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NATO Undersea Research Centre: 
Underwater acoustics and ASW

− Cooperative Anti-Submarine Warfare

− Autonomous Naval Mine Countermeasures

− Ship and Port Protection

− Marine Mammal Risk Mitigation

− Maritime Situational Awareness

− Environmental Knowledge &
Operational Effectiveness

1959: SACLANT

NATO maritime and transformational requirements

Seagoing research: Maritime innovation in NATO Nations
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OEX AUVs: Groucho & Harpo
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MIT/moos-ivp: BHV_OpRegion

If the vehicle hits the limit for perimeter, depth 
or altitude:

 BHV_ERROR:

all DESIRED_* values to zero

Why is this a problem?
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March 2011 Engineering Trial
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March 2011 Engineering Trial (2)

 Area with high fishing activity

 Vehicle with waypoint close to perimeter

 No communications with vehicle for a long, 
long time

 Fear of the AUV having hit the perimeter and 
surfacing (due to positive buoyancy)
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Solution: Bounce

In case of OpRegion failure:

 Perimeter: bounce away from perimeter

 Depth/Altimeter: bounce to 'higher' depth

This will keep the vehicle at depth and safe.
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Behaviour Design

Starting from BHV_OpRegion

 Add perimeter bounce (for every polygon)

– orthogonal to perimeter

 Add depth bounce (for depth & altitude)

– bounce to 'higher' depth

 Both: bounce buffer & no_zone
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Bounce buffer & no_zone

buffer ::
activates bounce, utility: linear increase
for distance from buffer to limit.

no_zone_factor :: [ 0 – 1 ]
buffer*factor = part with highest utility
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for every polygon

if distToPoly < bounce_buffer

then for every vertex i

if distToVertex < bounce_buffer

compute vertex angle a_i (from North)

a_i += 90 // orthogonal bounce

w_i = 1- (distToVertex – no_zone)

bounce_buffer

w_i *= maxutil

if w_i > maxutil

w_i = maxutil

Perimeter Bounce:
calculate course vectors

weight w_i: 
0 to maxutil, 
linear increase 
with distance
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Perimeter Bounce:
combine course vectors

// rescale all weights so that the max is 100
// scale the weight of the bhv inversely

for every a/w combo
determine maxWeight

factor = m_maxutil/maxWeight;
w_i *= factor;
m_pwt_course = m_priority_wt/factor;

for every a/w combo

create a ZAIC_PEAK component(a_i,w_i)

extract the ZAIC IvP course function

rescale, because 
bhv weight (pwt) 
rather than util 
should reflect bhv 
importance/ 
influence
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if depth > (max_depth - depth_buffer)

safe_depth0 = max_depth - depth buffer - no_zone

w0 = 1-(((max_depth-no_zone)-depth)/depth_buffer)

if w0 > maxutil

w0 = maxutil

Depth Bounce (1):
calculate depth vector for Depth

max_depth

depth_buffer

no_zone

safe_depth
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if altitude < (min_altitude + depth_buffer)

wanted_alt = min_altitude + depth_buffer + no_zone

diff_altitude = wanted_alt - curr_alt

safe_depth1 = depth – diff_altitude

w1 = 1-((curr_alt-(min_alt+no_zone))/depth_buffer)

if w1 > maxutil

w1 = maxutil

Depth Bounce (2):
calculate depth vector for Altitude

convert 
from 
altitude to 
depth
for
correct
command

min_altitude

depth_buffer

no_zone

safe_depth
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if (depth emergency && altitude emergency)

if (w0 > w1)
factor = maxutil/w0
w0 = maxutil
w1 = w1*factor

if (w1 > w0)
factor = maxutil/w1
w0 = w0*factor
w1 = maxutil

if (w0 = w1)
w0 = maxutil
w1 = maxutil

Depth Bounce:
combine depth vectors (1)

rescale so that 
utilities are 
normalized to 
[0 - maxutil] given 
the highest 
calculated weight 
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if (m_priority_wt > 100)

w{0/1} *= m_priority_wt/100

m_pwt_depth = w0 if it was highest, else w1

for safe_depth0 && safe_depth1, if present,

create a ZAIC_PEAK component(safe_depthi,wi)

extract the ZAIC IvP depth function

Depth Bounce:
combine depth vectors (2)
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if depth_emergency && perimeter_emergency

* rescale lower_pwt function by higher_pwt

final_pwt = higher_pwt

ipf = coupler.couple(course ZAIC, depth ZAIC, 
  rel_pwt_course, rel_pwt_depth)

ipf->setPWT(final_pwt);

else
output the one, or the other, or neither

BHV_OpRegionBounce:
couple course and depth functions
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BHV_OpRegionBounce:
coupler issues

BUT coupler seems to not properly process

the relative weights, therefore:

 BHV_OpRegionBounce

 BHV_OpRegionBounceDepth
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Testing - simulation

depth ok depth ¬ok

perimeter ok

perimeter ¬ok

2 polygons ¬ok

depth ok depth ¬ok

perimeter ok

perimeter ¬ok

2 polygons ¬ok

altitude ok altitude ¬ok
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Testing – simulation, results
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Testing: at sea : Groucho



21PUBLIC RELEASE

Testing: at sea : results Groucho
Perimeter Bounce
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Testing: at sea : Harpo
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Testing: at sea : results Harpo
Perimeter Bounce
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Testing: at sea : results Harpo
Depth Bounce
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Summary

 BHV_OpRegion's produced error upon 

OpRegion failure is not (always) desirable 

for AUVs.

 BHV_OpRegionBounce creates a bounce 

orthogonal for perimeter, up for depth

 Tested in simulation and at sea
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Conclusions / Future

 To be used for our future sea trials.

 Danger: infinite loops

- careful mission planning 

 Distribute / merge into BHV_OpRegion
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Questions
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