
NURC- Partnering for Maritime
Innovation

BHV_OpRegionBounce:

an OpRegion that can bounce you back

Stephanie Kemna

kemna@nurc.nato.int

MOOS-DAWG 2011
MIT, Cambridge, MA, USA

2PUBLIC RELEASE

NATO Undersea Research Centre:
Underwater acoustics and ASW

− Cooperative Anti-Submarine Warfare

− Autonomous Naval Mine Countermeasures

− Ship and Port Protection

− Marine Mammal Risk Mitigation

− Maritime Situational Awareness

− Environmental Knowledge &
Operational Effectiveness

1959: SACLANT

NATO maritime and transformational requirements

Seagoing research: Maritime innovation in NATO Nations

3PUBLIC RELEASE

OEX AUVs: Groucho & Harpo

3

4PUBLIC RELEASE

MIT/moos-ivp: BHV_OpRegion

If the vehicle hits the limit for perimeter, depth
or altitude:

 BHV_ERROR:

all DESIRED_* values to zero

Why is this a problem?

5PUBLIC RELEASE

March 2011 Engineering Trial

6PUBLIC RELEASE

March 2011 Engineering Trial (2)

 Area with high fishing activity

 Vehicle with waypoint close to perimeter

 No communications with vehicle for a long,
long time

 Fear of the AUV having hit the perimeter and
surfacing (due to positive buoyancy)

7PUBLIC RELEASE

Solution: Bounce

In case of OpRegion failure:

 Perimeter: bounce away from perimeter

 Depth/Altimeter: bounce to 'higher' depth

This will keep the vehicle at depth and safe.

8PUBLIC RELEASE

Behaviour Design

Starting from BHV_OpRegion

 Add perimeter bounce (for every polygon)

– orthogonal to perimeter

 Add depth bounce (for depth & altitude)

– bounce to 'higher' depth

 Both: bounce buffer & no_zone

9PUBLIC RELEASE

Bounce buffer & no_zone

buffer ::
activates bounce, utility: linear increase
for distance from buffer to limit.

no_zone_factor :: [0 – 1]
buffer*factor = part with highest utility

10PUBLIC RELEASE

for every polygon

if distToPoly < bounce_buffer

then for every vertex i

if distToVertex < bounce_buffer

compute vertex angle a_i (from North)

a_i += 90 // orthogonal bounce

w_i = 1- (distToVertex – no_zone)

bounce_buffer

w_i *= maxutil

if w_i > maxutil

w_i = maxutil

Perimeter Bounce:
calculate course vectors

weight w_i:
0 to maxutil,
linear increase
with distance

11PUBLIC RELEASE

Perimeter Bounce:
combine course vectors

// rescale all weights so that the max is 100
// scale the weight of the bhv inversely

for every a/w combo
determine maxWeight

factor = m_maxutil/maxWeight;
w_i *= factor;
m_pwt_course = m_priority_wt/factor;

for every a/w combo

create a ZAIC_PEAK component(a_i,w_i)

extract the ZAIC IvP course function

rescale, because
bhv weight (pwt)
rather than util
should reflect bhv
importance/
influence

12PUBLIC RELEASE

if depth > (max_depth - depth_buffer)

safe_depth0 = max_depth - depth buffer - no_zone

w0 = 1-(((max_depth-no_zone)-depth)/depth_buffer)

if w0 > maxutil

w0 = maxutil

Depth Bounce (1):
calculate depth vector for Depth

max_depth

depth_buffer

no_zone

safe_depth

13PUBLIC RELEASE

if altitude < (min_altitude + depth_buffer)

wanted_alt = min_altitude + depth_buffer + no_zone

diff_altitude = wanted_alt - curr_alt

safe_depth1 = depth – diff_altitude

w1 = 1-((curr_alt-(min_alt+no_zone))/depth_buffer)

if w1 > maxutil

w1 = maxutil

Depth Bounce (2):
calculate depth vector for Altitude

convert
from
altitude to
depth
for
correct
command

min_altitude

depth_buffer

no_zone

safe_depth

14PUBLIC RELEASE

if (depth emergency && altitude emergency)

if (w0 > w1)
factor = maxutil/w0
w0 = maxutil
w1 = w1*factor

if (w1 > w0)
factor = maxutil/w1
w0 = w0*factor
w1 = maxutil

if (w0 = w1)
w0 = maxutil
w1 = maxutil

Depth Bounce:
combine depth vectors (1)

rescale so that
utilities are
normalized to
[0 - maxutil] given
the highest
calculated weight

15PUBLIC RELEASE

if (m_priority_wt > 100)

w{0/1} *= m_priority_wt/100

m_pwt_depth = w0 if it was highest, else w1

for safe_depth0 && safe_depth1, if present,

create a ZAIC_PEAK component(safe_depthi,wi)

extract the ZAIC IvP depth function

Depth Bounce:
combine depth vectors (2)

16PUBLIC RELEASE

if depth_emergency && perimeter_emergency

* rescale lower_pwt function by higher_pwt

final_pwt = higher_pwt

ipf = coupler.couple(course ZAIC, depth ZAIC,
 rel_pwt_course, rel_pwt_depth)

ipf->setPWT(final_pwt);

else
output the one, or the other, or neither

BHV_OpRegionBounce:
couple course and depth functions

17PUBLIC RELEASE

BHV_OpRegionBounce:
coupler issues

BUT coupler seems to not properly process

the relative weights, therefore:

 BHV_OpRegionBounce

 BHV_OpRegionBounceDepth

18PUBLIC RELEASE

Testing - simulation

depth ok depth ¬ok

perimeter ok

perimeter ¬ok

2 polygons ¬ok

depth ok depth ¬ok

perimeter ok

perimeter ¬ok

2 polygons ¬ok

altitude ok altitude ¬ok

19PUBLIC RELEASE

Testing – simulation, results

20PUBLIC RELEASE

Testing: at sea : Groucho

21PUBLIC RELEASE

Testing: at sea : results Groucho
Perimeter Bounce

22PUBLIC RELEASE

Testing: at sea : Harpo

23PUBLIC RELEASE

Testing: at sea : results Harpo
Perimeter Bounce

24PUBLIC RELEASE

Testing: at sea : results Harpo
Depth Bounce

25PUBLIC RELEASE

Summary

 BHV_OpRegion's produced error upon

OpRegion failure is not (always) desirable

for AUVs.

 BHV_OpRegionBounce creates a bounce

orthogonal for perimeter, up for depth

 Tested in simulation and at sea

26PUBLIC RELEASE

Conclusions / Future

 To be used for our future sea trials.

 Danger: infinite loops

- careful mission planning

 Distribute / merge into BHV_OpRegion

27PUBLIC RELEASE

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

