
Michael R. Benjamin

Dept. of Mechanical Engineering, MIT
Computer Science and Artificial Intelligence Lab

mikerb@csail.mit.edu

Writing Behaviors for the IvPHelm – Basic
Overview and Summary of Tools

Outline�

 The IvP Behavior Interface�

 Writing Your First Behavior and Augmenting the Helm�

 Overview of IvP Functions�

 The Reflector Tool�

 The ZAIC Tool�

 Rendering IvP Functions�

How Behaviors Fit in the
Helm�

1

2

3

4

5

Mail is read.

Helm mode is determined.

Behaviors generate their output.

Competing behaviors are resolved.

The Helm posts its results

Waypoint

Controlled Vehicle

Obstacle
Vehicle

Waypoint

Controlled Vehicle

Behavior Output �

Behavior�

•  Each behavior produces two kinds of output (to the helm): �
"(1) MOOS Var/Data Pairs�
"(2) Objective Function(s)�

•  The Helm produces one kind of output – MOOS Var/Data Pairs.�
 (It is afterall simply one other MOOS application)�

MOOS Var/Data Pairs�

Objective Function(s)�

IvPSolver�

Another Behavior�

MOOS Var/Data Pairs�

MOOSDB �

For Example: �

DESIRED_HEADING = 87 �
PROGRESS_SUMMARY = “Exit Stage Ready”�

Behavior Run Conditions�

•  Conditions are set in the helm configuration for each behavior. �
"condition = COLLISION_AVOIDANCE == true�
"condition = STATION_KEEP == true�
"condition = (DEPLOY==true) and (SURVEYING == false)�

Behavior = BHV_Loiter!
{!
 name = loiter!
 priority = 100!
 condition = MODE==LOITERING!

 speed = 1.3!
 clockwise = false!
 radius = 4.0!
 nm_radius = 25.0!
 polygon = format=radial, x=0, y=-75, radius=40, pts=6!
}!

Example: The Loiter behavior in the Charlie Example Mission �

Behavior Run Conditions �
Determine�

Behavior Run States�

•  Upon each helm iteration the behaviors’ run-state is evaluated.�

"(1) Running (conditions have been met)�

"(2) Active (A running behavior that produces an objective function)�

"(3) Idle (conditions have NOT been met)�

"(4) Completed (A behavior that completed previously)�

Running!Idle! Completed!Active!

Behavior State and �
Behavior Output �

onRunState()�

onIdleState()�

onCompleteState()�

onIdleToRunState()�

onRunToIdleState()�

On each iteration of the helm, the helm operates on each behavior: �

(1)  Determines the vehicle state (whether its run conditions have been met).�
(2)  Depending on the state (and state on previous iteration) calls one or more

standard functions: �

MOOS Var/Data Pairs�

MOOS Var/Data Pairs�

MOOS Var/Data Pairs�

MOOS Var/Data Pairs�

MOOS Var/Data Pairs�

Objective Function(s)�

Outline�

 The IvP Behavior Interface�

 Writing Your First Behavior and Augmenting the Helm�

 Overview of IvP Functions�

 The Reflector Tool�

 The ZAIC Tool�

 Rendering IvP Functions�

Extending the Helm’s Behaviors�

•  All behaviors are a subclass of the IvP parent class.�
"(Just like all MOOS apps are a subclass of the MOOSApp parent class.)�

BHV_Shadow	 BHV_Avoid_Collision	 BHV_Avoid_Obstacles	 BHV_CutRange	 BHV_GoToDepth	

Is-a Native Behaviors

IvPBehavior	

BHV_Loiter	

BHV_Waypoint	

BHV_YourBehavior(s)	

3rd Party Extensions
Is-a

•  Two Issues in Adding New Behaviors: �
"(1) What’s involved in building one?�
"(2) How to augment the helm and use it once its built?�
"" "Extending a MOOS-IvP Autonomy System and Users Guide to the IvPBuild Toolbox

 MIT CSAIL Technical Report TR-2009-37�

Behavior Overloaded Functions�

IvPBehavior�
virtual BehaviorReport onRunState()�
virtual void onIdleState()�
virtual void onComplete()�
virtual void onRunToIdleState()�
virtual void onIdleToRunState()�
virtual bool setParam(parameter, value)�

•  The IvPBehavior has six key virtual functions.�
•  The primary work of the behavior author is to overload these functions

with the functionality unique to the author’s design.�

BHV_YourBehavior�
BehaviorReport onRunState()�
void onIdleState()�
void onComplete()�
void onRunToIdleState()�
void onIdleToRunState()�
bool setParam(parameter, value)�

Subclass�

BHV_YourBehavior�
BehaviorReport onRunState()�
void onComplete()�
bool setParam(parameter, value)�

•  These are not “pure” virtual functions�
•  Behavior author has the option to not

implement them. Defaults exist.�

Behavior Overloaded Functions�

IvPBehavior�
virtual BehaviorReport onRunState()�
virtual void onIdleState()�
virtual void onComplete()�
virtual void onRunToIdleState()�
virtual void onIdleToRunState()�
virtual bool setParam(parameter, value)�

•  The IvPBehavior has six key virtual functions.�
•  The primary work of the behavior author is to overload these functions

with the functionality unique to the author’s design.�

BHV_YourBehavior�
BehaviorReport onRunState()�
void onIdleState()�
void onComplete()�
void onRunToIdleState()�
void onIdleToRunState()�
bool setParam(parameter, value)�

Subclass�

BHV_YourBehavior�
BehaviorReport onRunState()�
void onComplete()�
bool setParam(parameter, value)�

•  These are not “pure” virtual functions�
•  Behavior author has the option to not

implement them. Defaults exist.�

The OnRunState() Function �

IvPBehavior�
virtual BehaviorReport onRunState()�
virtual IvPFunction* onRunState()�
virtual void onIdleState()�
virtual void onComplete()�
virtual void onRunToIdleState()�
virtual void onIdleToRunState()�
virtual bool setParam(parameter, value)�

•  The “onRunState()” function holds the primary implementation of the behavior.�
•  It builds and returns an IvPFunction (Objective Function) to the helm.�

•  An objective function is a mapping from possible helm decisions to a utility value.�

f(x1, ..., x3) = utility!
f(heading, speed, depth) = utility!

•  An IvP objective function is objective function of a particular form.�

Outline�

 The IvP Behavior Interface�

 Writing Your First Behavior and Augmenting the Helm�

 Overview of IvP Functions�

 The Reflector Tool�

 The ZAIC Tool�

 Rendering IvP Functions�

Objective Functions and IvP Functions
An objective function is a function where the domain is “decision space”, and the range

represents utility to the decision-maker’s goals or objectives. �

Underlying
Function

Objective Functions and IvP Functions

An IvP function is a piecewise linear approximation of an objective
function, over a discrete decision space.�

Underlying
Function

Piecewise Linear
Approximation

525 Pieces

Objective Functions and IvP Functions

Underlying
Function

Piecewise Linear
Approximation

100 Pieces

An IvP function is a piecewise linear approximation of an objective
function, over a discrete decision space.�

Objective Functions and IvP Functions

Underlying
Function

Piecewise Linear
Approximation
10,000 Pieces

An IvP function is a piecewise linear approximation of an objective
function, over a discrete decision space.�

Piecewise Linear Functions in IvP�

Interval Boundary: �
"10 ≤ x ≤ 20 �
"14 ≤ y ≤ 21 �

Interior Function: �
"f(x,y) = 4x + 8y + 7 �

Piecewise linear (IvP) functions: �
•  Each point in the decision space belongs

to exactly one piece.�
•  Each pieces has an interval boundary

and a linear interior function.�

Advantages: �
•  Any underlying function can be

represented.�
•  Pieces need not be uniformly distributed.�
•  Extends to n dimensions.�
•  Syntax can be exploited by the solution

algorithms. �

The IvPBuild Toolbox�

Q: How are IvP Functions built?�
A: The IvPBuild Toolbox �

The IvPBuild Toolbox is a �
• " C++ Library, �
• " Distributed with the MOOS-IvP tree.�
• " A set of tools for building IvP functions from a user’s underlying

objective function.�
• " Meant to be invoked from within a behavior implementation –

from within the onRunState() function. �

The IvPBuild Toolbox contains two basic tools:�
•  The ZAIC tool – for building 1D objective functions.�
•  The Reflector tool – for building IvP Functions in N dimensions.�

Outline�

 The IvP Behavior Interface�

 Writing Your First Behavior and Augmenting the Helm�

 Overview of IvP Functions�

 The Reflector Tool�

 The ZAIC Tool�

 Rendering IvP Functions�

The Reflector Tool�
(Pure Uniform)�

Method 1 - Pure Uniform Basic idea: �
• "Function is composed of uniform piecewise
linearly defined pieces.�

Pros: �
•  "Simple to use.�
•  "Requires no insight into underlying function.�
•  "Can explore time, size, accuracy tradeoff space.�

Cons:�
• "Treats all areas of the underlying function
equally.�

• "Does not capitalize on insight into underlying
function.�

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �

The Reflector Tool�
(Uniform with Prioritized Augmentation)�

Method 2 - Uniform with Priority-Based Augmentation Basic idea: �
"Start with a uniform function and further refine
the pieces that have the worst error (prioritized
during first linear regression phase).�

Pros: �
• " Simple to use. No insight into underlying
function required�

• " Can explore time, size, accuracy tradeoff space.�

Cons:�
• "Does not always catch the pieces with worst
error.�

• "Does not capitalize on insight into underlying
function.�

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �

The Reflector Tool�
(Uniform with Prioritized Augmentation)�

Method 2 - Uniform with Priority-Based Augmentation

* function ranges from 0-100

As a linear approximation is calculated, keep
track of the observed error.�
Store pieces in a fixed-length priority queue
for later revisit. �

“observe the error”�

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �

The Reflector Tool�
(Uniform with Prioritized Augmentation)�

Method 2 - Uniform with Priority-Based Augmentation

* function ranges from 0-100

As a linear approximation is calculated, keep
track of the observed error.�
Store pieces in a fixed-length priority queue
for later revisit. �

“further refine”�

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �

The Reflector Tool�
(Uniform with Prioritized Augmentation)�

Method 2 - Uniform with Priority-Based Augmentation
As a linear approximation is calculated, keep
track of the observed error.�
Store pieces in a fixed-length priority queue
for later revisit. �

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �

The Reflector Tool�
(Uniform with Prioritized Augmentation)�

Method 2 - Uniform with Priority-Based Augmentation Basic idea: �
"Start with a uniform function and further refine
the pieces that have the worst error (prioritized
during first linear regression phase).�

Pros: �
• " Simple to use. No insight into underlying
function required�

• " Can explore time, size, accuracy tradeoff space.�

Cons:�
• "Does not always catch the pieces with worst
error.�

• "Does not capitalize on insight into underlying
function.�

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �

The Reflector Tool�
(Uniform with Focused Augmentation)�

Basic idea: �
"Start with a uniform function and further
refine the pieces in areas thought to need
more pieces for error reduction �

Pros: �
• "Simple to use. Capitalizes on insight of
underlying function.�

• "Can explore time, size, accuracy tradeoff
space.�

Cons:�
•  "Not all functions have area suitable for
focused refinement.�

•  "Requires insight into underlying function.�

Method 3 - Uniform with Focused Augmentation

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �

The ZAIC Tool�

Method 4 - ZAIC Peaks

180 270 90 0 360

100

50

Summit

Peak-width

Base-width

Summit-delta

Basic idea: �
"1D Functions with one or more peaks. Identify the
peak properties and the IvP function is generated.�

Pros: �
"Simple to use. Very few pieces.�
"As many peaks as desired.�

Cons:�
"Only suitable for 1D objective functions.�

1

2

3 4

5

6

IvP Function:
(1)  0 ≤ x ≤ 45 y = 0
(2)  46 ≤ x ≤ 90 y = 1.89x - 85
(3)  91 ≤ x ≤ 180 y = 0.17x + 70
(4)  181 ≤ x ≤ 270 y = -0.17x + 130
(5)  271 ≤ x ≤ 315 y = -1.89x + 595
(6)  316 ≤ x ≤ 359 y = 0

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The ZAIC Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations: �
"(1) ZAIC_PEAKS�
"(2) ZAIC_LEQ �
"(3) ZAIC_HEQ �

Outline�

 The IvP Behavior Interface�

 Writing Your First Behavior and Augmenting the Helm�

 Overview of IvP Functions�

 The Reflector Tool�

 The ZAIC Tool�

 Rendering IvP Functions�

Rendering IvP Functions�

Two tools for rendering IvP Functions�

(1) uFunctionVis: For rending IvP Functions during missions (typically sim)�

(2) alogview: For rendering IvP Functions post-mission from log files.�

The uFunctionVis Tool: �

• A separate MOOSApp that subscribes for IvP Functions posted by the helm�
• The IvPHelm posts all objectives functions to the MOOSDB for rendering and
debugging purposes. All posted to the variable BHV_IPF.�

The uFunctionVis Tool�

uFunctionVis�

The uFunctionVis Tool: �

• A separate MOOSApp that subscribes for IvP Functions posted by the helm�
• The IvPHelm posts all objectives functions to the MOOSDB for rendering and
debugging purposes. All posted to the variable BHV_IPF.�

The uFunctionVis Tool�

The uFunctionVis Tool:�

• A separate MOOSApp that subscribes for IvP Functions posted by the helm�
• The IvPHelm posts all objectives functions to the MOOSDB for rendering and
debugging purposes. All posted to the variable BHV_IPF.�

The uFunctionVis Tool�

The alogview Tool:�

• An off-line (non-MOOS) tool for rendering alog files.�
• Contains native capability for rendering IvP functions from the helm.�

The alogview Tool�
(Part of the AlogToolbox)�

