@% ,'I]M EEEEEEE

CSAIL

The IvP Helm and New Features
of MOOS-IVP 4.2

Michael R. Benjamin

MIT Dept. of Mechanical Engineering
Computer Science and Al Lab (CSAIL)

mikerb@mit.edu
http://oceanai.mit.edu/mikerb

Mir Payload UUV Autonomy o, L

(3 Architecture Principles)

Principle #1 — Separation of Vehicle Autonomy _ o _)
from the Physical Platform « Each architecture principle is designed to

provide the end user with choices and the

Autonomy System ability to procure capabilities on a

Autonom component rather than system basis.

Y MOOS

(Payload Computer) « Allows for incremental development across
Navigation Information * Heading, Speed, Depth Decisions organlzatlons.
Platform REpicEli e enipdicenup s vien « These new thrusts will result in tangible new
(Main Vehicle Computer) software modules and capabilities.
Principle #2 — Separation of Autonomy System Architecture Principle #3 — Separation of Autonomy
Components (MOOS Middleware) into dedicated behaviors (IvP Helm)

(a

IvP Behavior |- ----------ooooooo o
IVP Behavior |-~ -~~~

IvP Function

MOOS Application

IvP Function

MOOS Application IvP Helm

IvP Function

IvP Behavior | -------———--coo o
IvP Behavior | - - - - - - - _____

Decision

A
Information IvP HEIm

Variable-Value Pairs Variable-Value Pairs

[)

MOOS Application MOOS Application

I - @g& ll MiTMEGHE
II CSAIL

Overview of MOOS-IvP Payload Autonomy Software

Autonomy Software at MIT — Laboratory for Autonomous Marine Sensing Systems

Open Source software project — 70+ applications 130,000+ lines of code, 25-30 work years of research & development.
MOOS-IvP autonomy software - www.moos-ivp.org

Goby underwater communications software - www.gobysoft.org

"An Overview of MOOS-IVP and a Brief Users Guide to the IvP Helm Autonomy Software” http:/dspace.mit.edu/handle/1721.1/45569
"Extending a MOOS-IvP Autonomy System and Users Guide to the IvPBuild Toolbox” http://dspace.mit.edu/handle/1721.1/46361
"MOOS-IvP Autonomy Tools Users Manual” http://dspace.mit.edu/handle/1721.1/43708

Platforms that have field-demonstrated MOOS-IvP payload autonomy:

Kingfisher USV Yellowfin AUV SARA USV

N - IM EEEEEEE
"l The Payload Autonomy Paradigm 8,1

Principle #2 - Separation of Autonomy System Components (MOOS)
* MOOS is middleware built on the publish-subscribe architecture.
* Each MOOS application is a separate process running on the vehicle computer.

* The interface of each process is defined by the messages it publishes and the messages
it subscribes for.

/ [MOOS Application] \

‘ MOOS Application

Subscribe\

Aut Syst i
uzgg%}ﬁem - o /
MOOS

[MOOS Application] [MOOS Application]
(Payload Computer) \ J

Navigation Information T l Heading, Speed, Depth Decisions

A MOOS Community

[Vehicle Navigation and Control System }

(Main Vehicle Computer)

Mir The Payload Autonomy Paradigm

Principle #3 - Separation of Autonomy into dedicated distinct behaviors.

* The IvP Helm is a decision-making engine based on the behavior-based
architecture. It is a single MOOS application comprised of multiple specialized

behaviors.

CSAIL

* Behaviors are turned on or off based on defined situations (states) and transitions.
When multiple behaviors are active, coordination is by multi-objective optimization.

* Interval Programming (IvP) is the technique used for multi-objective optimization.

MOOS-IvP Payload Autonomy System

MOOS Application

MOOS Application IvP Helm

MOOS Application MOOS Application

s

IvP Behavior |- - - - - ———————— .
VP Behavior -~~~ !
IvP Function .
IvP Function
IvP Function
IvP Behavior |--------—-——————-
IvP Behavior | - - - - __
wpHeim —JBSONE)
.
Information Decision
| MOOSDB]

QOutline

(] Trends in autonomous marine vehicles

() The Payload Autonomy Paradigm and the MOOS-IvP project
@ Multi-Objective Optimization with Interval Programming

()] The IvP Helm

(J MOOS-IVP 4.2 and Plans for Future Development

CSAIL

@ngb II|M EEEEEEE

ﬁg& 1]]M EEEEEEE

I H . .
I*lii Interval Programming

Interval Programming is a mathematical programming model.
* A mathematical structure or syntax for representing an optmization problem.

* A toolbox of practical methods for casting different problems into the IvP syntax.

* A set of solution algorithms that exploit the syntactic structure.

The “IvP Helm” is a MOOS App implementing a behavior-based architecture
for autonomous decision making, using Interval Programming to reconcile
competing behaviors.

N - . IIM EEEEEEE
"l Interval Programming A

« The solution, X , is the single decision
. that maximizes the weighted sum of all
o - utility functions.
X arginax wifi(X) * For example, the best combination of
A0 vehicle heading, speed, and depth.

h e S

Obstacle Waypoint
[J

\ : / Vehicle
* Each function is the output of a behavior. h
* Each function is a utility function - a mapping

from possible decisions fo their relative merit.

* Freedom from function form assumptions is key
to solving general autonomy problems.

* Global optimality guaranteed.

* New problem generated and solution found on
each iteration of the decision loop, typically 4x f
per second. Controlled Vehicle

I TH . @E& I]M EEEEEEE
Il IvP Functions o |

An IvP Function is a piecewise linear approximation of an objective
function, over a discrete decision space.

Piecewise Linear
Approximation
525 Pieces

Underlying
Function

v/ (x—250)2 + (y— 250)% — 100|

fibr.y)=((1- 2500)200) — 100, +((1 — [V/(x—50)° + (y— 50)* — 100|

8 —
5500)¥%200) — 100

I TH . @E& I]M EEEEEEE
Il IvP Functions o |

An IvP Function is a piecewise linear approximation of an objective
function, over a discrete decision space.

Piecewise Linear
Approximation
100 Pieces

Underlying
Function

v/ (x—250)2 + (y— 250)% — 100|

fibr.y)=((1- 2500)200) — 100, +((1 — [V/(x—50)° + (y— 50)* — 100|

8 —
5500)¥%200) — 100

1H= . T
Il IvP Functions o |

An IvP Function is a piecewise linear approximation of an objective
function, over a discrete decision space.

Piecewise Linear
Approximation
10,000 Pieces

Underlying
Function

v/ (x—250)2 + (y— 250)% — 100|

fibr.y)=((1- 2500)200) — 100, +((1 — [V/(x—50)° + (y— 50)* — 100|

2500

)8%200) — 100

| g] i |‘|M EEEEEEE
i Piecewise Linear Functions in IvP G 1

[ise li i Interval Boundary:
Piecewise linear (IvP) functions: nterval Boundary

\ 10 ¢ x £ 20
® Each point in the decision space belongs l4cyscal
to exactly one piece. Interior Function:

f(x,y) = 4x + 8y + 7

® Each pieces has an interval boundary
and a linear interior function.

Advantages:

o Any underlying function can be
represented.

® Pieces need not be uniformly distributed.
e Extends to n dimensions.

® Syntax can be exploited by the solution
algorithms.

I*lii Interval Programming

Interval Programming is a mathematical programming model.
* A mathematical structure or syntax for representing an optmization problem.
mmm) - A toolbox of practical methods for casting different problems into the IvP syntax.

* A set of solution algorithms that exploit the syntactic structure.

The IvPBuild Toolbox:

(°A C++ library of tools for building syntactically correct IvP functions.

* Typically invoked from code within an IvP Helm behavior implementation
* Downloadable from www.moos-ivp.org

 Documentation: http://dspace.mit.edu/handle/1721.1/46361

i The IvPBuild Toolbox

Q: How are IvP Functions built?
A: The IvPBuild Toolbox

The IvPBuild Toolbox is a
* C++ Library,
 Distributed with the MOOS-IvP tree.

« A set of tools for building IvP functions from a users underlying
objective function.

* Meant to be invoked from within a behavior implementation -
from within the onRunState() function.

* The IvPBuild Toolbox contains two basic tools:
* The ZAIC tool - for building 1D objective functions.
* The Reflector tool - for building IvP Functions in N dimensions.

CSAIL

@E& II|M EEEEEEE

I I MITMECHE

Illil- The Reflector Tool @E’h

(Pure Uniform)

The Reflector Tool builds an IvP function from a given underlying function by sampling the
underlying function.

fAlgori’rhm Design Criteria

(1) Minimize error.

(2) Minimize pieces generated.

(3) Minimize generation time.
Y% (4) Minimize complexity of use for the user.
Y% (5) Minimize restrictiveness of the tool. p

Three variations discussed:

=P (1) Pure Uniform
(2) Uniform with Prioritized Augmentation

(3) Uniform with Focused Augmentation

=

Method 1 - Pure Uniform Basic idea:
~ * Function is composed of uniform piecewise
AR

linearly defined pieces.
Pros:
* Simple fo use.
* Requires no insight into underlying function.
* Can explore time, size, accuracy tradeoff space.
Cons:
* Treats all areas of the underlying function
equally.
* Does not capitalize on insight into underlying

function.

IIIII The Reflector Tool @E’h L=

(Uniform with Prioritized Augmentation)

The Reflector Tool builds an IvP function from a given underlying function by sampling the
underlying function.

fAlgori’rhm Design Criteria \
Three variations discussed: * (1) Minimize error.
(1) Pure Uniform Y% (2) Minimize pieces generated.
—> (2) Uniform with Prioritized Augmentation (3) Minimize generation time.

(3) Uniform with Focused Augmentation % (4) Minimize complexity of use for the user.
K (5) Minimize restrictiveness of the tool. j

Basic idea:
Start with a uniform function and further refine
the pieces that have the worst error (prioritized

during first linear regression phase).

Method 2 - Uniform with Priority-Based Augmentation

Pros:
¢ Simple to use. No insight into underlying

function required
* Can explore time, size, accuracy tradeoff space.

Cons:
* Does not always catch the pieces with worst

error.
* Does not capitalize on insight info underlying
function.

I MITMECHE

IIIII The Reflector Tool @E’h |

(Uniform with Focused Augmentation)

The Reflector Tool builds an IvP function from a given underlying function by sampling the
underlying function.

/AIgori’rhm Design Criteria \
Three variations discussed: * (1) Minimize error.
(1) Pure Uniform &% (2) Minimize pieces generated.
(2) Uniform with Prioritized Augmentation *(3) Minimize generation time.
— (3) Uniform with Focused Augmentation (4) Minimize complexity of use for the user.
(5) Minimize restrictiveness of the tool.

- J

Method 3 - Uniform with Focused Augmentation Basic idea:
Start with a uniform function and further

refine the pieces in areas thought to need
more pieces for error reduction

Pros:
* Simple fo use. Capitalizes on insight of
underlying function.
* Can explore time, size, accuracy tradeoff
space.

Cons:
* Not all functions have area suitable for
focused refinement.
* Requires insight info underlying function.

I o -]‘l MITmECHE
I I" The ZAIC Tool |

The ZAIC Tool builds an IvP function from a given underlying function by sampling the
underlying function.

/Algori’rhm Design Criteria \
Three variations: * (1) Minimize error.
(1) ZAIC_PEAKS Y% (2) Minimize pieces generated.
(2) ZAIC_LEQ *(3) Minimize generation time.
—p (3) ZAIC_HEQ *(4) Minimize complexity of use for the user.
(5) Minimize restrictiveness of the tool.

Basic idea:
Method 4 - ZAIC Peak
1D Funcions with one or more peaks. Identify the

peak properties and the IvP function is generated.
Pros:

Simple to use. Very few pieces.

As many peaks as desired.

Summit-delta I Cons:
Only suitable for 1D objective functions.

/

IvP Function:

(1) 0sx<45 y=0

(2) 46<x<90 y =1.89x - 85

(3) 91<x<180 y=0.17x+70

(4) 181<x<270 y=-0.17x+ 130
(5) 271<x<315 y=-1.89x + 595
(6) 316<x<359 y=0

Mir Interval Programming Solution Algorithms el e

(Overview)

An IvP problem consists of a set of k functions, each with a priority weighting.
The solution is given by:

k-1
X = argmax Ewifi(f)
X i=0

The Search Tree:

f2 f3 e 1 level for each function
e X leaf nodes (n pieces per function).

The Solution algorithm:

® Branch and bound
¢ Pruning based on infersection look-

ahead.
,.~~"I::::1“~~~~
I g A
o O B o0 owen
— — — 0.0 g0 dem Oeo

Nir . . o
"l IvP Solution Algorithms
(The issue of global optimality)

III MITMECHE

How global optimality is guaranteed:

® Each objective function is defined over the same decision space (x, y), (heading, speed) eftc.

® The solution space is the set of all possible combinations of pieces from each function.

eg., §{ (L1),(@12), (1, 3), (1.4), (1,5) .. (9,5), (9.6), (97), (9.8), (99) } 81 total pairs

® Each point in the decision space belongs to exactly one piece from each piecewise function.

e Therefore considering all possible combinations ensures all possible decisions are considered.

N . IM EEEEEEE
i IVvP Solution Algorithms e, 1
(The Search Tree)

Root

® Each level in the tree corresponds to one objective function.
® Each leaf node is a combination of one piece from each objective function.

e Function weights applied a priori to the pieces - weights no longer relevant.

k functions, m pieces: m* leaf nodes!

N 2l
Closer Look at a Leaf Node

Root

- ~ - ~
- So e hES
P ~ Pid ~
~
- ~o -
e ~

#3 1 eoee|l M 1 eee|l M 1 ooo 1 eee| M
1 2 1 2
1 2 3
3
4 4
5 6 7 4 |[° 6 5 6 7
8 9 8 9 8 9

#1 #2 #3

I H . I MITMECHE
i lvP Solution Algorithms Ged.1

(Piece Intersection)

Two pieces intersect if their boundaries overlap.

The result is a new piece with common boundary and the sum of their two linear interior functions.

Boundary: Boundary: T B
1M0=<x=<20 15<x <25 T -
14<y=<21 21=y=30

Interior Function: Interior Function:
f(x,y)=4x+8y +7 f(x,y) = 2x + 5y + 2

pa m pb
M
Boundary:
20=x=<25
21<y=<21

Interior Function:
f(x,y)=6x+ 13y +9

"l IvP Solution Algorithms o,

III MITMECHE

(Full Search Tree Expansion)

main()

0. bestBox = NULL

1. nodeBox = universe
2. search(nodeBox, 1)
3. return(bestBox)

Recursive entry

search(nodeBox, level)

Root

Level

0. if(level == k)

1. if(nodeBox is non-empty)

2 if(lbestBox or nodeBox—maxval > bestVal)
3 bestVal = nodeBox—maxval

4. bestBox = nodeBox

5. return

6. for(i=1tom)

7 newNodeBox = nodeBox N p(i, level)

8 search(newNodeBox, level + 1)

/'

Recursive call

— \\Je can do better here

Don’t recurse if newNodeBox is empty

"l IvP Solution Algorithms o,

III MITMECHE

(Simple Pruning)

main()

0. bestBox = NULL

1. nodeBox = universe
2. search(nodeBox, 1)
3. return(bestBox)

Recursive entry

search(nodeBox, level)

Root

Level

—— Improved!

0. if(level == k)

1. if(nodeBox is non-empty)

2. if(lbestBox or nodeBox—maxval > bestVal)
3. bestVal = nodeBox—maxval

4. bestBox = nodeBox

5. return

6. for(i=1tom)

7. newNodeBox = nodeBox N p(i, level)

8. if(newNodeBox is non-empty)

9. search(newNodeBox, level + 1)

/'

Recursive call

Don’t recurse if newNodeBox is empty

lvP Solution Algorithms 2,

(Full Expansion vs. Simple Pruning)

time (seconds)

3000

2500

2000

1500

1000

500

0

T T T T T T
1B version—] ——
version—2 /1~
s 7 -
/+’/
St
r\A\A\AAAA.‘L_,k—AcH’k A A N 4
e e - -
0 100 200 300 400 500 600 700
pieces

Each problem contains
3 objective functions
3 dimensions

III MITMECHE

main()

0.

1.
2.
3.

bestBox = NULL
nodeBox = universe
search(nodeBox, 1)
return(bestBox)

Recursive entry

search(nodeBox, level)

0.
1.

©COoONOOAWN

if(level == k)

lvP Solution Algorithms
(Simple Pruning)

Root

if(nodeBox is non-empty)

if(lbestBox or nodeBox—maxval > bestVal)

bestVal = nodeBox—maxval
bestBox = nodeBox

return

for(i=1 to m) -——m

newNodeBox = nodeBox N p(i, level)
if(newNodeBox is non-empty)
search(newNodeBox, level + 1)

/'

Recursive call

Improve here:

Only intersect-test for pieces
“in the neighborhood”.

@ngb II|M EEEEEEE

CSAIL

Level

i VP Solution Algorithms i 1

(Efficient Intersection Detection)

Only intersect-test for pieces
“in the neighborhood”.

« Agrid is associated with each piecewise objective function.

« Alist is associated with each grid element containing pieces that intersect that element.
» The grid is populated when the function is constructed before the solution phase begins.
+ The grid configuration can be different for each objective function.

a b C d e
f
j g h 1 e
1 m|| n
Y p
q r
S t u A%
w

Grid(level)—getBoxes(gbox) ={a, b, c, d, f, g, h}

IIM EEEEEEE

- .] MITMECHE
"l IvP Solution Algorithms £

(Exhaustive vs. Grid-based Intersection Testing)

160 1 I I I I 1 I
2B version—2 ——
140 - version—3 ~© |
120 | g
Z 100
S
2 80
2
2 60 g
40 - —
20 | +/"’// .
0 2000 4000 6000 8000 10000 l’?OOO I4000 16000 18000 20000
pieces
3000 T T T
® i e |
2500 | 1 Each problem contains
2000 | / 3 objective functions

time (seconds)

/ 3 dimensions
1500

1000 |- g

s /

0 100 200 300 400 500 600 700

pieces

Mir lvP Solution Algorithms

(Internal Node Upper Bounds)
Get the upper bound for pieces
“in the neighborhood”.

« Each piece has a known maximum value (of its linear interior function).
« Each grid element stores the max value of all pieces added to that element

« The grid is populated when the function is constructed before the solution phase begins.

» The grid configuration can be different for each objective function.

22 ||1 6 ||21 2
11 17| 4 12
14

8 27 2|12
10 |[11

15 27

5 16 41132
3

grid(level)—getBound(gbox) = 22

CSAIL

III MITMECHE

IvP Solution Algorithms
(No-Upper-Bound vs. Upper-bound)

CSAIL

90 1 I I I I
3B version—4 —<— 1
S0 version—=3 -+ '
70 8
—~ 60 ™ +]
2
= :
g 50 ‘ A
g 4Or |
= 30t A .
20 +_+~+ i
10 el & —
-t S6O6OO—
0 %M«WW 1 1 1
0 5000 10000 15000 20000 25000 30000
pieces
3000 1B I vell'sion—é ‘Ig ’ Y Y 1 160 2B ‘ ‘ ver;ion—Z — I
version— i version—3 .
2500 1 140 Each problem contains
_ 20} I 3 objective functions
5 Z 100 . .
3 dimensions
$ 1500 % s
= 1000 | =
i A
00 : 20 | s
. . . . W, . G\ —L—Jr-k‘?t%yi N N a4 J»%’-X/—./j\ a a5 L VN
0 100 200 300 400 500 600 700 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

pieces

pieces

I MITMECHE

Outline

()] Trends in autonomous marine vehicles

(J The Payload Autonomy Paradigm and the MOOS-IVP project
(J Multi-Objective Optimization with Interval Programming

@ The IvP Helm

(J MOOS-IVP 4.2 and Plans for Future Development

CSAIL

@ngb II|M EEEEEEE

Interval Programming and
the IvP Helm

.

e)
IvP Behavior |~
IvP Behavior

IvP Function

Variable-Value Pairs IvP Function

Variable-Value Pairs IvP Function

Variable-Value Pairs

IWPBehavior -——----——~—~“
VP Behavior - - -~ o

Information 0 lVP Hel m e

J/

Variable-Value Pairs Variable-Value Pairs

[MOOSDB]

Mail is read in the MOOS OnNewMail() function and applied to a local buffer.
The helm mode is determined, and set of running behaviors determined.
Behaviors do their thing - posting MOOS variables and an IvP function.

Competing behaviors are resolved with the IvP solver.

The Helm decision and any behavior postings are published to the MOOSDB.

CSAIL

{%& I I] MITMECHE

Interval Programming and
the IvP Helm

.

©
IvP Behavior --------- -~

IvP Behavior

IvP Function
Variable-Value Pairs IvP Function
Variable-Value Pairs IvP Function

Variable-Value Pairs

IvP Behavior
IvP Behavior

Information 0 IVP Hel m

________________ o

\ 4

(5]

J/

Variable-Value Pairs

Variable-Value Pairs

[MOOSDB

|

Mail is read.
Helm mode is determined.
Behaviors generate their output.

Competing behaviors are resolved.

The Helm posts its results

Obstacle
Vehicle

AN

Waypoint
[]

f

Controlled Vehicle

III MITMECHE

CSAIL

<
0

1" IvP Helm Configuration .

s) =)
"""""""""""""" ! Helm configuration file structure:
IvP Function : .
. file.bhv
IvP Function
IvP Function
___________________________ Variable Initializations
--------------------------- | O
Information 0 IVP Helm e
. J
Variable-Value Pairs Variable-Value Pairs Hierarchical MOde DeClaraﬂons
[MOOSDB]
re
Behavior Configurations
Behavior = <behavior name>
{ A/
parameter = value
parameter = value
}

IvP Helm Configuration

©

IvP Function

IvP Function

IvP Function

4

CSAIL

Decision
Information | € IvP He‘m e -
= —
Variable-Value Pairs Variable-Value Pairs
A
[MOOSDB J

{

name =
priority
condition

speed
clockwise
radius
nm_ radius
polygon

Behavior = BHV_Loiter

loiter

100

(DEPLOY=true) and (REGION=A)

1.8
false
4.0
25.0

format=radial, x=0, y=-75,

radius=40, pts=8

r'd

file.bhv

Variable Initializations

Hierarchical Mode Declarations

~

Behavior Configurations

I I MITMECHE

IMir . \ . g L
Simple Example: "Double Loiter”

Mission Synopsis:
Upon receiving a deploy command, transit to and loiter

at region A for a fixed duration and then to region B. 9
Periodically switch between regions until recalled home.

Launch and return position

Behavior = BHV Loiter
{ - / \ /! N

/ AN /! AN
parameter = value / N / \
I (80 meters) 1 I I
/ \
parameter = value N N\, /
}
REGION A REGION B

Behavior = BHV_ Loiter

{

parameter = value

value

parameter

Behavior = BHV_Return

{

parameter = value

parameter value

IMir \ : £
Simple Example: "Double Loiter”

Mission Synopsis:
Upon receiving a deploy command, transit to and loiter

at region A for a fixed duration and then to region B. 9
Periodically switch between regions until recalled home.

Launch and return position

Behavior = BHV_Loiter

- -

{ / AN
name = loiter a g h 4 :
condition = (DEPLOY=true) and (REGION=A) I(gornekys)l I I

speed = 1.8 . S/ N
radius = 4.0 | S— —
polygon = format=radial,x=0,y=-75,radius=40,pts=8

} REGION A REGION B

Behavior = BHV_ Loiter

{
name = loiter b
condition = (DEPLOY=true) and (REGION=A)

speed = 1.8
radius = 4.0
polygon = format=radial,x=160,y=-75,radius=40,pts=8

}

Behavior = BHV_Return

{
name = return
condition = (DEPLOY=true) and (RETURN=true)

speed = 1.8
radius = 4.0
point = 80,40

IMir \ : £
Simple Example: "Double Loiter”

Mission Synopsis:
Upon receiving a deploy command, transit to and loiter

at region A for a fixed duration and then to region B. 9
Periodically switch between regions until recalled home.

Launch and return position

Behavior = BHV_Loiter
{ / AN / \
/ AN / \
name = loiter a 4 / h
condition = (DEPLOY=true) and (REGION=A) I(gornekys)l I I
speed = 1.8 \\\ / N)
radius = 4.0 — -
polygon = format=radial,x=0,y=-75,radius=40,pts=8 REGION A REGION B
}
Behavior = BHV_ Loiter Initialize DEPLOY = false
{ Initialize RETURN = false
name = loiter b Initialize REGION = A
condition = (DEPLOY=true) and (REGION=A)
speed = 1.8 file.bhv
radius = 4.0
) polygon = format=radial,x=160,y=-75,radius=40,pts=8 Variable Initializations
Behavior = BHV_Return
{ ??? Hierarchical Mode Declarations
name = return
condition = (DEPLOY=true) and (RETURN=true)
speed = 1.8
radJ'.us = Gl Behavior Configurations
point = 80,40
}

Simple Example: "Double Loiter”

Mission Synopsis:
Upon receiving a deploy command, transit to and loiter
at region A for a fixed duration and then to region B. @

Periodically switch between regions until recalled home.
. /
(80 meters)j
/ /

REGION A REGION B

Launch and return position

ACTIVE INACTIVE

LOITER_A LOITER_B RETURNING

file.bhv

Variable Initializations

N Hierarchical Mode Declarations

Behavior Configurations

IMir \ : £
Simple Example: "Double Loiter”

Mission Synopsis:
Upon receiving a deploy command, transit to and loiter

at region A for a fixed duration and then to region B. @
Periodically switch between regions until recalled home.

Launch and return position

- -

/ AN / AN
/ AN / AN
. . N
[(80 meters)l [I
ACTIVE INACTIVE N Y N
. / AN /
REGION A REGION B
LOITER_A LOITER_B RETURNING
file.bhv
set MODE = ACTIVE {
DEPLOY = true Variable Initializations
} INACTIVE
set MODE = RETURNING ({

MODE = ACTIVE 4 \Hierarchical Mode Declarations
RETURN = true

}

set MODE = LOITER A {
MODE = ACTIVE Behavior Configurations
REGION = A

} LOITER A

IMir \ : £
Simple Example: "Double Loiter”

Mission Synopsis:
Upon receiving a deploy command, transit to and loiter

at region A for a fixed duration and then to region B.
Periodically switch between regions until recalled home. Question:

Why define the “Active” mode?
Why not just have:

ACTIVE

INACTIVE

[LOITER_A] [LOITER_B] [RETURNING] ‘ INACTIVE

LOITER_A LOITER_B RETURNING

set MODE = ACTIVE {
DEPLOY = true
} INACTIVE

file.bhv

Variable Initializations

set MODE = RETURNING {

MODE = ACTIVE 4 Hierarchical Mode Declarations
RETURN = true

}

set MODE = LOITER A {
MODE = ACTIVE Behavior Configurations
REGION = A

} LOITER A

W sppiica Physicat seiences MIT Prototype Autonomy Modes

Industry Team

IVP-Helm Launch
Hierarchical Mode
Declarations m

Recovery

Area Clearance || Low Power Alert |1 Communicating Hold-at-Risk

Dynamic Modifications to the Helm

Q: How is the helm modified after launch?
A: By receipt of incoming MOOS mail.

- The helms mission mode may change
- Behavior parameters may change

Q: Why would the helm be modified?

- New internal plans generated

- Conclusions from sensor processing modules
- External comms from other vehicles

- External comss from field-control

Q: Why is this important?

A: It determines how the helm may interface
with an off-board planner, field-control
system, scheduler, and other vehicles.

@E_% II|M EEEEEEE

CSAIL

(3]

oea0 WPHem g (NSO |
[MOOSDB]
[MOOSAPp] [MOOSAPp]

[MOOSApp] | MoOSApp |

Dynamic Modifications to the Helm

Q: How is the helm modified after launch?
A: By receipt of incoming MOOS mail.

- The helms mission mode may change
- Behavior parameters may change

Q: Why would the helm be modified?

- New internal plans generated

- Conclusions from sensor processing modules
- External comms from other vehicles

- External comss from field-control

Q: Why is this important?

A: It determines how the helm may interface
with an off-board planner, field-control
system, scheduler, and other vehicles.

@E& II|M EEEEEEE

CSAIL

IVPBERaVIOR) - - - - - - - -------=====---------;
o

Variable-Value Pirs

IvP Function

jor -----------|
Information | @ IvP Helm 0
Varable-Vlue Pars

aaaaaaaaaaaaaaaaaa

[MOOSDB]

MOOSApp

modem H MOOSApp] [MOOSApp]

MOOSApp

Dynamic Modifications to the Helm

(1) Mode Modifications

* The Helm Mode is determined by conditions
* The conditions are defined over MOOS variables:

ACTIVE INACTIVE
[LOITER_A] [LOITER_B] [RETURNINGJ
DEPLOY = true
ACTIVE |INACTIVE
LOITER_A| |LOITER_B| |RETURNING

set MODE
DEPLOY
} INACTIVE

set MODE

ACTIVE ({
true

RETURNING {

MODE = ACTIVE

RETURN =
}

set MODE =

true

LOITER A {

MODE = ACTIVE

REGION =
} LOITER A

A

I I MITMECHE

CSAIL

-~

N

ion | @

(]
e ‘

IvP Behavior

o SR [

IvP Helm o

MOOSDB]

MOOSApp

modem H MOOSApp]

[MOOSApp]

MOOSApp

II MITMECHE

Illil- Dynamic Modifications to the Helm @jﬁ |
(2) Behavior Modifications

* Behavior configuration parameters may altered after launch. Launch and return position

* Each behavior may specify an UPDATES variable. 0
Behavior = BHV_Loiter
{
name = loiter a
condition = (DEPLOY=true) and (REGION=A) o S
speed = 1.8
radius = 4.0 (80 meters)
polygon = format=radial,x=0,y=-75,radius=40,pts=8 N / . p
updates = LOITER UPDATE N A g
} REGION A REGION B

LOITER UPDATE = polygon=format=radial,x=160,y=-75,radius=40,pts=8

Behavior = BHV Loiter

{

name = loiter a
condition = (DEPLOY=true) and (REGION=A)

speed = 1.8
radius = 4.0
polygon = format=radial,x=160,y=-75,radius=40,pts=8
updates = LOITER_UPDATE

I N .
Il Dynamic Behavior Spawning

What is Dynamic Behavior Spawning?

* Behaviors may be defined as templates with instances spawned upon receipt of an
externally generated, user-defined event.

* Behavior authors may implement behaviors to die under certain conditions, and post
MOOS messages immediately prior to dying.

Motivation:

* For certain behaviors, e.g., collision avoidance, contact tracking, multiple instances
of the behavior are required, one for each contact.

« Its virtually impossible to know the amount or type of contacts encountered prior
to the start of the mission.

Non-Templated Behavior:

Configuring Behaviors with
Dynamic Behavior Spawning

Templated Behavior:

III MITMECHE

CSAIL

Behavior = BHV_AvoidCollision Behavior = BHV_AvoidCollision
{ {
name = avd _collision name = avd_collision _
pwt = 200 pwt = 200
condition = AVOID=true condition = AVOID=true
updates = CONTACT_INFO s updates = CONTACT INFO
endflag = CONTACT RESOLVED = $[CONTACT]
contact = macrura templating = spawn
active outer distance = 50
active inner distance = 20 contact = to-be-set
completed distance = 75 active outer distance = 50
collision distance = 8 active inner distance = 20
all clear distance = 25 completed distance = 75
active grade = linear collision distance = 8
on _no_contact ok = true all clear distance = 25
extrapolate = true active grade = linear
decay = 30,60 on_no_contact ok = true
} extrapolate = true
decay = 30,60
}
CONTACT INFO = “name=avd _macrura # contact=macrura”
CONTACT INFO = “name=avd_henry # contact=henry”

N . II MITMECHE
III" The Berta Example Mission with
Dynamic Behavior Spawning

The Berta example mission:

* In moos-ivp/trunk/missions/m2_berta

* Two vehicles loitering and repeatedly swapping loiter locations

* Each time the vehicles get close, a collision avoidance behavior is spawned.
* After the range opens sufficiently, the collision avoidance behavior dies.

pMarineViewer
File BackView GeoAttr Vehicles MOOS-Scope ReferencePoint Action
7S s

Loiter Region #2
Loiter Region #1

VName: [gilda X(m): [52.5 Lat: [0.000000 Spd(mis): [1.2 Dep(m): [0.0 Time: [14648.1 Range: [75.9 PERMUTE-NOW| i DEPLOY .

VType: [kayak Y(m):[-54.8 Long: [0.000000 Heading: [262.9 | ReportAge:[1.12 | Warp:[12 Bearing: [136.25 RETURN

Variable: [CONTACT INFO | Time: [14611.55 | Value: Jname=avd_henry#contact=henry

Monitoring Life Events

* A “Life Event” is the spawning or death of a behavior.
* Life Events may be monitored in a special mode of the uHelmScope MOOS utility:

CSAIL

]I MITMECHE

S uHelmScope --life henry.moos

Y ala

Terminal — uHelmScope — 86x21 — 31

[x] tcsh | [x] uHelmScope
=
Y Je Je de de de de de de de de de de e e de v vk v v e e e e e e de d vk gk gk gk e e e e e e de de dk dk gk gk e e e e e e e 4
¥ Summary of Behavior Life Events ¥* !
Y Je Je de de de de de de de de de de e de v d vk v v v e e e e e de d dke gk gk e e e e e e e de d dk dk gk gk ke e e e e e e
Time Iter Event Behavior Behavior Type Spawning Seed
280.50 833 death avd gilda BHV_AvoidCollision
389.77 1268 spawn avd gilda BHV AvoidCollision name=avd gilda#contact=gilda
444.52 1415 death avd gilda BHV_AvoidCollision
557.64 1867 spawn avd gilda BHV_AvoidCollision name=avd gilda#contact=gilda
617.70 2019 death avd gilda BHV_AvoidCollision
701.60 2355 spawn avd gilda BHV_AvoidCollision name=avd gilda#contact=gilda
758.22 2511 death avd gilda BHV_AvoidCollision
809.56 2717 spawn avd gilda BHV_AvoidCollision name=avd gilda#contact=gilda
866.61 2863 death avd gilda BHV_AvoidCollision
971.80 3273 spawn avd gilda BHV_AvoidCollision name=avd gilda#contact=gilda
1031.60 3410 death avd gilda BHV_AvoidCollision

Hit 'r' to resume outputs, or SPACEBAR for a single update

I

-

RN

I = . @}E} L
I I" Analyzing Life Events con |

* A “Life Event” is the spawning or death of a behavior.
* Life Events may be monitored in a special mode of the uHelmScope MOOS utility.
* The Life Event may also be examined post-runtime from the MOOS log files:

$ aloghelm --life henry logfile.alog

® 00 Terminal — tcsh — 94x31 — 33
Q sh |0 pMarinePID IQ tcsh
=]
Je e de de de de de de e de v gk e de v d e e gk v e g d e e g dk e e gk e e e dk v e gk dk e e gk e e ke dk e o ok ke e
%* Summary of Behavior Life Events %*
J e Je de de de de de de de de de de de v e de de v e de v de de e de d e e d e e de dk e e dk e e e dk e e gk e e e ok e e e
Time Iter Event Behavior Behavior Type Spawning Seed
0.00 1 spawn loiter BHV_Loiter helm startup
0.00 1 spawn waypt return BHV_Waypoint helm startup
0.00 1 spawn station-keep BHV_StationKeep helm startup
94.57 247 spawn avd_gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
152.94 398 death avd_gilda BHV_AvoidCollision
222NNTD 677 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
280.50 833 death avd gilda BHV_AvoidCollision
389.77 1268 spawn avd_gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
444.52 1415 death avd_gilda BHV_AvoidCollision
557.64 1867 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
617.70 2019 death avd gilda BHV_AvoidCollision
701.60 2355 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
758.22 2511 death avd_gilda BHV_AvoidCollision
809.56 2717 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
866.61 2863 death avd gilda BHV_AvoidCollision
971.80 3273 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
1031.60 3410 death avd _gilda BHV_AvoidCollision
1164.46 3927 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
1226.22 4061 death avd gilda BHV_AvoidCollision
1341.33 4503 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda
1400.98 4638 death avd _gilda BHV_AvoidCollision LJ
1520.36 5108 spawn avd gilda BHV_AvoidCollision name=avd_gilda#contact=gilda :
leonardo:missions/m2_berta(trunk)$ [] y

"l Contact Management
and Behavior Spawning

* A MOOS application - pBasicContactMgr.
* It receives NODE_REPORT messages from other MOOS applications

Sensor Communications
Hardware Hardware
[pSensor] [iCommsDevice]

NODE_REPORT NODE_REPORT

MOOSDB

NODE_REPORT NODE_REPORT

<events> <events>

[pHeImIvP] [pBasicContactMgr]

Mir Non-Traditional Aspects of Behavior-Based ... 1"

Control in the IvP Helm

* Behaviors have state.

* Behaviors influence each other between iterations.

* Behaviors accept externally generated plans.

* There may be several instances of the same behavior.

* Behaviors may spawn and die dynamically based on events or commands.
* Behaviors may run in a configurable sequence.

* Behaviors rate actions over a coupled decision space (multi-objective optimization)

4

| This is not Rodney Brooks’ Behavior Based Control

However - the power of independent, incremental development has been retained,

enhanced by the power of Open Source development, and wide, diverse collaborations.

The Waypoint Behavior

(General Characteristics)

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices.

Parameters:
points:
capture_radius:
speed.
non-monotonic_radius:
track lead:
order:
repeat:
Example:
points:
capture _radius:

speed.

A set of points in the X-Y plane
Distance from a point, within which arrival is declared.
Desired speed of traversal.

Distance from a point, within which an increase in distance is treated as an arrival.

For track-line following - distance to perpendicular intersection point.
Order of point traversal.
Number of times points are traversed.

(0,-80), (45,-45), (160, -120)

4 Start position
25 @
80 meters:
(.]
1 ()

CSAIL

II MITMECHE

II MITMECHE

"l The Waypoint Behavior &3,

(Non-monotonic Radius)

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices.

Parameters:
points: A set of points in the X-Y plane
capture_radius: Distance from a point, within which arrival is declared.
speed: Desired speed of traversal.
non-monotonic_radius: Distance from a point, within which an increase in distance is treated as an arrival.
track_lead: For track-line following - distance to perpendicular intersection point.
order: Order of point traversal.
repeat: Number of times points are traversed.

Example:
points: (0,-80), (45,-45), (160, -120)
capture_radius: 4 Start position
speed: 2.5
non-monotonic_radius 12 T @

80 meters: T

N - I.vuw.ec»«s
"l The Waypoint Behavior 8,1

(Track-line Following)

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices.

Parameters:
points: A set of points in the X-Y plane
capture_radius: Distance from a point, within which arrival is declared.
speed: Desired speed of traversal.
non-monotonic_radius: Distance from a point, within which an increase in distance is treated as an arrival.
track_lead: For track-line following - distance to perpendicular intersection point.
order: Order of point traversal.
repeat: Number of times points are traversed.

Example:
points: (0,-45), (120,0)
capture_radius: 4
speed: 2.0
track _lead: O

| 120 meters

A

T

.
X
\
AT
—

.,

Flow = 1.2 m/sec

Start position

1"l The Waypoint Behavior 82,

(Track-line Following)

Purpose: Traverse a given set of waypoints, gracefully handling missed vertices.

Parameters:
points: A set of points in the X-Y plane
capture_radius: Distance from a point, within which arrival is declared.
speed: Desired speed of traversal.
non-monotonic_radius: Distance from a point, within which an increase in distance is treated as an arrival.
track_lead: For track-line following - distance to perpendicular intersection point.
order: Order of point traversal.
repeat: Number of times points are traversed.

Example:
points: (0,-45), (120,0)
capture_radius: 4
speed: 2.0

track_lead: 2

120 meters

T

Flow = 1.2 m/sec

Start positi N
a pOSI Ion -'-r?-'-:.t-“n.-- SESgumuEnw

II MITMECHE

III MITMECHE

The Obstacle Avoidance Behavior

Purpose: Avoid a set of given obstacles each represented by a convex polygon.

Parameters:

polygon: A set of points in the X-Y plane, comprising a convex polygon.

polygon: Other obstacles.

allowable_ttc: Time To Collision Allowed before a candidate maneuver is penalized.

activation_dist: Distance to a polygon beyond which the behavior is inactive.
buffer_dist: Distance to polygon treated as a collision.

Example: polygon:
polygon:

allowable_ttc:

activation_dist:

buffer_dist:

Q: Why convex polygons?
A: Most operations are simplified.

- Point containment test,
- Distance to polygon,

- Line segment intersection, etc.

Start
o Ci>

A: A non-convex polygon can be
represented by a set of convex polygons.

(10,10), (20,20), (30,30), (40,40)
(60,60), (70,70), (80,80), (90,90)
25

60

8

Waypoint
[J

The Obstacle Avoidance Behavior

Purpose: Avoid a set of given obstacles each represented by a convex polygon.

Parameters:

polygon:
allowable_ttc:
activation_dist:

A set of points in the X-Y plane, comprising a convex polygon.
Time To Collision Allowed before a candidate maneuver is penalized.
Distance to a polygon beyond which the behavior is inactive.

buffer_dist: Distance to polygon treated as a collision.

Example: polygon: (10,10), (20,20), (30,30), (40,40)
polygon: (60,60), (70,70), (80,80), (90,90)

allowable_ttc: 25

activation_dist: 60

buffer _dist: 8
Q: Why convex polygons? g
A: Most operations are simplified.

- Point containment test,
- Distance to polygon,
- Line segment intersection, etc.
A: A non-convex polygon can be
represented by a set of convex polygons. Polygon #1

Polygon #2
REGION A REGION B

III MITMECHE

lI MITMECHE

CSAIL

The Loiter Behavior

Purpose: Repeatedly traverse a given set of waypoints, gracefully handling missed vertices.
Automatically calculate trajectory re-entry when required.

Parameters:
polygon:
capture_radius:
speed.

non-monotonic_radius:
acquire_distance:
clockwise:

A set of points in the X-Y plane, comprising a convex polygon.
Distance from a point, within which arrival is declared.
Desired speed of traversal.

Distance from a point, within which an increase in distance is treated as an arrival.

Distance from the polygon, outside of which the behavior is in “acquire mode”.
True if traversing clockwise.

Example:

polygon:
capture_radius:
non-monotonic_radius:
acquire_distance:
clockwise:

NORMAL-MODE

radial:50,60,40,6
10

15

15

true

Vehicle objective function for
achieving the next waypoint

I MITMECHE

"l The Loiter Behavior 52, 1

(Acquire Vertex Policy - External Case)

Purpose: Repeatedly traverse a given set of waypoints, gracefully handling missed vertices.
Automatically calculate trajectory re-entry when required.

Parameters:

polygon: A set of points in the X-Y plane, comprising a convex polygon.
capture_radius: Distance from a point, within which arrival is declared.
speed: Desired speed of traversal.
non-monotonic_radius: Distance from a point, within which an increase in distance is treated as an arrival.
acquire_distance: Distance from the polygon, outside of which the behavior is in “acquire mode”.
clockwise: True if traversing clockwise.

Acquire Vertex Policy (External Case):

V
acquire_vertex = vi
where /= argmin(6,) ‘ ‘

o Y A
v, is viewable from p : » V.

——————————————————— - \ ;
90 © >\ +90 \ Y i+3
9 .

-————-- 0O

200 meters

II MITMECHE

"l The Loiter Behavior 83,

(Acquire Vertex Policy - Internal Case)

Purpose: Repeatedly traverse a given set of waypoints, gracefully handling missed vertices.
Automatically calculate trajectory re-entry when required.

Parameters:

polygon: A set of points in the X-Y plane, comprising a convex polygon.
capture_radius: Distance from a point, within which arrival is declared.
speed: Desired speed of traversal.
non-monotonic_radius: Distance from a point, within which an increase in distance is treated as an arrival.

acquire_distance: Distance from the polygon, outside of which the behavior is in “acquire mode”.
clockwise: True if traversing clockwise.

Acquire Vertex Policy (Internal Case):
acquire_vertex = v,
where i =argmin(6,+k;)
k.= -c if v; is current

0 0 otherwise s
123
-90 *-mtoTos >*. +90
0i
Vi

200 meters

II MITMECHE

N . |
The Turn-Limit Behavior

Purpose: To limit the rate of vehicle turn to protect a towed sensor.

Parameters:
memory_time: A set of points in the X-Y plane, comprising a convex polygon.
turn_range: Distance from a point, within which arrival is declared.

heading_avg = atan2(s, c) (180/x) .,

n-1 ., .
s = Esin(hkﬂ/l80) Waypoint 3 ol Waypoint 1
k=0 ! -i

n-1
¢ = Y cos(hm/180)

k=0

N -
— e ..

turn radius: r=v/((u/180)x)

H
I
:
L

"-5 Waypoint 2

N . |
The Turn-Limit Behavior

Purpose: To limit the rate of vehicle turn to protect a towed sensor.

Parameters:

memory_time: A set of points in the X-Y plane, comprising a convex polygon.
turn_range: Distance from a point, within which arrival is declared.

heading_avg = atan2(s, c) (180/x) Heading average mm T

n-1
s= Y sin(h,m/180) .
k=0

k=0 e

ul Current heading
¢ = Y cos(hm/180) /

turn radius: r=v/((u/180)x)

CSAIL

II MITMECHE

1Ty N
The Turn-Limit Behavior

Purpose: To limit the rate of vehicle turn to protect a towed sensor.

Parameters:

memory_time: A set of points in the X-Y plane, comprising a convex polygon.
turn_range: Distance from a point, within which arrival is declared.

heading_avg = atan2(s, c) (180/x)
n-1 7 .“l
s= Y sin(h,m/180) r
k=0 K :
s :
n-1 ,1'-.
¢ = Y cos(hm/180) 7
k=0 !r"
r'!/
turn radius: r=v/((u/180)x) ;.i
‘-.\ ’-
.‘"‘\h '.’-

IIIiI- o . . @%L III MITMECHE
The Collision Avoidance Behavior

Purpose: Avoid collision with a vehicle with given position and trajectory.

Parameters:
contact. Contact ID of the vehicle to be avoided.

active_distance: Distance to the contact beyond which the behavior has no influence on autonomy
all_clear_distance: CPA Distance to the contact below which penalty begins

collision_distance: CPA Distance to the contact at which penalty is maximize (treated as a collision).

Utility based on CPA (closest point of approach)

Distance given by Pythagorean theorem in known trajectories.
contact Q (Xb’yb’eb’ Vb)' Express distance a function of angle, speed and time-on-leg.

v (O.,0) = kt* + kit + k,
. . k, = cos(B)v> —2cos(B)vcos(,)v, + cos’ (0,)v; +
active distance L ’ sin2(19)v2 -2sin(@)vsin(6,)v, + sin2(6b)v,f

\ k, =2cos(0)vy —2cos(0)vy, —2ycos(0,)v, +2cos(0,)v,y, +
\ 2sin(B)vx — 2sin(B)vx, —sin(6,)xv, + 2sin(B,)v,x,
E ° : ky=y,=2yy, +yZ_2xxb +xZ
|‘\ X’y I,'

\ Controlled vehicle / First derivative w.r.t. time has only one root:
\ 1

. y Y (0.v,0) =2kt +k,
. k,

e t—
. = —_——
S -

.- - 2k,

CSAIL

The Collision Avoidance Behavior

Purpose: Avoid collision with a vehicle with given position and trajectory.

Parameters:
contact:

active_distance:
all_clear_distance:
collision_distance:

e 25

ownship

Contact ID of the vehicle to be avoided.

Distance to the contact beyond which the behavior has no influence on autonomy
CPA Distance to the contact below which penalty begins

CPA Distance to the contact at which penalty is maximize (treated as a collision).

contact

50 75

180

II MITMECHE

I H
I I" The Collision Avoidance Behavior

Purpose: Avoid collision with a vehicle with given position and trajectory.

Parameters:
contact. Contact ID of the vehicle to be avoided.

active_distance: Distance to the contact beyond which the behavior has no influence on autonomy
all_clear_distance: CPA Distance to the contact below which penalty begins

collision_distance: CPA Distance to the contact at which penalty is maximize (treated as a collision).

Utility based on CPA (closest point of approach)

contact Q (Xb,yb’eb, Vb)-

- Obstacle Waypoint
s BTN Vehicle °

active_distance a) AN

\ X’y

\ Controlled vehicle i

g

Controlled Vehicle

III MITMECHE

CSAIL

@
o

Outline

(] Trends in autonomous marine vehicles

(J The Payload Autonomy Paradigm and the MOOS-IVP project
(J Multi-Objective Optimization with Interval Programming

()] The IvP Helm

@ MOOS-IVP 4.2 and Plans for Future Development

CSAIL

@ngb II|M EEEEEEE

MOOS-IVP 4.2

Changes to the Helm

* Preparation for multiple IvP Functions per behavior.
* Preparations for IvP Function re-use.
« Journaling of IVPHELM_STATUS messages (to reduce log file output)

New MOOS Apps

* uSimBeaconRange
* uSimActiveSonar

* uSimCurrent

Improvements to Existing MOOS Apps

* pMarineViewer
* uSimMarine
* alogview

e uFunctionVis

CSAIL

@ngb II|M EEEEEEE

II MITMECHE

I MOOS-IVP 4.2

® Grab File Edit Window Help W stopRecording £ = KB O D 3 0 == (= 100% Wed 11:13AM Q

pMarineViewer

File Backview GeoAttr Vehicles MOOS-Scope Action

8 i

z
£

EW O«

.hettys next waypoint

STATION DEPLOY

VName: [betty X(m): |107.7 Lat: |42.357376 Spd(m/s): 1.3 Dep(m): 0.0 Time:|1 939.0 |
VType: |kayak Y(m): |[-124.4 Long: |-71.086267 Heading: |105.2 Report-Age: [1.27 Warp: |1 RETURN -

Variable: |NODE_REPORT Time: |1 938.02 Value: |NAME=bek|y,TYPE=KAYAK MTC_TIME=1305126833 .46 X=107 £9,Y=-124.38 L AT=42.357 376 LON=-71 086267 SPD=1.26 HDG=105.2 DEPTH=0 LENGTH=2 MODE=MODE@ACTIVE: SURVEYING ALLSTOP=clear -

MONTEREY CALIFORNIA

AUGUST 2006
s N
Notable “Firsts”: _ : RS
* First usage of the payload autonomy paradigm - i :_';:-_w o :;, — ”:"f
* First significant usage of MOOS-IVP on a UUV e R, e S
* First deployment of a UUV with a vector sensor array |~ - .~ . o= —:;{_{, S

