Goby:

A Framework for Scientific

Autonomous Marine Vehicle Collaboration

Toby Schneider

MIT/WHOI Joint Program

Henrik Schmidt

MIT Laboratory for Autonomous Marine Sensing Systems

Plus contributions from Goby Developers Team
launchpad.net/~goby-dev

,)\
Yo n1ust

o, gobysoft.org

Perfection is achieved, not when there
is nothing more to add, but rather
when there is nothing more to take
away.

— Antoine de Saint-Exupéry, Terre des Hommes (1939)

http://launchpad.net/goby

Nasty complexities

Why is marine autonomy difficult?

Physical problems:
 Expensive vehicles
 Limited power

« Poor communications

Human problems:
« Lack of interoperability standards
e Lack of networking / computer systems expertise

» Lack of comprehension of scientific needs by computer folks

A http://launchpad.net/goby
C~" gobysort.org

What is Goby?

 Goby-Core is an open framework for communication
based on ZeroMQ:
- Inside a vehicle (UNIX sockets, TCP / UDP)
- Between vehicles over ethernet links (TCP / UDP)
- Between different autonomy systems (MOOS, LCM...)
- Amongst applications written in 20+ languages
- Using different messaging protocols
(CMOOSMsg, Google Protocol Buffers, LCM types,
boost::serialization...)

 Goby-Core also includes an
- SQLite3 / PostgreSQL logger (goby database)
- Web browser based scope, command, etc. tool
(goby liaison)

) http://launchpad.net/goby
¥ gobysoft.org

A gobysoft.org

What is Goby?

 Goby-Protobuf

- implements Goby-Core for C++ and Google Protocol
Buffers

- is a high quality, easy to learn replacement for exist-
ing architectures like MOOS and LCM for new projects.

Goby- (another talk) provides a field-tested
networking system for acoustic and other slow links
that seamlessly integrates into Goby-Protobuf

Goby-MOOS provides

- pAcommsHandler & iCommander acomms apps
- a MOOS to Goby gateway

- .alog file to/from SQLite3 conversion tools.

- CMOOSMsg to Protobuf translators

http://launchpad.net/goby

Why Goby-Protobuf?

Much of Goby-Core (and the Protobuf implementation)
was motivated to write the “next generation” MOOS.

What works in MOOS:
 Discrete processes
o Publish / subscribe
* Easy to learn

» Choice of a high quality, general purpose language (C++)

http://launchpad.net/goby

\

e
(g

obysoft.org

oQ

Goby-Protobuf: Typed Messages

MOOS: Untyped variables lead to trouble in large projects

Data sources (e.g. sensors) provide objects not single sca-
lars or strings. Examples:

- vehicle position and Euler angles.

- acoustic environment

MOOS requires either

- splitting the object into scalars (problems “restitch-
ing”)

- creating custom strings: costly in programmer time,
CPU time, and prone to subtle errors.

http://launchpad.net/goby

\

(g

obysoft.org

oQ

Goby- : Typed Messages

Goby: Strictly typed variables allow compile time type
checking and integrated support for arbitrarily complex
objects.

message

{

Google Protobuf required string telegram = 1;
required uint32 count = 2;

}

static int 1 = 0;

msg;
msg.set telegram("hello world!"); Cr+

msg.set count (++1);

publish (msqg) ;

Static types allows Doxygen-style analysis of messaging

p http://launchpad.net/goby
_* gobysoft.org

Goby-Protobuf: Configuration

MOOS: Configuration is prone to syntactical and type errors
CProcessConfigReader does not provide

* Checking for values that shouldn’t exist

* Checking that required values do exist

* Type checking on values

Other oddities include

« Removal of all spaces from strings

« Confusion between CMOOSFileReader: :GetValue
(reads from entire file) and CProcessConfigReader: :Get
ConfigurationParam (reads from block)

e Difficulty in reading repeated values

http://launchpad.net/goby

\

obysoft.org

oQ

(g

Goby-Protobuf: Configuration

Goby: Configuration schema allows strict behind-the-
scenes validation

Application author schema:

message MyConfig {
optional double speed = 1 [default=3];
required string port = 2;

}

Valid configuration file:

speed: 34.25
port: "/dev/ttyUSB1"

Invalid configuration file (caught at launch):

speed: “highr —— wrong type
prt: "/dev/ttyUSB1"

~~typo - no field “prt”

http://launchpad.net/goby

\

obysoft.org

oQ

(g

Goby-Protobuf: Asynchronous

MOOS: Messaging is done synchronously (CommsTick
frequency)

MOOS messaging is done on a regular frequency, leading
to artificial and unnecessary latencies.

sender publish time + link latency + time to next CommsTick

l l l l " ;
" | | | | o
[—

1/ AppTick

OnNewMail()
Iterate()

Goby: Messages are delivered asynchronously, so laten-
cies are governed by contraints of the physical link(s)

OHIY° sender publish time + link latency

|
T Y
v e e e e

I(—)| mail handler

% 1/loop_freq loop() http://launchpad.net/goby
¥ gobysoft.org

“Legacy code” often differs from its suggested
alternative by actually working and scaling.

— Bjarne Stroustrup,
<http://www2.research.att.com/~bs/bs_faqg.html#legacy>

) http://launchpad.net/goby
¥ gobysoft.org

M gobysoft.org

Goby-Core: Interoperability

Much good work has already been done and tested, so we

+ Want to use existing marshalling schemes (e.g.
CMOOSMsq), existing transports (MOOS TCP) to inter-
face “legacy” code to Goby-Protobuf

« Want to use favorite programming language
(good code in several languages is better than bad code
in one)

How?

Split the transport (e.g. TCP) and data marshalling (e.g.
Protobuf) into separate entities.

http://launchpad.net/goby

A gobysoft.org

Goby-Core: Interoperability

Goby-Core adds a thin header for existing marshalling
schemes: [MarshallingScheme][Identifier][Data]

o Marshalling scheme (32 bit unsigned int). String = 1, Pro-
tobuf = 2, CCL = 3, MOOS = 4, DCCL=5,LCM =6 ...

e “C style” string identifier (variable length):
{Type Name} + /” + {Group Name} + ‘/” + {Subgroup
Name} ... + ‘\0’
- MOOS: “CMO0OSMsg/DB_TIME/”
- Protobuf: “SomeMessage/”
- LCM: “my_lcm_type/my_lcm_channel/”

- Data (variable length) encoded as defined by marshalling
scheme,

http://launchpad.net/goby

Goby-Core: Transport

Intravehicle and over ethernet, Goby-Core uses ZeroMQ:

» Brokerless (e.g. no MOOSDB) abstraction of
- TCP
- PGM (reliable multicast over UDP)
- UNIX sockets

« Mimics well known UNIX sockets API in 20+ languages

« Abstracts datagrams and streams into “messages”
(message = a variable length collection of bytes)

Over slow links, Goby-Core uses Goby- . Selection
and routing is handled by goby router.

A http://launchpad.net/goby
C~" gobysort.org

Topologies: Simple Goby Platform

goby_application3

goby_application1
publish/subscribe multicast

goby_application2

p http://launchpad.net/goby
¥ gobysoft.org

Topologies: Goby pub-sub and RPC

goby_application3

goby_application1
publish/subscribe multicast

RPC Acoustic Model Server

p http://launchpad.net/goby
¥ gobysoft.org

Topologies: Two Goby Platforms

publish/subscribe multicast

acomms) satcoms, wifi

goby_applicationl
publish/subscribe multicast

http://launchpad.net/goby

o, gobysoft.org

Topologies: Goby & MOOS

goby_application3

goby_applicationl
publish/subscribe multicast

goby_application2

MOOSDB

dynamic library

http://launchpad.net/goby

o, gobysoft.org

Topologies: Goby & LCM

publish/subscribe multicast

lem_gateway_g

goby_application4
goby_application5 publish/subscribe multicast

T yoftors http://launchpad.net/goby

Goby Liaison

An extensible web tool, shown "scoping" CMOOSMsgs:

':' launch goby liaison: Unicorn ‘ obysoft

Play/Pause |Playing...

Add subscription (e.g. NAV* or NAV_X):

Subscriptions (click to remove): | NAV*

Add history for key: | NAV_DEPTH v | Add

Set regex filter: Column: | Key ¥ | Expression: | ¥[A(_LYAW)] Set Clear = Examples

Key Type Value Time Communit Source Source Aux
NAV_ALTITUDE double 10.74303562070043 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.25696437929956945 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_HEADING double 14.485063573529334 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_LAT double 44.092428311265138 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_LONG double 9.8586603015923355 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_PITCH double 0.0037524340610175836 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_SPEED double 0.0082757386044119696 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_X double 800.38489865673932 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_Z double -0.25696437929956945 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g

History for | NAV_DEPTH | (click to remove)

Plot

Key Type Value Time Communit Source Source Aux
NAV_DEPTH double 0.25696437929956945 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.25793750366558355 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.25915636807309522 07/07/11 19:48:07 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.25923596089220718 07/07/11 19:48:06 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.25892947838580432 07/07/11 19:48:06 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.25831570270870274 07/07/11 19:48:06 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.25724159532414509 07/07/11 19:48:06 unicorn iHuxley moos_gateway_g
NAV_DEPTH double 0.2561259482112262 07/07/11 19:48:05 unicorn iHuxley moos_gateway_g
b f NAV_DEPTH double 0.25499724791298667 07/07/11 19:48:05 unicorn iHuxley moos_gateway_g
5
‘%O y 0 t'org NAV_DEPTH double 0.25347654027965927 07/07/11 19:48:05 unicorn iHuxley moos_gateway_g

Goby Database

An SQL logger currently with CMOOSMsg and Protobuf
plugins:

query: select double value
from cmoosmsg
where key='NAV X'
and double value > 0;

versus with .alog file:
grep " NAV X" file.alog | sed "s/ */ /g"
| cut -d " " -f 4 | egrep "["(-)]"

T coftorg http://launchpad.net/goby

Goby Database: Alog converter

alog2goby db converts a MOOS .alog file (from
pLogger) to an SQLite database similar to that gener-
ated by goby logger.

Features:
* Support for CMOOSMsg

» Support for scanf-like string parsing of MOOS strings
into Google Protobuf objects. E.g. NMEA-0183 parsing.

« Support for key=value string parsing of MOOS to Proto-
buf. E.g. NODE_REPORT parsing (Name=AUV1, X=2300
, Y=5023,DEPTH=3, ...).

) http://launchpad.net/goby
¥ gobysoft.org

A gobysoft.org

Goby Project

Free open source (GNU Public License 3)

Easily accessible: http://launchpad.net/goby

Documented: http://gobysoft.org/doc/1.0/
http://gobysoft.org/wiki

Organized releases: version 1 stable (acoustic comms
only); version 2 (contents of this talk) coming this fall

Well tracked bugs

Please contribute (use the software, report bugs, write
code for Goby). Any feedback is helpful and welcome.

This can be your project as much as ours.

http://launchpad.net/goby

A gobysoft.org

Acknowledgments

Goby-Developers group (MIT / WHOI / UMichigan)
Office of Naval Research

Open source projects used by Goby: Boost, Crypto++,
NCurses, ASIO, Google Protobuf, ZeroMQ

All authors and contributors to the C++ language and
GNU tools

LAMSS: S. Petillo, I. Katz, A. Balasuriya, S. Danesh, E.
Fischell, M. Benjamin

http://launchpad.net/goby

