High Data Rate Vehicle Dynamic Testing with MOOS

Jordan Britt Jamie Colbert

GPS and Vehicle Dynamics Laboratory Auburn University

MOOS_DAWG'11

Jordan Britt, Jamie Colbert High Data Rate Vehicle Dynamic Testing with MOOS

Outline

🕕 Intro & Motivation

- 2 Research Overview
 - Sensor Introduction
 - Data Overview
- O Pit Falls & Suggestions
 - Timing and Logging Issues
 - Do What I Mean ...
 - Additional Data Viewing

④ Final Thoughts

- Conclusions
- Acknowledgements
- Comments

Introduction

- GPS and Vehicle Dynamics Laboratory
- Often taking sizable amount of high speed data

Figure: Research Vehicles

Motivation Main Thrusts

- Assess robustness of MOOS data logging beyond just size
 - Multiple high rate devices
 - Large number of Channels
- Tasked research: Data Acquisition.
- Ease of Use

- 同下 - 三下 - 三

Sensor Introduction Data Overview

Tasked Research

- Project Goal: Validate Simulation of triple-trailer behavior to assess vehicle safety
- Auburn's Responsibility: Instrument a triple-trailer with all necessary (and unnecessary) sensors and DAQ system.
- Requirements: Cheap, Fast (3-months), High data rates (~100Hz).
- Implemented by new RA in Mechanical Engineering (Unfamiliar with C++ / MOOS)

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1

イロト イポト イヨト イヨ

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100

(日) (同) (三) (

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100
RT-3100	1	KF	100

・ロト ・ 一下・ ・ ヨト ・

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100
RT-3100	1	KF	100
crossbow	1	IMU	20

Jordan Britt, Jamie Colbert High Data Rate Vehicle Dynamic Testing with MOOS

・ロト ・ 一下・ ・ ヨト ・

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)	
u-blox	2	GPS	1	
Novatel	4	GPS	5	
RT-2500	1	KF	100	
RT-3100	1	KF	100	
crossbow	1	IMU	20	
Memsense	1	IMU	150	

-

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100
RT-3100	1	KF	100
crossbow	1	IMU	20
Memsense	1	IMU	150
	1	Steer	100
String	20	Susp	100
Pots	6	Angle	100

< 日 > < 同 > < 三 > < 三

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100
RT-3100	1	KF	100
crossbow	1	IMU	20
Memsense	1	IMU	150
	1	Steer	100
String	20	Susp	100
Pots	6	Angle	100

(日) (同) (三) (

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100
RT-3100	1	KF	100
crossbow	1	IMU	20
Memsense	1	IMU	150
	1	Steer	100
String	20	Susp	100
Pots	6	Angle	100

Jordan Britt, Jamie Colbert High Data Rate Vehicle Dynamic Testing with MOOS

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100
RT-3100	1	KF	100
crossbow	1	IMU	20
Memsense	1	IMU	150
	1	Steer	100
String	20	Susp	100
Pots	6	Angle	100

(日) (同) (三) (

Sensor Introduction Data Overview

Tasked Research Sensors Used

Sensor	Quan	Data	Rate(Hz)
u-blox	2	GPS	1
Novatel	4	GPS	5
RT-2500	1	KF	100
RT-3100	1	KF	100
crossbow	1	IMU	20
Memsense	1	IMU	150
	1	Steer	100
String	20	Susp	100
Pots	6	Angle	100
CAN	1	Engine	100
		Params	

Jordan Britt, Jamie Colbert

High Data Rate Vehicle Dynamic Testing with MOOS

Sensor Introduction Data Overview

Tasked Research

• Location of Sensors on Trucks

Jordan Britt, Jamie Colbert High Data Rate Vehicle Dynamic Testing with MOOS

ヘロト ヘヨト ヘヨト ヘ

Sensor Introduction Data Overview

Tasked Research Double Lane Change

Movie

Jordan Britt, Jamie Colbert High Data Rate Vehicle Dynamic Testing with MOOS

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sensor Introduction Data Overview

Tasked Research On This PC

• Log all these sensors on this PC:

- Advantech ARK-5280
- 1.6GHz Pentium M
- 2Gig DDR RAM

(1日) (1日) (1日)

Sensor Introduction Data Overview

Data Types

- Data was input over:
 - Serial
 - USB
 - TCP/IP

Sensor Introduction Data Overview

Data Statistics

- This Comprised 201 Messages
- Logging roughly 600 Kb/s

< A >

< ∃ > <

Timing and Logging Issues Do What | Mean ... Additional Data Viewing

Failure

- Initially attempted to log just the two RT units (100Hz) and the xbow (20Hz)
- PC was completely bogged down
 - Only 38 messages
 - CPU usage 80-90%

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Timing and Logging Issues Do What | Mean ... Additional Data Viewing

Flushing Causes Clogging Logging issues

• High CPU usage with logging, required code altering

490		bool	CM00SLogger::Iterate()	490	boo	l CMOOSLogger:: Iterate ()
491		ł	<pre>double dfTimeNow = MOOSTime();</pre>	491	1	<pre>double dfTimeNow = MOOSTime();</pre>
493 494			<pre>// see if we are currently logging. if not exit sub</pre>	493 494		<pre>// see if we are currently logging. if not exit sub</pre>
495			<pre>if (!m bLogging)</pre>	495		<pre>if (!m bLogging)</pre>
496			<pre>return true;</pre>	496		return true;
497				497		
498			//look to do a synchronous log	498		//look to do a synchronous log
499			1T(m_bSynchronousLog)	499		if (m_bSynchronousLog)
516			1	516		1
517				517		
518			//check monitored variables	518		//check monitored variables
519			<pre>if(dfTimeNow-m_dfLastMonitorTime>DEFAULT_MONITOR_TIME)</pre>	519		<pre>if(dfTimeNow-m_dfLastMonitorTime>DEFAULT_MONITOR_TIME)</pre>
520	►		{	520 🕨		{
546				546		
54/			//are we requested to do wild card logging?	54/		//are we requested to do wild card logging?
540			HandloWildCardLogging()	540		HandloWildCardLogging()
550			Hand tewi (dcal dcogging(),	550		Hand tewi (dcar dcogging(),
551				551		
552			//finally flush all files to be safe	552		<pre>//finally flush all files to be safe</pre>
553			m_SyncLogFile.flush();	553		<pre>m_SyncLogFile.flush();</pre>
554			m_AsyncLogFile.flush();	554		<pre>m_AsyncLogFile.flush();</pre>
555			m_SystemLogFile.flush();	555		-m_SystemLogFile.flush();-
556				556		
558				558		
559			return true:	559		return true:
560		}	,	560	}	,

イロト イポト イヨト イヨト

Timing and Logging Issues Do What | Mean ... Additional Data Viewing

Flushing Causes Clogging

- With the flush statements removed we were able to log all sensors at the their desired rates.
 - CPU usage down to 30%

(日) (同) (三) (三)

Timing and Logging Issues Do What | Mean ... Additional Data Viewing

A Better Plunger

• However It should probably be changed to be look like this:

Timing and Logging Issues Do What | Mean ... Additional Data Viewing

Issues with Iterate at 100Hz Timing Issues

- Needed to send a pulse at 100Hz
 - Failed to operate at that rate
 - Would operate at 90Hz, but fluctuated
 - Is there an alternative to using the sleep command for iterate?
- Curious what rates people often reliably control to.

Timing and Logging Issues Do What I Mean ... Additional Data Viewing

Read My Mind Methods

- Didn't log all intended messages ...oops
 - Alternatives to wild-card logging?
 - Maybe something that ...
- Didn't log some messages with intended precision
 - We've gotten around this by:

```
//! converts the given value to a string with a given percision
template <class T>
inline string precise_to_string (const T& t, unsigned int precision) {
    stringstream ss;
    ss << setprecision(precision) << t;
    return ss.str();
}</pre>
```

(日) (同) (三) (三)

Timing and Logging Issues Do What I Mean ... Additional Data Viewing

Plotting Real-time Data

 uMS is great but, is it possible plot any given signal in real-time?

(日) (同) (三) (三)

Conclusions Acknowledgements Comments

Conclusions

- MOOS is quite robust
- Very capable of handling multiple processes and channels operating a high data rates
- Very (first time) user friendly

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions Acknowledgements Comments

Acknowledgements

- National Transportation Research Center Inc (NTRCI)
 - National Transportation Research Center, Inc., works to promote the development and deployment of advanced transportation technologies through research, testing and commercialization for the benefit of the transportation industry and our transportation systems.
- Federal Highway Administration
 - The Federal Highway Administration is funding part of this project and others across the range of issues that are critical to the transportation industry through the Exploratory Advanced Research (EAR) Program. For more information, see the EAR Web site at http://www.fhwa.dot.gov/advancedresearch/about.cfm
- All Gavlab members that assisted on this project.

(*) *) *) *)

Conclusions Acknowledgements Comments

Suggestions / Questions / Comments Real Talk

-

Conclusions Acknowledgements Comments

Suggestions / Questions / Comments Wrap Up

- Changing Location of flush statements
- 2 What rates can you reliably control to
- O Alternatives to wild-card logging
- uMS plotting

< 同 ト < 三 ト