
http://launchpad.net/goby

Toby Schneider
MIT/WHOI Joint Program

Henrik Schmidt
MIT Laboratory for Autonomous Marine Sensing Systems

Plus contributions from Goby Developers Team
launchpad.net/~goby-dev

Goby:
A Framework for Scientific

Autonomous Marine Vehicle Collaboration

gobysoft.org
http://launchpad.net/goby

Perfection is achieved, not when there
is nothing more to add, but rather
when there is nothing more to take
away.

— Antoine de Saint-Exupéry, Terre des Hommes (1939)

gobysoft.org
http://launchpad.net/goby

Why is marine autonomy difficult?

Physical problems:

Expensive vehicles•	

Limited power•	

Poor communications•	

Human problems:

Lack of interoperability standards•	

Lack of networking / computer systems expertise•	

Lack of comprehension of scientific needs by computer folks•	

Nasty complexities

gobysoft.org
http://launchpad.net/goby

Goby-•	 Core is an open framework for communication
based on ZeroMQ:
 - Inside a vehicle (UNIX sockets, TCP / UDP)
 - Between vehicles over ethernet links (TCP / UDP)
 - Between different autonomy systems (MOOS, LCM...)
 - Amongst applications written in 20+ languages
 - Using different messaging protocols
(CMOOSMsg, Google Protocol Buffers, LCM types,
boost::serialization...)

Goby-•	 Core also includes an
 - SQLite3 / PostgreSQL logger (goby_database)
 - Web browser based scope, command, etc. tool
 (goby_liaison)

What is Goby?

gobysoft.org
http://launchpad.net/goby

Goby-•	 Protobuf
 - implements Goby-Core for C++ and Google Protocol
Buffers
 - is a high quality, easy to learn replacement for exist-
ing architectures like MOOS and LCM for new projects.

Goby-•	 Acomms (another talk) provides a field-tested
networking system for acoustic and other slow links
that seamlessly integrates into Goby-Protobuf

Goby-•	 MOOS provides
- pAcommsHandler & iCommander acomms apps
- a MOOS to Goby gateway
- .alog file to/from SQLite3 conversion tools.
- CMOOSMsg to Protobuf translators

What is Goby?

gobysoft.org
http://launchpad.net/goby

Much of Goby-Core (and the Protobuf implementation)
was motivated to write the “next generation” MOOS.

What works in MOOS:

Discrete processes•	

Publish / subscribe•	

Easy to learn•	

Choice of a high quality, general purpose language (C++)•	

Why Goby-Protobuf?

gobysoft.org
http://launchpad.net/goby

MOOS: Untyped variables lead to trouble in large projects

Data sources (e.g. sensors) provide objects not single sca-
lars or strings. Examples:
 - vehicle position and Euler angles.
 - acoustic environment

MOOS requires either

 - splitting the object into scalars (problems “restitch-
ing”)
 - creating custom strings: costly in programmer time,
CPU time, and prone to subtle errors.

Goby-Protobuf: Typed Messages

gobysoft.org
http://launchpad.net/goby

Goby: Strictly typed variables allow compile time type
checking and integrated support for arbitrarily complex
objects.

Static types allows Doxygen-style analysis of messaging

Goby-Protobuf: Typed Messages

message HelloWorldMsg
{
 required string telegram = 1;
 required uint32 count = 2;
}

class HelloWorld1
 : public goby::core::Application
{
 void loop()
 {
 static int i = 0;

 HelloWorldMsg msg;
 msg.set_telegram("hello world!");
 msg.set_count(++i);

 publish(msg);
 }
};

int main(int argc, char* argv[])
{ return goby::run<HelloWorld1>(argc, argv); }

Google Protobuf

C++

gobysoft.org
http://launchpad.net/goby

MOOS: Configuration is prone to syntactical and type errors

CProcessConfigReader does not provide

•	Checking	for	values	that	shouldn’t	exist

•	Checking	that	required	values	do	exist

•	Type	checking	on	values

Other oddities include

•	Removal	of	all	spaces	from	strings

•	Confusion	between	CMOOSFileReader::GetValue
(reads from entire file) and CProcessConfigReader::Get
ConfigurationParam (reads from block)

•	Difficulty	in	reading	repeated	values

Goby-Protobuf: Configuration

gobysoft.org
http://launchpad.net/goby

Goby: Configuration schema allows strict behind-the-
scenes validation

Application author schema:

Valid configuration file:

Invalid configuration file (caught at launch):

Goby-Protobuf: Configuration

speed: “high”
prt: "/dev/ttyUSB1"

message MyConfig {
optional double speed = 1 [default=3];
required string port = 2;
}

speed: 34.25
port: "/dev/ttyUSB1"

wrong type

typo - no field “prt”

gobysoft.org
http://launchpad.net/goby

MOOS: Messaging is done synchronously (CommsTick
frequency)

MOOS messaging is done on a regular frequency, leading
to artificial and unnecessary latencies.

Goby: Messages are delivered asynchronously, so laten-
cies are governed by contraints of the physical link(s)
only.

Goby-Protobuf: Asynchronous

time

sender publish time + link latency

1 / loop_freq
mail handler
loop()

time

sender publish time + link latency + time to next CommsTick

1 / AppTick
OnNewMail()
Iterate()

gobysoft.org
http://launchpad.net/goby

“Legacy code” often differs from its suggested
alternative by actually working and scaling.

— Bjarne Stroustrup,
 <http://www2.research.att.com/~bs/bs_faq.html#legacy>

gobysoft.org
http://launchpad.net/goby

Much good work has already been done and tested, so we

Want to use existing marshalling schemes (e.g. •	
CMOOSMsg), existing transports (MOOS TCP) to inter-
face “legacy” code to Goby-Protobuf

Want to use favorite programming language •	
(good code in several languages is better than bad code
in one)

How?

Split the transport (e.g. TCP) and data marshalling (e.g.
Protobuf) into separate entities.

Goby-Core: Interoperability

gobysoft.org
http://launchpad.net/goby

Goby-Core adds a thin header for existing marshalling
schemes: [MarshallingScheme][Identifier][Data]

Marshalling scheme•	 (32 bit unsigned int). String = 1, Pro-
tobuf = 2, CCL = 3, MOOS = 4, DCCL = 5, LCM = 6 ...

“C style” string •	 identifier (variable length):
{Type	Name}	+	‘/’	+	{Group	Name}	+	‘/’	+	{Subgroup	
Name}	...	+	‘\0’
 - MOOS: “CMOOSMsg/DB_TIME/”
 - Protobuf: “SomeMessage/”
 - LCM: “my_lcm_type/my_lcm_channel/”

Data (variable length) encoded as defined by •	 marshalling
scheme.

Goby-Core: Interoperability

gobysoft.org
http://launchpad.net/goby

Intravehicle and over ethernet, Goby-Core uses ZeroMQ:

Brokerless (e.g. no MOOSDB) abstraction of •	
 - TCP
 - PGM (reliable multicast over UDP)
 - UNIX sockets

Mimics well known UNIX sockets API in 20+ languages•	

Abstracts datagrams and streams into “messages” •	
(message = a variable length collection of bytes)

Over slow links, Goby-Core uses Goby-Acomms. Selection
and routing is handled by goby_router.

Goby-Core: Transport

gobysoft.org
http://launchpad.net/goby

Topologies: Simple Goby Platform

publish/subscribe multicast
goby_application1

goby_application2

goby_application3

gobysoft.org
http://launchpad.net/goby

Topologies:	Goby	pub-sub	and	RPC

publish/subscribe multicast
goby_application1

goby_application2

goby_application3

RPC Acoustic Model Server

gobysoft.org
http://launchpad.net/goby

Topologies: Two Goby Platforms

publish/subscribe multicast
goby_application1

goby_application2

goby_application3

goby_router

goby_router

acomms, satcoms, wifi

publish/subscribe multicast

goby_application4

goby_application5

gobysoft.org
http://launchpad.net/goby

Topologies: Goby & MOOS

publish/subscribe multicast
goby_application1

goby_application2

goby_application3

MOOSDB

pHelmIvP

TCP

pLogger

TCP

pAcommsHandler

TCP

pScheduler

TCP

moos_gateway_g

TCP

BHV1

BHV2

BHV3

dynamic library

gobysoft.org
http://launchpad.net/goby

Topologies: Goby & LCM

goby_router

goby_router

acomms, satcoms, wifi

publish/subscribe multicast

goby_application4

goby_application5

lcm_gateway_g

publish/subscribe multicast

lcm_application1

lcm_application2

gobysoft.org

An extensible web tool, shown "scoping" CMOOSMsgs:

Goby Liaison

gobysoft.org
http://launchpad.net/goby

An SQL logger currently with CMOOSMsg and Protobuf
plugins:

query: select double_value
 from cmoosmsg
 where key='NAV_X'
 and double_value > 0;

versus with .alog file:
grep " NAV_X" file.alog | sed "s/ */ /g"
| cut -d " " -f 4 | egrep "[^(-)]"

Goby Database

gobysoft.org
http://launchpad.net/goby

alog2goby_db converts a MOOS .alog file (from
pLogger) to an SQLite database similar to that gener-
ated by goby_logger.

Features:

Support for CMOOSMsg•	

Support for •	 scanf-like string parsing of MOOS strings
into Google Protobuf objects. E.g. NMEA-0183 parsing.

Support for key=value string parsing of MOOS to Proto-•	
buf.	E.g.	NODE_REPORT	parsing	(Name=AUV1,X=2300
,Y=5023,DEPTH=3,...).

Goby Database: Alog converter

gobysoft.org
http://launchpad.net/goby

Free open source (GNU Public License 3)•	

Easily accessible: http://launchpad.net/goby•	

Documented: http://gobysoft.org/doc/1.0/ •	
 http://gobysoft.org/wiki

Organized releases: version 1 stable (acoustic comms •	
only); version 2 (contents of this talk) coming this fall

Well tracked bugs •	

Please contribute (use the software, report bugs, write
code for Goby). Any feedback is helpful and welcome.

This can be your project as much as ours.

Goby Project

gobysoft.org
http://launchpad.net/goby

Goby-Developers group (MIT / WHOI / UMichigan)•	

Office	of	Naval	Research•	

Open source projects used by Goby: Boost, Crypto++, •	
NCurses, ASIO, Google Protobuf, ZeroMQ

All authors and contributors to the C++ language and •	
GNU tools

LAMSS: S. Petillo, I. Katz, A. Balasuriya, S. Danesh, E. •	
Fischell, M. Benjamin

Acknowledgments

