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Payload UUV Autonomy 
(3 Architecture Principles) 

Principle #1 – Separation of Vehicle Autonomy 
from the Physical Platform 

Principle #2 – Separation of Autonomy System 
Components (MOOS Middleware) 

Autonomy 

Platform 

Architecture Principle #3 – Separation of Autonomy 
into dedicated behaviors (IvP Helm) 

• Each architecture principle is designed to 
provide the end user with choices and the 
ability to procure capabilities on a 
component rather than system basis. 

• Allows for incremental development across 
organizations. 

• These new thrusts will result in tangible new 
software modules and capabilities. 



Overview of MOOS-IvP Payload Autonomy Software 

Bluefin-21 �

Iver-2 �

RMS/MIT Kayaks �Ocean Explorer�REMUS 600 � REMUS 100 �

Platforms that have field-demonstrated  MOOS-IvP payload autonomy: 

Autonomy Software at MIT – Laboratory for Autonomous Marine Sensing Systems  
•  Open Source software project – 70+ applications 130,000+ lines of code, 25-30 work years of research & development. 
•  MOOS-IvP autonomy software -  www.moos-ivp.org 
•  Goby underwater communications software - www.gobysoft.org 
•  "An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software”  http://dspace.mit.edu/handle/1721.1/45569 
•  "Extending a MOOS-IvP Autonomy System and Users Guide to the IvPBuild Toolbox”  http://dspace.mit.edu/handle/1721.1/46361 
•  "MOOS-IvP Autonomy Tools Users Manual”  http://dspace.mit.edu/handle/1721.1/43708 

Bluefin-9 �

SeaRobotics USV � H-Scientific USV � Kingfisher USV � Yellowfin AUV � SARA USV �



Principle #2 – Separation of Autonomy System Components (MOOS)�
• MOOS is middleware built on the publish-subscribe architecture. �
• Each MOOS application is a separate process running on the vehicle computer.�
• The interface of each process is defined by the messages it publishes and the messages 
it subscribes for.�

A MOOS Community�

Publish 

Subscribe 

The Payload Autonomy Paradigm�



Principle #3 – Separation of Autonomy into dedicated distinct behaviors.�

• The IvP Helm is a decision-making engine based on the behavior-based 
architecture. It is a single MOOS application comprised of multiple specialized 
behaviors.�

• Behaviors are turned on or off based on defined situations (states) and transitions. 
When multiple behaviors are active, coordination is by multi-objective optimization. �

• Interval Programming (IvP) is the technique used for multi-objective optimization.�

MOOS-IvP Payload Autonomy System 

The Payload Autonomy Paradigm�



Outline�
 Trends in autonomous marine vehicles�

 The Payload Autonomy Paradigm and the MOOS-IvP project �

 Multi-Objective Optimization with Interval Programming �

 The IvP Helm�

MOOS-IvP 4.2 and Plans for Future Development �



Interval Programming �
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Feasible 

Interval Programming is a mathematical programming model.�
• "A mathematical structure or syntax for representing an optmization problem.�

• "A toolbox of practical methods for casting different problems into the IvP syntax.�

•  A set of solution algorithms that exploit the syntactic structure.�

The “IvP Helm” is a MOOS App implementing a behavior-based architecture 
for autonomous decision making, using Interval Programming to reconcile 
competing behaviors. �
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•  Each function is the output of a behavior.�

•  Each function is a utility function – a mapping 
from possible decisions to their relative merit. �

•  Freedom from function form assumptions is key 
to solving general autonomy problems.�

•  Global optimality guaranteed.�

•  New problem generated and solution found on 
each iteration of the decision loop, typically 4x 
per second.�

• The solution,    , is the single decision 
that maximizes the weighted sum of all 
utility functions.�

• For example, the best combination of 
vehicle heading, speed, and depth.�
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IvP Functions �

An IvP Function is a piecewise linear approximation of an objective 
function, over a discrete decision space.�

Underlying 
Function 

Piecewise Linear 
Approximation �
525 Pieces�



IvP Functions �

Underlying 
Function 

Piecewise Linear 
Approximation �

100 Pieces�

An IvP Function is a piecewise linear approximation of an objective 
function, over a discrete decision space.�



IvP Functions �

Underlying 
Function 

Piecewise Linear 
Approximation �
10,000 Pieces�

An IvP Function is a piecewise linear approximation of an objective 
function, over a discrete decision space.�



Piecewise Linear Functions in IvP�

Interval Boundary: �
"10 ≤ x ≤ 20 �
"14 ≤ y ≤ 21 �

Interior Function: �
"f(x,y) = 4x + 8y + 7 �

Piecewise linear (IvP) functions: �
•  Each point in the decision space belongs 

to exactly one piece.�
•  Each pieces has an interval boundary 

and a linear interior function.�

Advantages: �
•  Any underlying function can be 

represented.�
•  Pieces need not be uniformly distributed.�
•  Extends to n dimensions.�
•  Syntax can be exploited by the solution 

algorithms. �



Interval Programming �
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Linear Programming (LP) 

Feasible 

Interval Programming is a mathematical programming model.�
• "A mathematical structure or syntax for representing an optmization problem.�

• "A toolbox of practical methods for casting different problems into the IvP syntax.�

•  A set of solution algorithms that exploit the syntactic structure.�

The IvPBuild Toolbox: �
• "A C++ library of tools for building syntactically correct IvP functions. �

• "Typically invoked from code within an IvP Helm behavior implementation �

•  Downloadable from www.moos-ivp.org �

•  Documentation: http://dspace.mit.edu/handle/1721.1/46361 �



The IvPBuild Toolbox�

Q: How are IvP Functions built?�
A: The IvPBuild Toolbox�

The IvPBuild Toolbox is a �
• " C++ Library, �
• "  Distributed with the MOOS-IvP tree.�
• " A set of tools for building IvP functions from a user’s underlying 

objective function.�
• " Meant to be invoked from within a behavior implementation – 

from within the onRunState() function. �

•  The IvPBuild Toolbox contains two basic tools:�
•  The ZAIC tool – for building 1D objective functions.�
•  The Reflector tool – for building IvP Functions in N dimensions.�



The Reflector Tool�
(Pure Uniform)�

Method 1 - Pure Uniform Basic idea: �
• "Function is composed of uniform piecewise 
linearly defined pieces.�

Pros: �
•  "Simple to use.�
•  "Requires no insight into underlying function.�
•  "Can explore time, size, accuracy tradeoff space.�

Cons:�
• "Treats all areas of the underlying function 
equally.�

• "Does not capitalize on insight into underlying 
function.�

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �



The Reflector Tool�
(Uniform with Prioritized Augmentation)�

Method 2 - Uniform with Priority-Based Augmentation Basic idea: �
"Start with a uniform function and further refine 
the pieces that have the worst error (prioritized 
during first linear regression phase).�

Pros: �
• " Simple to use.  No insight into underlying 
function required�

• " Can explore time, size, accuracy tradeoff space.�

Cons:�
• "Does not always catch the pieces with worst 
error.�

• "Does not capitalize on insight into underlying 
function.�

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �



The Reflector Tool�
(Uniform with Focused Augmentation)�

Basic idea: �
"Start with a uniform function and further 
refine the pieces in areas thought to need 
more pieces for error reduction �

Pros: �
• "Simple to use.  Capitalizes on insight of 
underlying function.�

• "Can explore time, size, accuracy tradeoff 
space.�

Cons:�
•  "Not all functions have area suitable for 
focused refinement.�

•  "Requires insight into underlying function.�

Method 3 - Uniform with Focused Augmentation 

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The Reflector Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations discussed: �
"(1) Pure Uniform�
"(2) Uniform with Prioritized Augmentation �
"(3) Uniform with Focused Augmentation �



The ZAIC Tool�

Method 4 - ZAIC Peaks 

180 270 90 0 360 

100 

50 

Summit 

Peak-width 

Base-width 

Summit-delta 

Basic idea: �
"1D Functions with one or more peaks. Identify the 
peak properties and the IvP function is generated.�

Pros: �
"Simple to use.  Very few pieces.�
"As many peaks as desired.�

Cons:�
"Only suitable for 1D  objective functions.�

1 

2 

3 4 

5 

6 

IvP Function:  
(1)      0 ≤ x ≤ 45   y = 0 
(2)    46 ≤ x ≤ 90   y = 1.89x - 85 
(3)    91 ≤ x ≤ 180  y = 0.17x + 70 
(4)  181 ≤ x ≤ 270  y = -0.17x + 130 
(5)  271 ≤ x ≤ 315     y = -1.89x + 595 
(6)  316 ≤ x ≤ 359     y = 0 

Algorithm Design Criteria�
"(1) Minimize error.�
"(2) Minimize pieces generated. �
"(3) Minimize generation time.�
"(4) Minimize complexity of use for the user.�
"(5) Minimize restrictiveness of the tool.�

The ZAIC Tool builds an IvP function from a given underlying function by sampling the �
underlying function. �

Three variations: �
"(1) ZAIC_PEAKS�
"(2) ZAIC_LEQ �
"(3) ZAIC_HEQ �



Interval Programming Solution Algorithms�
(Overview)�

An IvP problem consists of a set of k functions, each with a priority weighting. �
The solution is given by: �
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•  nk leaf nodes (n pieces per function).�

The Solution algorithm: �

The Search Tree: �

• Branch and bound �
• Pruning based on intersection look-
ahead.�



IvP Solution Algorithms�
(The issue of global optimality)�
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How global optimality is guaranteed: �
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•  Each objective function is defined over the same decision space (x, y), (heading, speed) etc.�

•  The solution space is the set of all possible combinations of pieces from each function.�

   "e.g.,   {  (1,1), (1,2), (1, 3), (1.4), (1,5)   …   (9,5), (9,6), (9,7), (9,8), (9,9)  }       81 total pairs �

•  Each point in the decision space belongs to exactly one piece from each piecewise function.�

•  Therefore considering all possible combinations ensures all possible decisions are considered. �



IvP Solution Algorithms�
(The Search Tree)�

•  Each level in the tree corresponds to one objective function. �
•  Each leaf node is a combination of one piece from each objective function.�

•  Function weights applied a priori to the pieces - weights no longer relevant. �

Root 

1 m

1 m 1 m

1 m1 m1 m1 m

 k functions, m pieces:  mk leaf nodes! �



Closer Look at a Leaf Node 
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IvP Solution Algorithms 
(Piece Intersection) 

Boundary: 
 10 ≤ x ≤ 20 
 14 ≤ y ≤ 21 

Interior Function: 
 f(x,y) = 4x + 8y + 7 

pa 
Boundary: 

 15 ≤ x ≤ 25 
 21 ≤ y ≤ 30 

Interior Function: 
 f(x,y) = 2x + 5y + 2 

pb 

pa ∩ pb 

Two pieces intersect if their boundaries overlap.  

The result is a new piece with common boundary and the sum of their two linear interior functions.  

Boundary: 
 20 ≤ x ≤ 25 
 21 ≤ y ≤ 21 

Interior Function: 
 f(x,y) = 6x + 13y + 9 

∩	



a 

b 



IvP Solution Algorithms 
(Full Search Tree Expansion) 

main() 
0.   bestBox = NULL 
1.   nodeBox = universe 
2.   search(nodeBox, 1)  
3.   return(bestBox) 

search(nodeBox, level) 
0.   if(level == k) 
1.          if(nodeBox is non-empty) 
2.      if(!bestBox or nodeBox→maxval > bestVal) 
3.       bestVal = nodeBox→maxval 
4.       bestBox = nodeBox  
5.    return 
6.   for(i=1 to m) 
7.    newNodeBox = nodeBox ∩ p(i, level) 
8.    search(newNodeBox, level + 1) 

m

Root 

m

1 m

1 m1 

Level 

1

2

3

We can do better here 

Recursive entry 

Recursive call Don’t recurse if newNodeBox is empty 



IvP Solution Algorithms 
(Simple Pruning) 

main() 
0.   bestBox = NULL 
1.   nodeBox = universe 
2.   search(nodeBox, 1)  
3.   return(bestBox) 

m

Root 

m

1 m

1 m1 

Level 

1

2

3

Improved! 

Recursive entry 

Recursive call 
Don’t recurse if newNodeBox is empty 

search(nodeBox, level) 
0.   if(level == k) 
1.          if(nodeBox is non-empty) 
2.      if(!bestBox or nodeBox→maxval > bestVal) 
3.       bestVal = nodeBox→maxval 
4.       bestBox = nodeBox  
5.    return 
6.   for(i=1 to m) 
7.    newNodeBox = nodeBox ∩ p(i, level) 
8.    if(newNodeBox is non-empty) 
9.      search(newNodeBox, level + 1) 



IvP Solution Algorithms 
(Full Expansion vs. Simple Pruning) 

Each problem contains  
3 objective functions 
3 dimensions 



IvP Solution Algorithms 
(Simple Pruning) 

main() 
0.   bestBox = NULL 
1.   nodeBox = universe 
2.   search(nodeBox, 1)  
3.   return(bestBox) 

m

Root 

m

1 m

1 m1 

Level 

1

2

3

Improve here: 

Recursive entry 

Recursive call 

Only intersect-test for pieces  
“in the neighborhood”. 

search(nodeBox, level) 
0.   if(level == k) 
1.          if(nodeBox is non-empty) 
2.      if(!bestBox or nodeBox→maxval > bestVal) 
3.       bestVal = nodeBox→maxval 
4.       bestBox = nodeBox  
5.    return 
6.   for(i=1 to m) 
7.    newNodeBox = nodeBox ∩ p(i, level) 
8.    if(newNodeBox is non-empty) 
9.      search(newNodeBox, level + 1) 



IvP Solution Algorithms 
(Efficient Intersection Detection)  

•  A grid is associated with each piecewise objective function. 
•  A list is associated with each grid element containing pieces that intersect that element. 
•  The grid is populated when the function is constructed before the solution phase begins. 
•  The grid configuration can be different for each objective function. 

Grid(level)→getBoxes(qbox)  = {a, b, c, d, f, g, h} 

Only intersect-test for pieces  
“in the neighborhood”. 



IvP Solution Algorithms 
(Exhaustive vs. Grid-based Intersection Testing) 

Each problem contains  
3 objective functions 
3 dimensions 



IvP Solution Algorithms 
(Internal Node Upper Bounds)  

•  Each piece has a known maximum value (of its linear interior function). 
•  Each grid element stores the max value of all pieces added to that element 
•  The grid is populated when the function is constructed before the solution phase begins. 
•  The grid configuration can be different for each objective function. 

grid(level)→getBound(qbox)  = 22 

Get the upper bound for pieces  
“in the neighborhood”. 



IvP Solution Algorithms�
(No-Upper-Bound vs. Upper-bound)�

Each problem contains �
3 objective functions�
3 dimensions�



Outline�

 Trends in autonomous marine vehicles�

 The Payload Autonomy Paradigm and the MOOS-IvP project �

 Multi-Objective Optimization with Interval Programming �

 The IvP Helm�

MOOS-IvP 4.2 and Plans for Future Development �



Interval Programming and 
the IvP Helm�

1 
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4 

5 

Mail is read in the MOOS OnNewMail() function and applied to a local buffer.�

The helm mode is determined, and set of running behaviors determined.�

Behaviors do their thing – posting MOOS variables and an IvP function.�

Competing behaviors are resolved with the IvP solver.�

The Helm decision and any behavior postings are published to the MOOSDB.�
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Mail is read. 

Helm mode is determined. 

Behaviors generate their output. 

Competing behaviors are resolved. 

The Helm posts its results 

Waypoint 

Controlled Vehicle 

Obstacle 
Vehicle 

Waypoint 

Controlled Vehicle 

Interval Programming and 
the IvP Helm�



IvP Helm Configuration �

Behavior Configurations�

Variable Initializations�

Hierarchical Mode Declarations�

file.bhv!

Behavior = <behavior_name>!
{!
!parameter = value!

 !. . . !
!parameter = value!

}!

Helm configuration file structure: �



IvP Helm Configuration �

Behavior Configurations�

Variable Initializations�

Hierarchical Mode Declarations�

file.bhv!

Behavior = BHV_Loiter!
{!
  name      = loiter!
  priority  = 100!
  condition = (DEPLOY=true) and (REGION=A)!

         speed = 1.8!
     clockwise = false!
        radius = 4.0!
     nm_radius = 25.0!
       polygon = format=radial, x=0, y=-75,!
                 radius=40, pts=8!
}!



Simple Example: “Double Loiter” �

REGION  B �

Launch and return position �
Mission Synopsis: �

Upon receiving a deploy command, transit to and loiter 
at region A for a fixed duration and then to region B. 
Periodically switch between regions until recalled home. �

REGION  A �

(80 meters) 

Behavior = BHV_Loiter!
{!
   parameter = value!

   . . .!

   parameter = value  !
}!

Behavior = BHV_Loiter!
{!
   parameter = value!

   . . .!

   parameter = value  !
}!

Behavior = BHV_Return!
{!
   parameter = value!

   . . .!

   parameter = value  !
}!



Simple Example: “Double Loiter” �

REGION  B �

Launch and return position �
Mission Synopsis: �

Upon receiving a deploy command, transit to and loiter 
at region A for a fixed duration and then to region B. 
Periodically switch between regions until recalled home. �

REGION  A �

(80 meters) 

Behavior = BHV_Loiter!
{!
  name      = loiter_a!
  condition = (DEPLOY=true) and (REGION=A)!

      speed = 1.8!
     radius = 4.0!
    polygon = format=radial,x=0,y=-75,radius=40,pts=8!
}!

Behavior = BHV_Loiter!
{!
  name      = loiter_b!
  condition = (DEPLOY=true) and (REGION=A)!

      speed = 1.8!
     radius = 4.0!
    polygon = format=radial,x=160,y=-75,radius=40,pts=8!
}!

Behavior = BHV_Return!
{!
  name      = return!
  condition = (DEPLOY=true) and (RETURN=true)!

      speed = 1.8!
      radius = 4.0!
       point = 80,40!
}!



Simple Example: “Double Loiter” �

REGION  B �

Launch and return position �
Mission Synopsis: �

Upon receiving a deploy command, transit to and loiter 
at region A for a fixed duration and then to region B. 
Periodically switch between regions until recalled home. �

REGION  A �

(80 meters) 

Initialize  DEPLOY = false!
Initialize  RETURN = false!
Initialize  REGION = A!

???�

Behavior = BHV_Loiter!
{!
  name      = loiter_a!
  condition = (DEPLOY=true) and (REGION=A)!

      speed = 1.8!
     radius = 4.0!
    polygon = format=radial,x=0,y=-75,radius=40,pts=8!
}!

Behavior = BHV_Loiter!
{!
  name      = loiter_b!
  condition = (DEPLOY=true) and (REGION=A)!

      speed = 1.8!
     radius = 4.0!
    polygon = format=radial,x=160,y=-75,radius=40,pts=8!
}!

Behavior = BHV_Return!
{!
  name      = return!
  condition = (DEPLOY=true) and (RETURN=true)!

      speed = 1.8!
      radius = 4.0!
       point = 80,40!
}!



Simple Example: “Double Loiter” �

Mission Synopsis: �
Upon receiving a deploy command, transit to and loiter 
at region A for a fixed duration and then to region B. 
Periodically switch between regions until recalled home. �

ACTIVE�

LOITER_A � LOITER_B � RETURNING �

INACTIVE�

REGION  B �

Launch and return position �

REGION  A �

(80 meters) 



Simple Example: “Double Loiter” �

Mission Synopsis: �
Upon receiving a deploy command, transit to and loiter 
at region A for a fixed duration and then to region B. 
Periodically switch between regions until recalled home. �

ACTIVE�

LOITER_A � LOITER_B � RETURNING �

INACTIVE�

REGION  B �

Launch and return position �

REGION  A �

(80 meters) 

set MODE = ACTIVE {!
  DEPLOY = true!
} INACTIVE!

set MODE = RETURNING {!
  MODE = ACTIVE!
  RETURN = true!
}!

set MODE = LOITER_A {!
  MODE = ACTIVE!
  REGION = A!
} LOITER_A!



Simple Example: “Double Loiter” �

Mission Synopsis: �
Upon receiving a deploy command, transit to and loiter 
at region A for a fixed duration and then to region B. 
Periodically switch between regions until recalled home. �

ACTIVE�

LOITER_A � LOITER_B � RETURNING �

INACTIVE�

set MODE = ACTIVE {!
  DEPLOY = true!
} INACTIVE!

set MODE = RETURNING {!
  MODE = ACTIVE!
  RETURN = true!
}!

set MODE = LOITER_A {!
  MODE = ACTIVE!
  REGION = A!
} LOITER_A!

Question: �
Why define the “Active” mode?�
Why not just have: �

LOITER_A � LOITER_B � RETURNING � INACTIVE�
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Dynamic Modifications to the Helm�

MOOSApp �

MOOSApp �

MOOSApp �

MOOSApp �

Q: How is the helm modified after launch?�
A: By receipt of incoming MOOS mail.�

"- The helm’s mission mode may change�
"- Behavior parameters may change�

Q: Why would the helm be modified?�

"- New internal plans generated�
"- Conclusions from sensor processing modules�
"- External comms from other vehicles�
"- External comss from field-control�

Q: Why is this important?�
A: It determines how the helm may interface 

with an off-board planner, field-control 
system, scheduler, and other vehicles.�



Dynamic Modifications to the Helm�

MOOSApp �

MOOSApp �

MOOSApp �

MOOSApp �

Actuators 

MOOSApp �

modem 

Q: How is the helm modified after launch?�
A: By receipt of incoming MOOS mail.�

"- The helm’s mission mode may change�
"- Behavior parameters may change�

Q: Why would the helm be modified?�

"- New internal plans generated�
"- Conclusions from sensor processing modules�
"- External comms from other vehicles�
"- External comss from field-control�

Q: Why is this important?�
A: It determines how the helm may interface 

with an off-board planner, field-control 
system, scheduler, and other vehicles.�



Dynamic Modifications to the Helm�
(1) Mode Modifications�

MOOSApp �

MOOSApp �

MOOSApp �

MOOSApp �

Actuators 

MOOSApp �

modem 

•  The Helm Mode is determined by conditions�
•  The conditions are defined over MOOS variables: �

set MODE = ACTIVE {!
  DEPLOY = true!
} INACTIVE!

set MODE = RETURNING {!
  MODE = ACTIVE!
  RETURN = true!
}!

set MODE = LOITER_A {!
  MODE = ACTIVE!
  REGION = A!
} LOITER_A!

DEPLOY = true!



Dynamic Modifications to the Helm�
(2) Behavior Modifications�

•  Behavior configuration parameters may altered after launch.�
•  Each behavior may specify an UPDATES variable. �

REGION  B �

Launch and return position �

REGION  A �

(80 meters) 

Behavior = BHV_Loiter!
{!
  name      = loiter_a!
  condition = (DEPLOY=true) and (REGION=A)!

      speed = 1.8!
     radius = 4.0!
    polygon = format=radial,x=0,y=-75,radius=40,pts=8!
    updates = LOITER_UPDATE!
}!

LOITER_UPDATE = polygon=format=radial,x=160,y=-75,radius=40,pts=8 !

Behavior = BHV_Loiter!
{!
  name      = loiter_a!
  condition = (DEPLOY=true) and (REGION=A)!

      speed = 1.8!
     radius = 4.0!
    polygon = format=radial,x=160,y=-75,radius=40,pts=8!
    updates = LOITER_UPDATE!
}!



Dynamic Behavior Spawning �

What is Dynamic Behavior Spawning?�

•  Behaviors may be defined as templates with instances spawned upon receipt of an 
externally generated, user-defined event.�

•  Behavior authors may implement behaviors to die under certain conditions, and post 
MOOS messages immediately prior to dying.�

Motivation: �

•  For certain behaviors, e.g., collision avoidance, contact tracking, multiple instances 
of the behavior are required, one for each contact.�

•  It’s virtually impossible to know the amount or type of contacts encountered prior 
to the start of the mission.�



Configuring Behaviors with�
Dynamic Behavior Spawning �

Non-Templated Behavior: �

Behavior = BHV_AvoidCollision!
{!
  name       = avd_collision!
  pwt        = 200!
  condition  = AVOID=true!
  updates    = CONTACT_INFO!

                contact = macrura!
  active_outer_distance = 50!
  active_inner_distance = 20!
     completed_distance = 75!
     collision_distance = 8!
     all_clear_distance = 25!
           active_grade = linear!
       on_no_contact_ok = true!
            extrapolate = true!
                  decay = 30,60!
}!

Behavior = BHV_AvoidCollision!
{!
  name       = avd_collision!
  pwt        = 200!
  condition  = AVOID=true!
  updates    = CONTACT_INFO!
  endflag    = CONTACT_RESOLVED = $[CONTACT]!
  templating = spawn!

                contact = to-be-set!
  active_outer_distance = 50!
  active_inner_distance = 20!
     completed_distance = 75!
     collision_distance = 8!
     all_clear_distance = 25!
           active_grade = linear!
       on_no_contact_ok = true!
            extrapolate = true!
                  decay = 30,60!
}!

Templated Behavior: �

CONTACT_INFO = “name=avd_macrura # contact=macrura”!

CONTACT_INFO = “name=avd_henry # contact=henry”!

MOOS Post 

MOOS Post 



The Berta Example Mission with �
Dynamic Behavior Spawning �

The Berta example mission: �
•  In moos-ivp/trunk/missions/m2_berta�
•  Two vehicles loitering and repeatedly swapping loiter locations�
•  Each time the vehicles get close, a collision avoidance behavior is spawned.�
•  After the range opens sufficiently, the collision avoidance behavior dies.�

Loiter Region #1 

Loiter Region #2 



Monitoring Life Events�

$ uHelmScope --life henry.moos !

•  A “Life Event” is the spawning or death of a behavior.�
•  Life Events may be monitored in a special mode of the uHelmScope MOOS utility: �



Analyzing Life Events�

•  A “Life Event” is the spawning or death of a behavior.�
•  Life Events may be monitored in a special mode of the uHelmScope MOOS utility.�
•  The Life Event may also be examined post-runtime from the MOOS log files: �

$ aloghelm --life henry_logfile.alog !



Contact Management �
and Behavior Spawning �

•  A MOOS application - pBasicContactMgr.�
•  It receives NODE_REPORT messages from other MOOS applications�



• Behaviors have state.�
• Behaviors influence each other between iterations.�
• Behaviors accept externally generated plans.�
• There may be several instances of the same behavior.�
• Behaviors may spawn and die dynamically based on events or commands.�
• Behaviors may run in a configurable sequence.�
• Behaviors rate actions over a coupled decision space (multi-objective optimization)�

Non-Traditional Aspects of Behavior-Based�
Control in the IvP Helm�

This is not Rodney Brooks’ Behavior Based Control�
However - the power of independent, incremental development has been retained, 
enhanced by the power of Open Source development, and wide, diverse collaborations.�



The Waypoint Behavior 
(General Characteristics) 

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices. 

points: 
capture_radius: 

speed: 
non-monotonic_radius: 

track_lead: 
order: 

repeat: 

Parameters: 
A set of points in the X-Y plane 
Distance from a point, within which arrival is declared.  
Desired speed of traversal.  
Distance from a point, within which an increase in distance is treated as an arrival. 
For track-line following - distance to perpendicular intersection point. 
Order of point traversal. 
Number of times points are traversed. 

points: 
capture_radius: 

speed: 

Example: 
(0,-80), (45,-45), (160, -120) 
4 
2.5 

80 meters: 

Start position 



The Waypoint Behavior 
(Non-monotonic Radius) 

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices. 

points: 
capture_radius: 

speed: 
non-monotonic_radius: 

track_lead: 
order: 

repeat: 

Parameters: 
A set of points in the X-Y plane 
Distance from a point, within which arrival is declared.  
Desired speed of traversal.  
Distance from a point, within which an increase in distance is treated as an arrival. 
For track-line following - distance to perpendicular intersection point. 
Order of point traversal. 
Number of times points are traversed. 

points: 
capture_radius: 

speed: 
non-monotonic_radius 

Example: 
(0,-80), (45,-45), (160, -120) 
4 
2.5 
12 

80 meters: 

Start position 



The Waypoint Behavior 
(Track-line Following) 

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices. 

points: 
capture_radius: 

speed: 
non-monotonic_radius: 

track_lead: 
order: 

repeat: 

Parameters: 
A set of points in the X-Y plane 
Distance from a point, within which arrival is declared.  
Desired speed of traversal.  
Distance from a point, within which an increase in distance is treated as an arrival. 
For track-line following - distance to perpendicular intersection point. 
Order of point traversal. 
Number of times points are traversed. 

points: 
capture_radius: 

speed: 
track_lead: 

Example: 
(0,-45), (120,0) 
4 
2.0 
0 

120 meters 

Start position 

Flow = 1.2 m/sec 



The Waypoint Behavior 
(Track-line Following) 

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices. 

points: 
capture_radius: 

speed: 
non-monotonic_radius: 

track_lead: 
order: 

repeat: 

Parameters: 
A set of points in the X-Y plane 
Distance from a point, within which arrival is declared.  
Desired speed of traversal.  
Distance from a point, within which an increase in distance is treated as an arrival. 
For track-line following - distance to perpendicular intersection point. 
Order of point traversal. 
Number of times points are traversed. 

120 meters 

points: 
capture_radius: 

speed: 
track_lead: 

Example: 
(0,-45), (120,0) 
4 
2.0 
2 

Start position 

Flow = 1.2 m/sec 



The Obstacle Avoidance Behavior 

Purpose:  Avoid a set of given obstacles each represented by a convex polygon. 

polygon: 
polygon: 

allowable_ttc: 
activation_dist: 

buffer_dist: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Other obstacles. 
Time To Collision Allowed before a candidate maneuver is penalized. 
Distance to a polygon beyond which the behavior is inactive.  
Distance to polygon treated as a collision. 

Q: Why convex polygons? 
A:  Most operations are simplified.  

 - Point containment test,  
 - Distance to polygon,  
 - Line segment intersection, etc. 

A:  A non-convex polygon can be 
represented by a set of convex polygons. 

Waypoint 
Start 

polygon: 
polygon: 

allowable_ttc: 
activation_dist: 

buffer_dist: 

Example: (10,10), (20,20), (30,30), (40,40) 
(60,60), (70,70), (80,80), (90,90) 
25 
60 
8 



The Obstacle Avoidance Behavior 

Purpose:  Avoid a set of given obstacles each represented by a convex polygon. 

polygon: 
allowable_ttc: 

activation_dist: 
buffer_dist: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Time To Collision Allowed before a candidate maneuver is penalized. 
Distance to a polygon beyond which the behavior is inactive.  
Distance to polygon treated as a collision. 

Q: Why convex polygons? 
A:  Most operations are simplified.  

 - Point containment test,  
 - Distance to polygon,  
 - Line segment intersection, etc. 

A:  A non-convex polygon can be 
represented by a set of convex polygons. 

polygon: 
polygon: 

allowable_ttc: 
activation_dist: 

buffer_dist: 

Example: (10,10), (20,20), (30,30), (40,40) 
(60,60), (70,70), (80,80), (90,90) 
25 
60 
8 

REGION  B REGION  A 

Polygon #1 

Polygon #2 



The Loiter Behavior 

Purpose:  Repeatedly traverse a given set of waypoints, gracefully handling missed vertices. 
 Automatically calculate trajectory re-entry when required. 

polygon: 
capture_radius: 

speed: 
non-monotonic_radius: 

acquire_distance: 
clockwise: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Distance from a point, within which arrival is declared.  
Desired speed of traversal.  
Distance from a point, within which an increase in distance is treated as an arrival. 
Distance from the polygon, outside of which the behavior is in “acquire mode”. 
True if traversing clockwise. 

polygon: 
capture_radius: 

non-monotonic_radius: 
acquire_distance: 

clockwise: 

Example: 
radial:50,60,40,6 
10 
15 
15 
true 

ACQUIRE-MODE 

ACQUIRE-MODE 

Vehicle objective function for 
achieving the next waypoint 

NORMAL-MODE 



The Loiter Behavior 
(Acquire Vertex Policy - External Case) 

Purpose:  Repeatedly traverse a given set of waypoints, gracefully handling missed vertices. 
 Automatically calculate trajectory re-entry when required. 

polygon: 
capture_radius: 

speed: 
non-monotonic_radius: 

acquire_distance: 
clockwise: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Distance from a point, within which arrival is declared.  
Desired speed of traversal.  
Distance from a point, within which an increase in distance is treated as an arrival. 
Distance from the polygon, outside of which the behavior is in “acquire mode”. 
True if traversing clockwise. 

200 meters 

€ 

vi

€ 

vi+1

€ 

vi+2

€ 

vi+3
€ 

p

-90 

€ 

θ i

0 

+90 

acquire_vertex = vi 
 where  i = argmin(θi) 
     vi is viewable from p 

€ 

p€ 

vi

€ 

vi+1

Acquire Vertex Policy (External Case): 



The Loiter Behavior 
(Acquire Vertex Policy - Internal Case) 

Purpose:  Repeatedly traverse a given set of waypoints, gracefully handling missed vertices. 
 Automatically calculate trajectory re-entry when required. 

polygon: 
capture_radius: 

speed: 
non-monotonic_radius: 

acquire_distance: 
clockwise: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Distance from a point, within which arrival is declared.  
Desired speed of traversal.  
Distance from a point, within which an increase in distance is treated as an arrival. 
Distance from the polygon, outside of which the behavior is in “acquire mode”. 
True if traversing clockwise. 

200 meters 

€ 

vi

€ 

vi+1

€ 

vi+2

€ 

vi+3-90 

€ 

θ i

0 

+90 

acquire_vertex = vi 
 where  i = argmin(θI +ki) 
     ki = -c if vi is current 
       0 otherwise 

€ 

p€ 

vi

€ 

vi+1

Acquire Vertex Policy (Internal Case): 



The Turn-Limit Behavior 

Waypoint 1 

Waypoint 2 

Waypoint 3 

heading_avg = atan2(s, c) (180/π) 

€ 

s = sin(hkπ /180)
k= 0

n−1

∑

€ 

c = cos(hkπ /180)
k= 0

n−1

∑

€ 

r = v /((u /180)π )turn radius: 

Purpose:  To limit the rate of vehicle turn to protect a towed sensor. 

memory_time: 
turn_range: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Distance from a point, within which arrival is declared.  



The Turn-Limit Behavior 

Heading average 

Current heading 

heading_avg = atan2(s, c) (180/π) 

€ 

s = sin(hkπ /180)
k= 0

n−1

∑

€ 

c = cos(hkπ /180)
k= 0

n−1

∑

€ 

r = v /((u /180)π )turn radius: 

Purpose:  To limit the rate of vehicle turn to protect a towed sensor. 

memory_time: 
turn_range: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Distance from a point, within which arrival is declared.  



The Turn-Limit Behavior 

heading_avg = atan2(s, c) (180/π) 

€ 

s = sin(hkπ /180)
k= 0

n−1

∑

€ 

c = cos(hkπ /180)
k= 0

n−1

∑

€ 

r = v /((u /180)π )turn radius: 

Purpose:  To limit the rate of vehicle turn to protect a towed sensor. 

memory_time: 
turn_range: 

Parameters: 
A set of points in the X-Y plane, comprising a convex polygon. 
Distance from a point, within which arrival is declared.  



The Collision Avoidance Behavior 

Purpose:  Avoid collision with a vehicle with given position and trajectory. 

contact: 
active_distance: 

all_clear_distance: 
collision_distance: 

Parameters: 
Contact ID of the vehicle to be avoided. 
Distance to the contact beyond which the behavior has no influence on autonomy  
CPA Distance to the contact below which penalty begins  
CPA Distance to the contact at which penalty is maximize (treated as a collision). 

€ 

k2 = cos(θ)v 2 − 2cos(θ)v cos(θb )vb + cos2(θb )vb
2 +

€ 

k1 = 2cos(θ)vy − 2cos(θ)vyb − 2y cos(θb )vb +2cos(θb )vb yb +

€ 

k0 = y2 − 2yyb +yb
2 − 2xxb +xb

2

€ 

γ 2(θ,v,t) = k2t
2 + k1t + k0

active_distance 

x,y 

(xb,yb,θb, vb). 

€ 

sin2(θ)v2 − 2sin(θ)v sin(θb )vb + sin2(θb )vb
2

€ 

2sin(θ)vx − 2sin(θ)vxb − sin(θb )xvb + 2sin(θb )vb xb

€ 

γ 2(θ,v,t ʹ′ ) = 2k2t + k1

Utility based on CPA (closest point of approach) 

Distance given by Pythagorean theorem in known trajectories. 
Express distance a function of angle, speed and time-on-leg. 

First derivative w.r.t. time has only one root: 

€ 

t = −
k1
2k2

Controlled vehicle 

contact 



The Collision Avoidance Behavior 

Purpose:  Avoid collision with a vehicle with given position and trajectory. 

contact: 
active_distance: 

all_clear_distance: 
collision_distance: 

Parameters: 
Contact ID of the vehicle to be avoided. 
Distance to the contact beyond which the behavior has no influence on autonomy  
CPA Distance to the contact below which penalty begins  
CPA Distance to the contact at which penalty is maximize (treated as a collision). 



The Collision Avoidance Behavior 

Purpose:  Avoid collision with a vehicle with given position and trajectory. 

contact: 
active_distance: 

all_clear_distance: 
collision_distance: 

Parameters: 
Contact ID of the vehicle to be avoided. 
Distance to the contact beyond which the behavior has no influence on autonomy  
CPA Distance to the contact below which penalty begins  
CPA Distance to the contact at which penalty is maximize (treated as a collision). 

active_distance 

x,y 

(xb,yb,θb, vb). 

Utility based on CPA (closest point of approach) 

Waypoint 

Controlled Vehicle 

Obstacle 
Vehicle 

Controlled vehicle 

contact 



Outline�

 Trends in autonomous marine vehicles�

 The Payload Autonomy Paradigm and the MOOS-IvP project �

 Multi-Objective Optimization with Interval Programming �

 The IvP Helm�

MOOS-IvP 4.2 and Plans for Future Development �



MOOS-IvP 4.2 �

Changes to the Helm�

•  Preparation for multiple IvP Functions per behavior.�
•  Preparations for IvP Function re-use.�
•  Journaling of IVPHELM_STATUS messages (to reduce log file output)�

New MOOS Apps�
•  uSimBeaconRange�
•  uSimActiveSonar�
•  uSimCurrent �

Improvements to Existing MOOS Apps�
•  pMarineViewer�
•  uSimMarine�
•  alogview �
•  uFunctionVis �



MOOS-IvP 4.2 �



Monterey California!
August 2006!

Notable “First’s”: �

•  First usage of the payload autonomy paradigm�
•  First significant usage of MOOS-IvP on a UUV �
•  First deployment of a UUV with a vector sensor array�


