
MOOS-DAWG 2011 Mike Benjamin

MOOS-IvP Autonomy Tools�
(A Mini Tutorial)�

Michael Benjamin
MIT Department of Mechanical Engineering

Computer Science and Artificial Intelligence Laboratory

MOOS-DAWG 2011 Mike Benjamin

Acknowledgments

The IvP Helm autonomy software and the basic research involved in the interval programming
model for multi-objective optimization has been developed under support from ONR Code 311
(Program Managers Dr. Don Wagner and Dr. Behzad Kamgar-Parsi). Further testing and
coursework development is presently sponsored by Battelle, Dr. Robert Carnes. Prior prototype
development of IvP concepts benefited from the support of the In-house Laboratory Independent
Research (ILIR) program at the Naval Undersea Warfare Center in Newport RI.

Sponsors:

MOOS-DAWG 2011 Mike Benjamin

Mini-Tutorial Objectives and Structure

Objectives:
Introduce with some depth and examples, the following tools (software applications):

Structure:
Example missions will be used to demonstrate each tool.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.
• pNodeReporter - Captures vehicle state information and publishes a summary string
• uPokeDB - A tool for poking the MOOSDB from the command line.
• uXMS - A tool for focused scoping of the MOOSDB from the console
• uHelmScope - A specialized scope on IvP Helm status and recent history
• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts
• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB

• These example missions are available along with the MOOS-IvP source code at www.moos-ivp.org
• The example missions can be found under moos-ivp/ivp/missions/.
•  It is recommended that tutorial participants download and be able to run these on their laptop computers.

MOOS-DAWG 2011 Mike Benjamin

Not All Tools Are Created Equal
Relative Tool Size by Line Count

9% 9%

7%

55%

4% 13%

3%

Line-Count

uTimerScript
uXMS
pBasicContactMgr
pMarineViewer
pNodeReporter
uHelmScope
uPokeDB

MOOS-DAWG 2011 Mike Benjamin

MOOS-IvP Autonomy Tools

Q: What is an Autonomy Tool?
Ans: A software module/application that supports either (a) the on-board autonomy, (b)

pre-mission planning, (c) topside mission monitoring/control, (d) post-mission
analysis.

Q: What is the relationship between an Autonomy Tool and the IvP Helm?
Ans: The IvP Helm is a decision engine that drives the vehicle with heading/speed/depth

commands.
•  Some tools are specific to the IvP Helm.
•  Some tools are general (helm agnostic).
•  Some are general but do have some IvP Helm hooks

Q: Where can the Autonomy Tools and documentation be found?
Ans: www.moos-ivp.org

MOOS-DAWG 2011 Mike Benjamin

A Walk Through the Alpha Mission (1)

(1) The “alpha” vehicle

(2) When the simulation
is first launched, the
vehicle is in “manual
override” mode and the
helm is DISENGAGED

(4) The vehicle may be deployed by
hitting the DEPLOY button. This simply
asks the pMarineViewer application to
“pokes” the MOOSDB with
DEPLOY=true.

(3) Your window into the simulation is
via the pMarineViewer application (one
of the tools in this tutorial).

MOOS-DAWG 2011 Mike Benjamin

A Walk Through the Alpha Mission (2)

(1) After the vehicle is
deployed, by hitting the
DEPLOY button, the
vehicle begins traversing
a set of five waypoints.

#2 #3

#4

#5 Waypoint #1

MOOS-DAWG 2011 Mike Benjamin

A Walk Through the Alpha Mission (3)

(1) After it traverses
all five waypoints, it
repeats the set once.

#2 #3

#4

#5 Waypoint #1

MOOS-DAWG 2011 Mike Benjamin

A Walk Through the Alpha Mission (4)

(1) After traversing all five
waypoints for the second
time, it returns home.

The “return”
waypoint

MOOS-DAWG 2011 Mike Benjamin

A Walk Through the Alpha Mission (5)

(1) At any point in the
traversal, the vehicle
may be commanded to
return home by poking
the MOOSDB with
RETURN=true.

The “return”
waypoint

#2 #3

#4

#5

Waypoint #1
(2) In this
simulation, the
pMarineViewer
application is
configured with a
button that pokes
the MOOSDB with
RETURN=true.

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Scoping the MOOSDB from the Console

MOOS Modules:

• uXMS - A tool for focused scoping of the MOOSDB from the console.

• uPokeDB - A tool for poking the MOOSDB from the command line.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.

• pNodeReporter - Captures vehicle state information and publishes a summary string.

• uHelmScope - A specialized scope on IvP Helm status and recent history.

• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts.

• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB.

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Definition of a MOOS Scope and MOOS Community

What is a MOOS scope?

MOOS Community

MOOSDB

uXMS

MOOS App

Subscribe

MOOS App
Publish

Subscribe

Publish

Subscribe

MOOS App

Publish Subscribe

A scope is at tool for monitoring the current state of variables published in a MOOS
community.

• A collection of MOOS applications connected to the single MOOSDB application.
• Each application interface is defined by what variables it publishes and subscribes to.
• The MOOSDB contains a snapshot of all the current variables – their values and other info.

What is a MOOS community?

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
The MOOS Community in the Alpha Mission

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Launching from the command line

$ uXMS alpha.moos NAV_X NAV_Y NAV_SPEED NAV_HEADING DEPLOY
MOOS_MANUAL_OVERIDE DEPLOY IVPHELM_ENGAGED!

 The uXMS utility is launched from the command line:

 Upon launching, reports are written to the console:

 uXMS operates by simply writing a “report” to the console on each iteration.

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Specifying the Variables to be Scoped

$ uXMS alpha.moos NAV_X NAV_Y NAV_SPEED NAV_HEADING DEPLOY
MOOS_MANUAL_OVERIDE DEPLOY IVPHELM_ENGAGED!

 The variables to be scoped are given on the command line:

 Each report dedicates a line to each variable:

The variable values are shown in the fifth and last column:
The variable type (string or double) is indicated by quoting the string values
The value of “n/a” indicates the variable has never been written to.

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Components of the scope report

$ uXMS alpha.moos NAV_X NAV_Y NAV_SPEED NAV_HEADING DEPLOY
MOOS_MANUAL_OVERIDE DEPLOY IVPHELM_ENGAGED!

 The IP address and port number of the MOOSDB is in the .moos file on the command line:

The 2nd column of each report line shows the source of the variable posting:
(The MOOS Application that last published the variable)

The third column shows the time at
which the last posting to the variable
was made.

The fourth column shows the
name of the MOOS community
of the source application.

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Scoping on the Alpha Example Mission

At the start of simulation the vehicle
sits motionless at the start position
at point (0,0) in local coordinates.

The helm is “DISENGAGED” as
evidenced by the MOOS variable
IVPHELM_ENGAGED!

At the outset the vehicle is sitting
motionless as shown in the
MOOS variables
• NAV_X !
• NAV_Y !
• NAV_SPEED!
• NAV_HEADING !

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Scoping on the Alpha Example Mission

The vehicle is under way after
hitting the DEPLOY button.

The DEPLOY button is configured
to post:
DEPLOY=true!
MOOS_MANUAL_OVERIDE=false!

The postings can be seen in the
movement of the vehicle and in
the uXMS report:!

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Refresh Modes

 The uXMS refresh mode determines when a new report is written to the console.
•  PAUSED mode: A new report will not be written until user requests it.
•  EVENTS mode: A new report is written when a scoped variables changes.
•  STREAMING mode: A new report is written on each uXMS iteration.

 The modes may be switched at the console:
•  SPACEBAR – pauses the scope and

requests a single new report.
•  ‘e’ or ‘E’ – moves the scope into Events

mode.
•  ‘r’ or ‘R’ – moves the scope into Streaming

mode. (‘s’ is reserved for something else).

•  The PAUSED mode is a key feature of uXMS – it minimizes communications bandwidth.
•  The default mode is the EVENTS mode.
•  The mode at launch time may be change by specifying ‘--mode=paused’ on command line.

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Refresh Mode Indicator

 The uXMS refresh mode is indicated in the top right-hand corner of each report:

STREAMING!

PAUSED!

EVENTS!

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
Content Modes

 The uXMS content mode determines what is written in the reports to the console.
•  SCOPING mode: A report contains a snapshot of variables in the scope list.
•  HISTORY mode: A report contains the recent history of given variable.

 The modes may be switched at the console:
•  ‘W’ always puts uXMS into History mode.
•  ‘w’ always puts uXMS into Scoping mode.
•  ‘z’ or ‘Z’ – toggles uXMS between Scoping

and History mode.

The SCOPING has two sub-modes:
•  The “SelectVars” mode reports only on variables in the configured scope list.
•  The “AllVars” mode reports on ALL variables known to the MOOSDB.

 The modes may be switched at the console:
•  ‘A’ always puts uXMS into SelectVars Scoping mode.
•  ‘a’ always puts uXMS into AllVars Scoping mode.

MOOS-DAWG 2011 Mike Benjamin

The uXMS Utility:
The “History” Content Mode

 The uXMS History content mode shows the recent history of a specified MOOS variable.
•  The history is limited to 20 lines (configurable)
•  The refresh mode may also be set to EVENTS, PAUSED or STREAMING.

Successive duplicate entries are condensed
into a single line with the number of
duplicates indicated in parentheses.

MOOS-DAWG 2011 Mike Benjamin

The uPokeDB Utility:
Poking the MOOSDB from the Console

MOOS Modules:

• uXMS - A tool for focused scoping of the MOOSDB from the console.

• uPokeDB - A tool for poking the MOOSDB from the command line.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.

• pNodeReporter - Captures vehicle state information and publishes a summary string.

• uHelmScope - A specialized scope on IvP Helm status and recent history.

• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts.

• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB.

MOOS-DAWG 2011 Mike Benjamin

The uPokeDB Utility:
Definition of a MOOS Poke

What is a MOOS poke?

MOOS Community

MOOSDB

uPokeDB

MOOS App MOOS App
Publish

Subscribe

Publish

Subscribe

MOOS App

Publish Subscribe

A poke is the publication of a MOOS variable-value pair to a given MOOSDB.
The “poke” implies that publication is “one-time” event.

• uPokeDB primarily publishes to the MOOSDB (the poke).
• uPokeDB also subscribes to the MOOSDB for mail on the variable it is poking – to show the

user the variable value prior to the poke, and confirm the variable value after the poke.

Publish Subscribe

MOOS-DAWG 2011 Mike Benjamin

The uPokeDB Utility:
Launching the Utility and Understanding the Output

$ uPokeDB alpha.moos DEPLOY=true MOOS_MANUAL_OVERRIDE=false!

 The uPokeDB utility is launched from the command line:

(1) Upon launching uPokeDB
will confirm connection to the
MOOSDB.

(2) It will write to stdout,
the current values of the
variables being poked.

(3) It will confirm the new
values of the variables after
the poke – as seen by the
mail received by the
MOOSDB.

(4) It will then quit.

MOOS-DAWG 2011 Mike Benjamin

The uPokeDB Utility:
Other ways of Poking the MOOSDB

•  A “Poke” is just publication to the MOOSDB, no different than the publications that occur
when a MOOS application publishes/writes/posts to the MOOSDB.

•  A publication is only “poke” because it is regarded as being outside the “normal” set of
variables published by that particular application.

Some other utilities and methods for Poking The MOOSDB:

(1)  iRemote:
•  It may be configured to associate a poke with any unmapped key.

(2) uTermCommand:
•  A utility for configuring user-defined pokes (variable-value pairs) with a unique key

word. uTermCommand then allows the user to type in the key word and trigger the
poke. The key word may trigger more than one poke if desired.

•  The uTermCommand utility is in the moos-ivp tree.

(3) pMarineViewer:
•  On-screen buttons may be configured to trigger one or more user-defined pokes.
•  An “Action” pull-down menu may be configure to associate a pull-down menu item

with one or more pokes.

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
A GUI for Mission Control

• uXMS - A tool for focused scoping of the MOOSDB from the console.

• uPokeDB - A tool for poking the MOOSDB from the command line.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.

• pNodeReporter - Captures vehicle state information and publishes a summary string.

• uHelmScope - A specialized scope on IvP Helm status and recent history.

• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts.

• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB.

MOOS Modules:

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
What it is, and is not

• A run-time tool for rendering one or more vehicles during operation or simulation.

• Rendering is possible on a geographical map, given a map image and coordinates.

• Geometric objects, e.g., a set of waypoints or polygon, may also be be rendered.

•  It may be used for command-and-control by configuring pokes to the local MOOSDB.

What is pMarineViewer?

•  It is not a mission-planning tool.

•  It is not a post-mission analysis tool (unless using the uPlayback utility).

•  It is not capable of “pausing” or moving back in time.

•  It does not have any communications capability to other MOOS communities, local or remote.

What pMarineViewer is NOT:

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
One Simple MOOS Community Topology

• pMarineViewer connects to the same MOOSDB (MOOS Community) running the vehicle.
A simple topology, used in the Alpha example mission:

The User

• The User interacts with the GUI to alter the rendering perspective and poke commands to the MOOSDB.

• pNodeReporter publishes NODE_REPORT postings, read by pMarineViewer to update vehicle positions.

• pHelmIvP publishes geometric artifacts like waypoints, read by pMarineViewer and rendered.

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
A More Extendable MOOS Community Topology

• pMarineViewer runs in its own dedicated MOOS Community – typically on a different machine.
A simple topology, used in the Alpha example mission:

• The Comms connection may be Acomms, Wifi, Iridium, or just may be running on the same machine.

• There may be an arbitrary number of vehicles connected to the pMarineViewer Community.

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
A More Extendable MOOS Community Topology

• pMarineViewer runs in its own dedicated MOOS Community – typically on a different machine.
A simple topology, used in the Alpha example mission:

• The Comms connection may be Acomms, Wifi, Iridium, or just may be running on the same machine.

• There may be an arbitrary number of vehicles connected to the pMarineViewer Community.

Vehicle #1

Vehicle #2

Vehicle #3

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
The BackView Pull-Down Menu

Zoom Control

Pan Control (regular)

Pan Control (Slow)

Pan Control (Very Slow)

Turn off/on the
background image

Toggle the hash marks
and adjust shading

Control the hash mark
spacing

Hash Marks

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
The GeoAttributes Pull-Down Menu

Adjust default XYPolygon attributes

XYPoints

XYSegList

Adjust default XYSegList attributes

Adjust default XYPoint attributes

Adjust default XYGrid attributes

Toggle the rendering of the Datum

Adjust default Markers attributes

Adjust default OpArea attributes

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
The GeoAttributes Pull-Down Menu

Toggle or adjust default attributes
for the XYPolygon, XYSegList,
XYPoint, and XYGrid objects.

XYPoints

XYSegList

Toggle the rendering of the Datum

Toggle or adjust default
attributes for Markers,
OpArea and DropPoint
objects.

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
The Vehicles Pull-Down Menu

Toggle off/on the rendering of vehicles

Adjust which vehicle is “active”. This
vehicle has its info displayed in the
fields at the bottom of the viewer

Pan the viewer
to the vehicle

Toggle off/on the
rendering vehicle
trails and adjust
length Change default

color of vehicles

MOOS-DAWG 2011 Mike Benjamin

The pMarineViewer Utility:
The MOOS-Scope Pull-Down Menu

Add a MOOS
variable to be
Scoped in the
Scope field.

Toggle between the two variables
most recently chosen for scoping

Cycle
between all
variables
identified for
scoping.

The list of all
variables
identified for
scoping.

MOOS-DAWG 2011 Mike Benjamin

The pNodeReporter Utility:
Summarizing a Node’s Status

MOOS Modules:
• uXMS - A tool for focused scoping of the MOOSDB from the console.

• uPokeDB - A tool for poking the MOOSDB from the command line.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.

• pNodeReporter - Captures vehicle state information and publishes a summary string.

• uHelmScope - A specialized scope on IvP Helm status and recent history.

• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts.

• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB.

MOOS-DAWG 2011 Mike Benjamin

The pNodeReporter Utility:
What it is, and is not

• A run-time tool for gathering information about ownship and summarizing in a single MOOS variable.

• The single MOOS variable is NODE_REPORT_LOCAL.

•  It reports information on the platform position and trajectory.

•  It reports information on the platform type, and length.

•  It reports certain key information regarding the state of the IvP Helm.

•  It can be viewed as a loose proxy for an AIS (Automatic Information System) report.

What is pNodeReporter?

•  It does not handle communications between platforms.

•  It does not handle incoming reports from other platforms.

What pNodeReporter is NOT:

MOOS-DAWG 2011 Mike Benjamin

The pNodeReporter Utility:
Basic Functions

NAME!

TYPE!

MOOSDB_TIME!

UTC_TIME!

X!

Y!

HDG!

SPD!

YAW!

DEPTH!

LAT!

LON!

LENGTH!

MODE!

Derived from the vehicle
navigation system:
NAV_X, NAV_Y etc.

Derived from output of the helm:
IVPHELM_ENGAGED,
IVPHELM_SUMMARY

Derived from calling MOOSTime()
from within pNodeReporter

Derived from DB_UPTIME

Derived from pNodeReporter
configuration parameters

Derived from the MOOS
Community name.

“TYPE=UUV, LENGTH=4.6”!

“MOOSDB_TIME=146.7”!

“UTC_TIME=1281548666.57”!

“NAME=alpha”!

“X=109.2,Y=-22.0,HDG=37.2,
SPD=1.7,YAW=0.78,DEPTH=12,
LAT=43.82530,LON=-70.33040”!

“MODE=MODE@ACTIVE:SURVEY,
ALLSTOP=clear!

Source Field Example

MOOS-DAWG 2011 Mike Benjamin

The pNodeReporter Utility:
Alpha Example Mission

In the Alpha Example Mission:
• Launch the mission
• Run uXMS with:

$ uXMS –history=NODE_REPORT_LOCAL!

• Note the successive values of NODE_REPORT_LOCAL reported.

MOOS-DAWG 2011 Mike Benjamin

The pNodeReporter Utility:
The Optional Blackout Interval Option

Normally a node report once per iteration, determined solely by the APP_TICK parameter.

At times it is useful to add an artificial delay between postings. BLACKOUT_INTERVAL = 35!

MOOS-DAWG 2011 Mike Benjamin

The pNodeReporter Utility:
Random Blackout Intervals

• Node reports are typically only useful as information sent to other nodes.
• There are often dropped node messages due to the uncertain nature of communications.
• Applications receiving node reports usually implement provisions that take dropped messages

into account.
• For example, a collision avoidance behavior may extrapolate the contact position in between

node reports.
• To test the robustness of dealing with dropped node reports, we want to simulate them easily.

• The dropouts occur in the field more or less randomly (but may be range dependent etc.)

The Blackout Interval may be configured to vary randomly: BLACKOUT_VARIANCE = 45!

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
Scoping on the IvP Helm

MOOS Modules:

• uXMS - A tool for focused scoping of the MOOSDB from the console.

• uPokeDB - A tool for poking the MOOSDB from the command line.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.

• pNodeReporter - Captures vehicle state information and publishes a summary string.

• uHelmScope - A specialized scope on IvP Helm status and recent history.

• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts.

• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB.

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
What it is, and is not

•  It is a specialized scope on the MOOSDB for reporting information specific to the IvP Helm.

•  It is console-based (like uXMS) and requires no graphics libraries.

•  It reports on which behaviors are active, running, idle and complete.

•  It reports the helm decision for each decision variable.

•  It is capable of pausing and stepping back and forth in time.

•  It includes a generic MOOS scope for convenience.

•  It reports on which variables are posted by the helm on a given iteration.

What is uHelmScope?

•  It does not post any information to the helm or any other MOOS applications.

•  It is not a graphical tool.

What uHelmScope is NOT:

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
A typical report from uHelmScope

From the Alpha example mission, shortly after deploying the vehicle:

The Helm Report: An overview of which
behaviors’ run state and information on
IvP function characteristics and solve
time.

The MOOS Scope: A mini MOOS scope
for the convenience of scoping on a few
variables of the user’s choosing.

The Behavior-Posts: A set of variable-
value pairs posted by the helm in the
current iteration.

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
A Closer Look at the Helm Report (the top section)

Average CPU
time between
iterations for the
last 5 iterations

Maximum CPU
time observed
for all iterations.

of reports
written to
the console

Engagement
status

of IvP functions
in current decision

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
A Closer Look at the Helm Report (the top section)

Total solve time for the current iteration –
and max solve time for all iterations.

of reports
written to
the console

Engagement
status

of IvP functions
in current decision

Total create time for the current iteration
– and max solve time for all iterations.

The Helm decision space: variable name, low
value, high value and number of points.

The current helm decision.

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
A Closer Look at the Helm Report (the top section)

Behavior States: Which behaviors are active,
running, idle or completed. For active behaviors,
information is given on their IvP function.

Priority
Weight

Pieces in the
IvP Function

CPU time to
make the IvP
Function

of successful
updates vs. # of
attempted behavior
updates.

Total behaviors
in this run state

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
A Closer Look at the MOOS Scope (middle section)

List of variables to
scope

Source of the
last post

Time of the
last post

Variable Value

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
A Closer Look at the MOOS Scope (middle section)

Variables posted Variable Values

The Behavior-Posts section displays only those variable-value
pairs posted by the Helm on the current iteration.

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
Examining the Helm Hierarchical Mode Declarations

The Hierarchical Mode Declarations for Henry in the Berta Example Mission:

Text File Configuration

Graphical representation (manually generated)

uHelmScope can used to visually confirm the configuration
matches the intention.

MOOS-DAWG 2011 Mike Benjamin

The uHelmScope Utility:
Examining the Helm Hierarchical Mode Declarations

The hierarchical mode declarations may be viewed by toggling with the ‘M’ key:

The prevailing helm mode is also shown in this screen.

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
Managing Platform Contacts

MOOS Modules:

• uXMS - A tool for focused scoping of the MOOSDB from the console.

• uPokeDB - A tool for poking the MOOSDB from the command line.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.

• pNodeReporter - Captures vehicle state information and publishes a summary string.

• uHelmScope - A specialized scope on IvP Helm status and recent history.

• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts.

• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB.

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
What it is, and is not

What is pBasicContactMgr?
• A tool for managing node reports and generating

conditional events.
•  It posts summary reports for all known contacts.
•  It posts events, i.e., alerts, about contacts based

on the range to the contact.
• Designed with the IvP Helm in mind to allow the

helm to spawn contact-related behaviors
dynamically as they become known.

What pBasicContactMgr is NOT:

•  It is not a sensor application.

•  It does not perform sensor fusion.

•  It does not represent or reason about areas of
uncertainty associated with contact position.

• CONTACTS_LIST!
• CONTACTS_RECAP!
• CONTACT_ALERTED!
• CONTACTS_UNALERTED!
• CONTACTS_RETIRED!
• CONTACT_MGR_WARNING!

Variables Published:

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
Alerts

What is an Alert?
•  It is a posting to the MOOSDB – A MOOS variable-value pair.
• Alerts are generated for a given contact, when the contact is within a given range.
• The value of the alert is configured by the user in the pBasicContactMgr configuration block.

How are they used?
• Alerts may be used to trigger other processes.
• Alerts may also be used for marking an event to be logged and later referenced.

An example (collision avoidance):
• An alert is generated when contact gets “too close”.
• The helm is configured with a collision avoidance behavior “template”.
• The template is instantiated with a new behavior instance when it receives the alert.

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
Alert Configuration

Alerts are configured in the MOOS configuration file:

ALERT = var=<moos-variable>, val=<alert-content>!

The <alert-content> may be any string, including certain macros for expansion. For
example:

ALERT = var=CONTACT_INFO, val=“name=avd_$[VNAME] # contact=$[VNAME]”!

Macros available are:

The name of the contact.
The position of the contact in local x coordinates.
The position of the contact in local y coordinates.
The latitude position of the contact in earth coordinates.
The longitude position of the contact in earth coordinates.
The reported heading of the contact.
The reported speed of the contact.
The reported depth of the contact.
The reported vessel type of the contact.
The UTC time of the last report for the contact.

$[VNAME]:
$[X]:
$[Y]:

$[LAT]:
$[LON]:
$[HDG]:
$[SPD]:
$[DEP]:

$[VTYPE]:
$[UTIME]:

(many of the same
fields found in the
node reports,
NODE_REPORT)

MOOS-DAWG 2011 Mike Benjamin

The name of the contact.
The position of the contact in local x coordinates.
The position of the contact in local y coordinates.
The latitude position of the contact in earth coordinates.
The longitude position of the contact in earth coordinates.
The reported heading of the contact.
The reported speed of the contact.
The reported depth of the contact.
The reported vessel type of the contact.
The UTC time of the last report for the contact.

The pBasicContactMgr Utility:
Alert Configuration

Alerts are configured in the MOOS configuration file:

ALERT = var=<moos-variable>, val=<alert-content>!

The <alert-content> may be any string, including certain macros for expansion. For
example:

ALERT = var=CONTACT_INFO, val=“name=avd_$[VNAME] # contact=$[VNAME]”!

Macros available are:

$[VNAME]:
$[X]:
$[Y]:

$[LAT]:
$[LON]:
$[HDG]:
$[SPD]:
$[DEP]:

$[VTYPE]:
$[UTIME]:

(many of the same
fields found in the
node reports,
NODE_REPORT)

Accommodates a helm behavior
configuration for dynamic behavior
spawning.
See the Berta example mission.

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
Alert Triggers

Alerts are triggered by range. Configured in the MOOS configuration file:

 ALERT_RANGE = <distance> // meters!
ALERT_CPA_RANGE = <distance> // meters!
 ALERT_CPA_TIME = <duration> // seconds!

 ALERT_RANGE – when a contact is within this range an alert is generated.
ALERT_CPA_RANGE – when a contact is within this range and its closest point of approach (CPA)

is within the alert range, an alert is generated. !
 ALERT_RANGE – The time used for CPA calculation.

Examples:
YES

YES

NO

NO

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
Contacts, Alerts, Record keeping

CONTACTS_LIST:!
CONTACTS_RECAP:!

CONTACT_ALERTED:!
CONTACTS_UNALERTED:!

CONTACTS_RETIRED:
CONTACT_MGR_WARNING:!

• CONTACTS_LIST: != "delta,gus,charlie,henry" !!
• CONTACT_ALERTED: != "delta,charlie" !
• CONTACTS_UNALERTED: != "gus,henry" !
• CONTACTS_RETIRED: != "bravo,foxtrot,kilroy" !
• CONTACTS_RECAP: != "name=delta,age=11.3,range=193.1 # name=gus,age=0.7,range=48.2

 #name=charlie,age=1.9,range=73.1 # name=henry,age=4.0,range=18.2"!

comma-separated list of contacts. !!
A comma-separated list of contact summaries.!!
A list of contacts for which alerts have been posted.!
A list of contacts for which alerts are pending, based on the range criteria.!
A list of contacts removed due to the information staleness. !
A warning message indicating possible mishandling of or missing data.!

The following are reported (Posted to the MOOSDB) on each iteration:

Examples:

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
Contact Resolution

•  An alert is generated by the contact manager for a given contact ONCE
 (when the trigger criteria is first met).

•  Sometimes a consumer of alerts may want to receive additional future alerts should the
contact come back into range.

•  If pBasicContactMgr receives the message CONTACT_RESOLVED, for a given contact, it
will generate another alert for that contact should the contact again meet the trigger
criteria.

The contact resolution mechanism is used to handle the scenario where a
contact comes into range, exits the range, and later returns.

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
The Berta Example Mission

•  An alert is generated by the contact manager for a given contact ONCE
 (when the trigger criteria is first met).

The “henry” vehicle

The “gilda” vehicle

Both vehicles take
turns loitering at a
pattern, and then
swapping their loiter
positions

Henry is transiting to
its current loiter
position.

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
The Berta Example Mission

(2) The alert results in
a new collision
avoidance behavior
spawned in each
helm.

(1) As the contact comes into
range, an alert is generated
by the contact manager.

MOOS-DAWG 2011 Mike Benjamin

The pBasicContactMgr Utility:
The Berta Example Mission

(2) The collision
avoidance behavior
then dies in each
vehicle’s helm

(1) As the contact goes out of
range, the collision avoidance
behavior posts a
CONTACT_RESOLVED
message

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Scripting Events to the MOOSDB

MOOS Modules:

• uXMS - A tool for focused scoping of the MOOSDB from the console.

• uPokeDB - A tool for poking the MOOSDB from the command line.

• pMarineViewer - A GUI tool for rendering vehicle operations onto an geo-referenced display.

• pNodeReporter - Captures vehicle state information and publishes a summary string.

• uHelmScope - A specialized scope on IvP Helm status and recent history.

• pBasicContactMgr - A simple manager of vehicle contacts, and generation of alerts.

• uTimerScript - A tool for scripting (possibly conditional and random) pokes to the MOOSDB.

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Overview

What is uTimerScript?
• A tool that allows the user to script a set of pre-configured events (pokes) to a MOOSDB.
• Each event can be configured to happen after a specified amount of elapsed time.
• Enables us to fake incoming command-and-control messages, sensor events etc.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = MOOS_MANUAL_OVERRIDE, false, 10!

 EVENT = var=DEPLOY, val=true, time=15!
}!

A simple example:

This simple script will
launch the Alpha or
Berta missions
automatically.

EVENT = var<variable>, val=<value>, time=<delay>

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Starting and Pausing the Script

When does the script start?
• By default the script starts when uTimerScript connects to the MOOSDB and begins to Iterate().
•  It may be configured in the “paused” mode
•  It may be configured to include a delay once it has started.
•  It may be configured to require conditions be met before starting.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = var=MOOS_MANUAL_OVERRIDE, val=false, time=10!

 EVENT = var=DEPLOY, val=true, time=15!

 CONDITION = ALPHA != 20!

 DELAY_START = 30!

 PAUSED = true!
}!

Starting the script in the PAUSED mode, with a DELAY.

The script may then be un-paused by posting to the MOOSDB:
UTS_PAUSE=false.!

Script will be paused if ALPHA=20.
(uTimerScript will register for ALPHA).!

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Randomizing the Event Times

Random event scheduling:
• Events may be configured to occur at a random time in a given interval.
• Random events are useful in testing the robustness of algorithms in varying situations.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = var=MOOS_MANUAL_OVERRIDE, val=false, time=10:20!

 EVENT = var=DEPLOY, val=true, time=10:20!

 PAUSED = true!
}!

The same example script with events randomized:

Event occurs between
10 and 20 seconds after
the script begins!

Event times are chosen with uniform probability.

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Repeating the script

Repeating the script:
• The script may be repeated a fixed number or indefinite number of times.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = var=MOOS_MANUAL_OVERRIDE, val=false, time=10:20!

 EVENT = var=DEPLOY, val=true, time=10:20!

 RESET_MAX = 10!

 RESET_TIME = 120!

 RESET_VAR = UTS_RESET!

 DELAY_RESET = 12!

 SHUFFLE = true!
}!

The same example script with events randomized:

Script will run 11 times.

Script will reset after 120 seconds
regardless if it is finished.

MOOS variable for receiving reset cues.

of seconds the script will delay on each reset.

If shuffle is false, random timestamps will
not be recalculated on each reset.

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Macro Expansion

Macros:
• Macros are used to fill in variable values with information determined at event posting time.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = var=MOOS_MANUAL_OVERRIDE, val=false, time=10:20!

 EVENT = var=DEPLOY, val=true, time=10:20!

 EVENT = var=SCRIPT_STARTED, val=$[DBTIME], time=0!

}!

A Script with a simple macro posting:

The start time of the script will be posted with
the value of DBTIME, the total amount of
time the MOOSDB has been up.

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Macro Expansion

Macros available:
• $[DBTIME]: The estimated amount of time since the MOOSDB started.
• $[UTCTIME]: The UTC time at the time of event posting.
• $[COUNT]: The integer total of all posts thus far in the script – reset to zero on script reset.
• $[TCOUNT]: Same as above except the total is not reset when the script is reset.
• $[IDX]: Similar to $[COUNT], but it expands as a string, “000”, “001”, “002”, etc.

User configured macros with random variables:
RAND_VAR = varname=<variable>, min=<low_value>, max=<high_value>, key=<key_name>!

Numerical interval!Macro name!
Key name:
 at-start!
 at-reset!
 at-post!

RAND_VAR = varname=ANGLE, min=0, max=359, key=at_reset!

RAND_VAR = varname=MAGNITUDE, min=0.5, max=1.5, key=at_reset!

Examples:

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Usage in the Berta Example Mission

On each iteration of the script, the location of the loiter
polygons are randomly set within the two regions.

Region #1

Region #2

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Usage in the Berta Example Mission

On each iteration of the script, the location of the loiter
polygons are randomly set within the two regions.

Region #1

Region #2

MOOS-DAWG 2011 Mike Benjamin

The uTimerScript Utility:
Script Usage in the Berta Example Mission

Permutation of Region locations and loiter assignments

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 PAUSED = false!
 RESET_MAX = unlimited!
 RESET_TIME = end!

 RANDVAR = varname=X1, min=-25, max=25, key=at_reset!
 RANDVAR = varname=Y1, min=-100, max=-50, key=at_reset!

 RANDVAR = varname=X2, min=100, max=150, key=at_reset!
 RANDVAR = varname=Y2, min=-75, max=-25, key=at_reset!

 EVENT = var=UP_LOITER_2, val="center_assign=$[X1],$[Y1]", time=180 !
 EVENT = var=UP_LOITER_1, val="center_assign=$[X2],$[Y2]", time=180!

 EVENT = var=UP_LOITER_1, val="center_assign=$[X1],$[Y1]", time=360!
 EVENT = var=UP_LOITER_2, val="center_assign=$[X2],$[Y2]", time=360!
}!

Random variable Macro
for Region #1

Region #2

Macro usage in
scripted events

MOOS-DAWG 2011 Mike Benjamin

The End

Where to find more:

On the web:
 www.moos-ivp.org

Email:
 issues@moos-ivp.org

