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What we would like to do

mission description in a natural, structured, language

AUV should always be safe

Objective is to inspect areas A1,A2, . . . ,An

AUV must adapt to the environment, avoiding any obstacles it encounters

If a mine is detected, AUV should explore surrounding areas for additional mines

If a ship is detected, AUV should track it to gather information

When the mission is completed, AUV should return to the base

mission description in a mathematical model

“(always safe) and (eventually (inspect areas A1,A2, . . . ,An and
(if obstacle then avoid) and

(if elevation change then adapt) and
(if indication of mines then explore surrounding area) and

(if indication of ship then track until identified))
followed by return to the base)”

automatically plan motions to accomplish the mission
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Motivation for Proposed Approach

Formulating a generalized mission with a series of objectives over a time
span rather than a set of waypoints with specific tasks

Leveraging state-of-the-art motion planning to navigate through complex
environments while acomplishing mission objectives

Having the ability to explore new areas not included in initial mission plan
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Computational Challenges

Decision-making mechanisms in response to global and local events

Operating in confined areas and waterways close to the ocean floor

Varying ocean currents
Complex ocean-floor topography
Miscellaneous obstacles, e.g., wreckage, boulders, fishing nets

Robustly adapting to changing environmental and contextual conditions

Accounting for the underlying AUV dynamics
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Overall Proposed Framework

  

Command Center

mission
structured temporal language
e.g., (always safe) and (eventually 
(inspect areas A1, A2, …, An and (if 

obstacle then avoid) and (if ship then 
track)) followed by return to the base)

Mission 
Planner

MOOS-IvP

current goal
e.g., inspect Ai; avoid 
obstacle; track ship; 

return to base  

trajectory
collision free, dynamically 

feasible, near ocean floor 

current map
e.g., elevation, currents, 
obstacles, ship locations

sensor information
e.g., depth, detect 

obstacle, ship, mine

Motion 
Planner

Map 
Module

feedback information
e.g., progress so far, probability of 
success, difficulties encountered, 
suggested mission modifications
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Focus of this talk: Combined Mission and Motion Planning

  

Command Center

mission
structured temporal language
e.g., (always safe) and (eventually 
(inspect areas A1, A2, …, An and (if 

obstacle then avoid) and (if ship then 
track)) followed by return to the base)

Mission 
Planner

current goal
e.g., inspect Ai; avoid 
obstacle; track ship; 

return to base  

trajectory
collision free, dynamically 

feasible, near ocean floor 

current map
e.g., elevation, currents, 
obstacles, ship locations

sensor information
e.g., depth, detect 

obstacle, ship, mine

Motion 
Planner

Map 
Module

feedback information
e.g., progress so far, probability of 
success, difficulties encountered, 
suggested mission modifications

MOOS-IvP

Behaviors
e.g., follow trajectory, avoid 
collision, periodic surface, 
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Mission Specifications via Linear Temporal Logic (LTL)

LTL provides an expressive mathematical model to express tasks

LTL combines propositions Π with logical (and [∧], or [∨], not [¬]) and
temporal operators (next [©], eventually [♦], until [∪], always [�]), e.g.,

coverage: “search areas A1, . . . ,An in any order” ♦A1 ∧ . . . ∧ ♦An

sequencing: “inspect A1,A2,A3 in order’ ♦A1 ∧ (♦A2 ∧ (♦A3))

partial ordering: “visit A1 or A2 before A3 or A4”
(¬A3 ∧ ¬A4) ∪ ((A1 ∨ A2) ∧©(A3 ∨ A4))

conditions: “if ostacle detected then avoid; if moving object detected, then
track until identified;”

� ((obstacle ⇒©avoid) ∧ (moving object ⇒ (track ∪ identified)))

McMahon, Plaku Mission Specifications via Linear Temporal Logic (LTL) 7



Mission Specifications via Linear Temporal Logic (LTL)

Sophisticated missions can be constructed by composing simpler ones

Mission for inspecting offshore platform can use propositions to express status
(damage or functional) of pipes, valves, anchors, anchor lines, flotation chambers

Partial ordering can be used to prioritize the inspection of critical components

Conditional constructs can be employed to carry out closer inspections when there
is some indication of damage of a particular component

Avoidance and persistency can ensure a safe minimum distance away from the
platform components, while still being close enough to carry out inspections

Coverage criteria can ensure that all components have been inspected
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Related Work: Controller Synthesis from LTL Specifications

Construct a controller that drives the robot in such a way that the resulting
trajectory satisfies the LTL formula φ

[Kress-Gazit et al., 2007–2013; Feinekos et al., 2009, 2011; Belta et al., 2008–2013; LaValle, 2011]

Decoupled Framework

Decompose 2D environment into convex polygons, e.g., triangles

Use model checking to compute a sequence of decomposition regions
τ = τ1, τ2, · · · the robot needs to visit in order to satisfy φ

task: start in π1, and then visit π3, π4 in any order, and then return to π1

while avoiding π2 and π3 �π0 ∧ ♦(π2 ∧ ♦(π3 ∧ ♦(π4 ∧ (¬π2¬π3) ∪�π1)))

solution: 5, 41, 1, 25, 24, 8, 10, 6, 37, 35, 14, 16, 15, 34, 18, 21, 19, 36, 38, 23, 4, 44, 5

Use a controller, e.g., potential field, to drive the robot from one decomposition
region to the next as specified in τ
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Related Work: Sampling-based Motion Planning

Expand a tree T of collision-free and
dynamically-feasible motions

select state s from which to expand tree

sample control input u

generate new trajectory by applying u to s

Successful motion planners: RRT, TRRT, RRT*, EST, PDST, KPIECE, SYCLOP, . . .
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Related Work: Sampling-based Motion Planning

Expand a tree T of collision-free and
dynamically-feasible motions

select state s from which to expand tree

sample control input u

generate new trajectory by applying u to s

Successful motion planners: RRT, TRRT, RRT*, EST, PDST, KPIECE, SYCLOP, . . .

. . . but sampling-based motion planning on its own
cannot take into account LTL specifications
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Proposed Approach: Coupled Mission and Motion Planning

discrete layer: guide motion planning

continuous layer: expand tree of feasible motions

interplay: update guide to reflect motion-planning progress

Builds upon coupled framework proposed by [Plaku, Kavraki, Vardi, TRO 2010; Plaku
IROS 2011; Plaku TAROS 2012]

Generally applicable to high-dimensional systems with nonlinear dynamics

Works in 3D environments

McMahon, Plaku Approach 11



Roadmap Abstraction in Configuration Space

Roadmap captures connectivity of the free configuration space

Roadmap provides simplified abstraction layer

configuration space ignores dynamics, so easier to plan

Used to facilitate motion planning in the full state space, taking AUV
dynamics into account

task: “visit any two of the regions 1,2,3,4”

0

1 2

34

56
p1

p2

p3

p4

p1, p3, p4

p1, p2, p4

∅, p1 ∅, p2

∅, p3∅, p4

∅

p1, p3, p4p2, p3, p4

p1, p2, p3

converted to LTL automaton

Sample collision-free configurations

Connect neighboring configurations
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Guiding the Search: Combining Roadmap with LTL Automaton

Guiding path σ = [〈z1, c1〉, . . . , 〈zn, cn〉] connects initial pair 〈zinit, cinit〉 to an
accepting automaton state so that LTL formula is satisfied

0

1 2

34

56
p1

p2

p3

p4

p1, p3, p4

p1, p2, p4

∅, p1 ∅, p2

∅, p3∅, p4

∅

p1, p3, p4p2, p3, p4

p1, p2, p3

Guiding path provides an approximate path of how sampling-based
motion-planning should expand the motion tree to satisfy LTL formula

Search conducted over graph RA = (VRA,ERA)
RA obtained by combining implicitly roadmap RM with automaton A

Any graph search over RA can be used, e.g., DFS, BFS, Dijkstra, A*
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Expanding the Tree of Motions

task: “visit any two of the regions p1, p2, p3, p4”
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Interplay Among the Layers

discrete layer: guide motion planning

continuous layer: expand tree of feasible motions

interplay: update guide to reflect motion-planning progress

McMahon, Plaku Approach 15
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Simulation Environment

Based on MOOS-IvP (uSimMarine) (Benjamin, Schmidt, Newman, Leonard: J.

Field Robotics 2010)

Models vehicle dynamics
Takes into account drift caused by ocean currents
Operates in 3D environments

For planning purposes, abstracted as

snew ← simulator(s, u,drift, dt)

Simulated ocean floor created by
adding random peaks

Height at grid cell based on distance
to closest peak

Heightmap converted to 3D triangular
mesh

AUV needs to operate close to ocean
floor

Provides initial validation
McMahon, Plaku Experiments and Results 16



Some Examples of Mission Specifications via LTL

Each area of interest Ai

defines a proposition πAi

holdsπAi
(s) is true iff state

s places AUV in Ai

Compute a collision-free and dynamically-feasible trajectory ζ which satisfies

1 Inspect all:

φ1 =
n∧

i=1

♦πAi

2 Visit A1,A2, . . . ,An in succession, i.e.,

φ2 = β ∪ (πA1 ∧ ((πA1 ∨ β) ∪ (πA2 ∧ (. . . (πAn−1 ∨ β) ∪ πAn)))),

where β = ∧ni=1¬πi
McMahon, Plaku Experiments and Results 17



Results: Computational Time
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(a) task φ1: “all” (b) task φ2: “sequencing”

prior work: Plaku [TAROS 2012] – no roadmap abstraction

new work: Plaku and McMahon [TAROS 2013] – with roadmap abstraction
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Results: Trajectory Cost
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(a) task φ1: “all” (b) task φ2: “sequencing”

path← shortest path in abstract graph formed by roadmap and LTL automaton
path is in configuration space, ignores dynamics

traj← solution trajectory obtained in full state space
normalize← ||traj ||/||path||
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High Level Planning in the MOOS-IvP Framework

Use the high level planner to generate feasible trajectories that satisfy the LTL
formula while employing MOOS-IvP for reactionary behaviors

Create an IvP behavior that accepts planned trajectories in state space(e.g.,
a dynamic set of configurations, X,Y,Heading,Speed,Depth)

Use existing IvP behaviors to help handle dramatic changes to the
environment (e.g., Avoid Collision)
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Integrating LTL Planner with MOOS-IvP

Using MOOS-IvP and the LTL framework to satisfy the statement
(always safe) and (eventualy inspect areas A1,A2,A3)

  

A
2

A
3

A
1

The inital trajectory is generated by the
LTL planner

A unkown obstacle is suddenly discovered
in the planned path

Reactive behaviors in MOOS-IvP prevent
the AUV from colliding with the obstacle

The LTL planner generates a new
trajectory for the AUV to follow
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Future Work

IvP behaviors to follow trajectories within configuration space

MOOS bathymetric mapping application

Incorporate ocean models to plan with predicted currents

Re-planing framework that incorporates state information that exists within
the MOOSDB

Perform experimental evalution using Bluefin 21” vehicle
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Summary

Framework couples

Discrete planning to take into account LTL specifications with

Sampling-based motion planning to handle motion dynamics and obstacles

Reactionary behaviors to handle unforseen dramatic changes in the
environment

Roadmap abstraction combined with LTL automaton effectively guides search in
the continuous state space

Experiments with accurate AUV simulators provide promising initial validation
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