robots.

Basic SLAM Map-Making [1]

Background Multi-Vehicle SLAM

- The SLAM algorithm can be extended across multiple vehicles.
- Collaborative SLAM has been successfully implemented by several researchers to teams of terrestrial and of aerial vehicles.
- It has not been successfully implemented underwater.
- The primary obstacle is the poor quality of acoustic inter-vehicle communications


Multi-Vehicle Terrestrial SLAM Robots [2]

Background Acoustic Communications

- Water absorbs sound energy (reducing range).
- Sound reflects and refracts about horizontal barriers (fracturing signals).

Example Acoustic Transmission Paths [3]

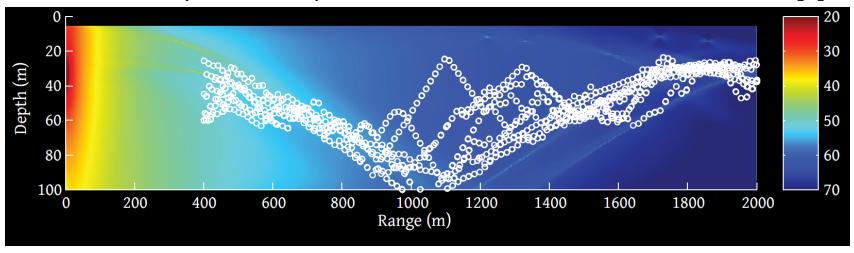
[3] H Riksfjord, O T Haug, and J M Hovem, "Underwater Acoustic Networks - Survey on Communication Challenges with Transmission Simulations," in Sensor Technologies and Applications, 2009. SENSORCOMM '09. Third International Conference on, 2009, pp. 300-305.

Background Acoustic Communications

 WHIO micromodems support several data rates, which increasingly trade off reliability for higher bandwidth.

WHOI Micromodem Data Rate Options [4]

Modem Rate	Modulation Type	Max Bytes per packet	Bandwidth (bps)
0	FSK	32	80
1	PSK	192	498
4	PSK	512	1301
5	PSK	2048	5388


Background Acoustic Communications

- Most collaborative AUV operations use conservative modem settings to ensure reliability (i.e. 80 bits per second with WHOI micromodem).
- The acoustic channel, while dynamic, can at times allow for higher bandwidth communications than currently used.
- Significant bandwidth increases could be obtained if the AUV adapted its behaviour based on the current channel state.
- Alternatively, AUV energy could be conserved by not transmitting if conditions make success unlikely.

Related Work Schneider & Schmidt

 A model-based behaviour has been developed to adapt AUV depth online in order to maximize acoustic connectivity with remote source.

AUV Position (White Dots) Overlaid on Modeled Transmission Loss [5]

 This is accomplished by using online acoustic modelling (i.e. Bellhop) to estimate signal quality as a function of depth.

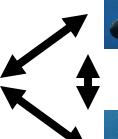
Inspiring Minds

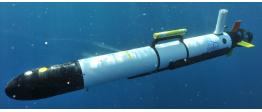
Related Work Schneider & Schmidt

- This approach is well suited to situations where the mission is not altitude-constrained.
- The objective in MCM operations is to map the seafloor, which requires constant-altitude flights to obtain consistent sidescan sonar data.
- Depth and path are determined by the search algorithms, and are not available to be modified to improve communications.
- The modem transmission settings are available to be adapted without impacting the MCM search operation.

Objectives

- Develop and test a behaviour-based AUV communications agent that adapts acoustic modem transmit rates online to achieve the highest reasonably reliable data rate given current conditions.
- If reliable communications are not probable given current conditions, transmissions should cease to save energy.


Testing


Experimental Equipment

- Hardware:
 - Two IVER2 AUVs
 - One Searobotics 2600 catamaran USV
 - All equipped with WHOI micromodem and PSK coprocessor

Searobotics 2600 USV [6]

IVER2 AUV [7]

Testing

Experimental Equipment

- Software:
 - Ubuntu Linux 10.04 LTS backseat PC
 - MOOS-IvP for payload autonomy
 - Goby2 communications suite for modem interface

Testing Timeline

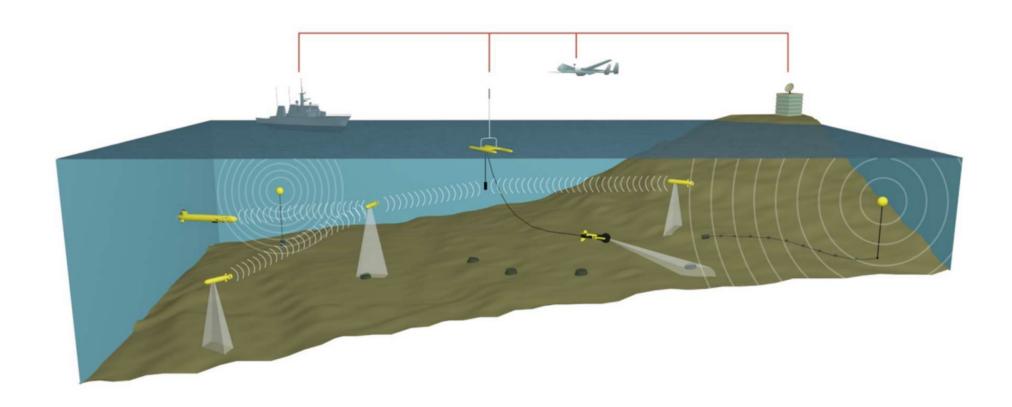
3 Searials Validate algorithms 2) Develop adaptive algorithms The strategy of the strategy o

Now

Fall 2013 Winter 2014 Spring 2014

Testing Preliminary Trials

- Location: Bedford Basin (~40m depth).
- System setup: Two-way communication between AUV and stationary modem.
- AUV behaviour: pre-programmed lawnmower patterns at a variety of depths, distances, and orientations as compared to the stationary modem.
- Comms behaviour: alternate messages between modems.
 Cycle through WHOI micromodem data rates, recording success rates as function of modem channel info, AUV position, and environmental conditions.


Adaptive Algorithm Assumptions

- Assume that AUV does not have sound speed profile information.
- Algorithm must use the following inputs to estimate current channel capacity
 - Current fleet geometry
 - History of transmission successes & failures
 - History of modem channel estimation parameters

Adaptive Algorithm To be determined

- How do the algorithm inputs correlate with acoustic channel capacity?
 - AUV fleet geometry variables (i.e. position, orientation, speed, etc)
 - AUV modem diagnostic outputs (i.e. ambient noise at receiver, received packet statistics, etc)
- What method(s) are best to control the adaptive behaviour?
 - Probabilistic algorithms
 - Reinforcement learning
 - Neural networks.

Questions?

