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Background

AUVs are becoming a sensing platform of increasing interest for conducting 
ASW 

Low cost

Mobility

Able to be inserted in high risk environments

When operated underwater , AUVs have limited ability to communicate with 
other assets within the ASW network

Acoustic communications are low bandwidth and limited range

AUVs therefore must have the ability to react to their sensors in an at least 
semi-autonomous way, making local decisions based on assumptions about the 
target and collaborating assets

In this talk we propose a model based control algorithm for AUVs bistatically 
receiving reverberation and target returns to try to maximize the SNR
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Maximize SNR Technical Approach 

 The helm will be operated at a constant speed* and constant depth*

 At the present position

For the estimated source position and speed

Either 1) known or 2) obtained from comms or 3) estimated by tracker 
running on the direct blast contact and using accurate timing

For the estimated receiver position and speed

Estimated by a tracker running on the first non-direct blast target

For a number of possible trajectories seconds_future in the future evaluated 
at num_times

Search over possible trajectories (determined by range_headings and 
num_headings)

Max SNR(   )

Maximum average SNR (  )

Maximum minimum SNR (   )

Use MOOS-IvP to output DESIRED_HEADING  

2L

L∞

L−∞

2L
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Maximize SNR Technical Approach Continued 

The helm will be operated at a constant speed* and constant depth*

Constant speed restriction can be eliminated by searching over possible 
speeds and minimizing a 2D objective function

Reflector

The constant depth restriction can be eliminated by searching over desired 
depths for various target hypotheses

Known target depth

Known target depth range

Target depth likelihood

Use fast RD prop code, most likely BELLHOP

Even current “lat-long” approach can be extended to RD 

Sound speed profile

uCtdSim2 

Bathymetry

uBathy
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Model Based Objective Function
RL

 Use Harrison’s formulae inspired by Weston for the rapid estimation of bistatic 
reverb in iso-velocity range independent environments  

TL

Area

RL
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Model Based Objective Function
EL

 For Echo Level use round-trip TL and a target strength TS 

TL

TS

EL
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SNR Objective Function in Target Location Space

SNR=EL-RL
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RL: Reverberation with BENS Aperture in Target Location Space

SNR=EL-RL
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SNR Objective Function with BENS Aperture in Target Location Space

SNR=EL-RL
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SNR Objective Function with BENS Aperture in Possible Receiver Space

SNR=EL-RL
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SNR=EL-RL

SNR Objective Function with BENS Aperture in Possible Receiver Space



NATO UNCLASSIFIED
8-Sep-10 slide 12

BHV_MaximizeSNR on Moving Target

 Moving Target starts at [1000,4000] sailing 2.5 kts east

AUV Loitering at [3800,1900]

AUV switches modes from MANUEVER to PROSECUTE

Currently with a MOOSPoke, need to automate probably on SNR similar to 
BHV_BroadsideSNR

AUV tries to maximize average SNR on target

Parameters of BHV_MaximizeSNR

num_times=20

seconds_future=500

num_headings=181

range_headings=360
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BHV_MaximizeSNR on Stationary Target

 Stationary Target starts at [3000,4000] 0 kts 

AUV Loitering at [3800,1900]

AUV switches modes from MANUEVER to PROSECUTE

Currently with a MOOSPoke, need to automate probably on SNR similar to 
BHV_BroadsideSNR

AUV tries to maximize average SNR on target

Parameters of BHV_MaximizeSNR

num_times=20

seconds_future=500

num_headings=181

range_headings=360
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BHV_MaximizeSNR on Stationary Target

 Stationary Target starts at [3000,4000] 0 kts 

AUV Loitering at [3800,1900]

AUV switches modes from MANUEVER to PROSECUTE

Currently with a MOOSPoke, need to automate probably on track quality

AUV tries to maximize average SNR on target

Parameters of BHV_MaximizeSNR

num_times=20

seconds_future=500

num_headings=181

range_headings=180



NATO UNCLASSIFIED
8-Sep-10 slide 19




NATO UNCLASSIFIED
8-Sep-10 slide 20




NATO UNCLASSIFIED
8-Sep-10 slide 21

BHV_MaximizeSNR Preliminary Conclusions

Behaviour seeks to keep target on or near broadside

Behaviour simultaneously tries to close range

Behaviour avoids “blackout region”

Behaviour can demonstrate emergent behaviour of helm ambiguous heading 
oscillation (damped by BHV_MemoryTurnLimit)  when it is allowed to consider 
completely reversing course

Occurs when vehicle crosses source-target axis where the objective 
function becomes ambiguous (symmetric)

Behaviour tries to sail “almost” directly towards target when the seconds_future
parameter encompasses the estimated target position
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Maximize SNR Technical Approach Continued 

The helm will be operated at a constant speed* and constant depth*

Constant speed restriction can be eliminated by searching over possible 
speeds and minimizing a 2D objective function

Reflector

The constant depth restriction can be eliminated by searching over desired 
depths for various target hypotheses

Known target depth

Known target depth range

Target depth likelihood

Use fast RI prop code, most likely KRAKEN

Even current “lat-long” approach can be extended to RD 

Sound speed profile

uCtdSim2 

Bathymetry

uBathy
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 Use Harrison’s formulae inspired by Weston for the rapid estimation of bistatic 
reverb in iso-velocity range independent environments  

TL from source to target

TL from target to receiver

Total TL integrated over uncertain target depth
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Model Based Depth Objective Function
TL
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Combined MaximizeSNR and MinimizeTL Simulation
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MimimizeTL_Depth Behaviour
Preliminary Conclusions

Very similar to Toby Schneider’s work using Bellhop and trying to minimize TL

Using Kraken instead of Bellhop

Field computed inside behaviour using modes

Uses existing .mod file

Currently the depth of the maximum transmission gain averaged over a number 
of look-ahead times is used to determine the optimum depth

Helm designs an objective function based only on this optimum depth

Could pass the entire time averaged transmission gain to the helm via 
piecewise linear map

This work could be made entirely consistent with the X-Y maximized SNR 
behaviour by calculating signal excess as a function of depth rather than TL
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AUV Model Based Autonomy
Overall Conclusions

AUV autonomy for ASW is an emerging research area

Typical solutions at the moment are driven by ideas

What the behaviour designer feels would be a robust algorithm with a 
good chance of demonstrating good performance

Measures of effectiveness are still being determined

Autonomy based on towed array sensors can be very sensitive

Autonomy algorithm adjusts helm, new heading leads to heading or 
location ambiguity of a contact

Moving contacts lead to broken tracks, leading to control instability as 
new detection and track on the contact of interest must be formed

Clutter and false alarms will pose major challenges

Fusion of information between collaborating assets will be a major challenge 
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Technical Risks/Remaining Work

Maximize SNR

Have GROUCHO process the BENS array data using pProcessSlita, 
generate contacts using pBistaticLocator, and have pKalmanTracker generate 
useful tracks that persist long enough for the behaviour to act on

Write the software that will allow the behaviour state to change from loiter 
to maximize snr  upon the appearance of a track of sufficient quality

Overall

Make sure that MOOSIvP works with the iOEX frontseat driver for even the 
simplest missions
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Backup Slides


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Elongated Target in Target Location Space



( )( )( )20log10 sin cos cos / 2broadside refl obsc kL θ θ= + −TS TS
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Elongated Target in Target Location Space



( )( )( )20log10 exp cos cos / 2broadside refl obskL θ θ= + − −TS TS
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SNR Objective Function with BENS Aperture in Possible Receiver Space


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RL: Reverberation in Target Location Space


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EL: Omni-Directional Target in Target Location Space


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SNR Objective Function in Target Location Space with Glint


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Reverberation Modeling Approach Continued

 For Echo Level use round-trip TL plus a specular target model that gives a 
glint width determined by the hull length and the frequency

TL

TS

EL
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Reverberation Modeling Approach

 Use Harrison’s formulae inspired by Weston for the rapid estimation of bistatic 
reverb in iso-velocity range independent environments  

TL

Area

RL
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Reverberation Modeling Approach

 Use Harrison’s formulae inspired by Weston for the rapid estimation of bistatic 
reverb in iso-velocity range independent environments  

TL

Area

RL
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SNR Objective Function with BENS Aperture in Possible Receiver Space


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SNR Objective Function with BENS Aperture in Possible Receiver Space


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